
Dagens ämnen

 Basbyte i linjära avbildningar

 Basbytesformeln

 Noll- och värderum

 Sammansättningar av linjära avbildningar

 Invers avbildning tar vi nästa Fö



Basbytesformeln

Läs 𝐟𝐞𝑇 -formeln i basbytesformeln

𝐟 = 𝐞𝑇, 𝐴𝐟 = 𝑇−1𝐴𝐞𝑇



Nollrum och värderum



Beräkning av N(F) och V(F)

 N(F)? 

 Lös 𝐴𝑋 = 0 på vanligt sätt.

 V(F)?



𝑉(𝐹)?

 Tänk på uppbyggnaden av avbildningsmatrisen!

 𝐹(𝐞𝑖):s koordinater är det som står i 𝐴:s kolonner.

 För att hitta bas i 𝑉(𝐹) behöver löjliga element strykas.

 Beroendeekvationen för 𝑉(𝐹) blir 𝐴𝑋 = 0.

 Slutligen, vill ha ekvationer för 𝑉(𝐹) till kontroll och utfyllnad, dvs vill 
lösa 𝐴𝑋 = 𝑌.

Vi löser alltså ett ekvationssystem men tolkar det på tre olika sätt!

 Se till att ni har koll på vilken ekvation ni jobbar med!!



Dimensionssatsen



Sammansatta avbildningar

Potenser av linjära avbildningar



Inverser till linjära avbildningar

Definition. 

Låt 𝕌 och 𝕍 vara vektorrum av ändlig dimension och 𝐹:𝕌 → 𝕍 en linjär avbildning. Om det finns 
en avbildning 𝐺:𝕍 → 𝕌 sådan att 

𝐺 ∘ 𝐹 𝐮 = 𝐮 för varje 𝐮 ∈ 𝕌

𝐹 ∘ 𝐺 𝐯 = 𝐯 för varje 𝐯 ∈ 𝕍

så säges 𝐹 vara inverterbar med invers 𝐺. 

Man kan bevisa att i fall 𝐺 existerar så är den entydigt bestämd. Vi använder beteckningen 𝐺 =
𝐹−1

Lemma 7.6.6. 

Antag att 𝐹:𝕌 → 𝕍 har en invers 𝐹−1: 𝕍 → 𝕌. Då gäller att

a) 𝐮𝟏 ≠ 𝐮𝟐 ∈ 𝕌 ⟹ 𝐹(𝐮𝟏) ≠ 𝐹(𝐮𝟐)

b) 𝑁 𝐹 = {𝟎}

Anmärkning. En funktion med egenskapen (a) kallas injektiv



Exempel 1. Betraktar spegling 𝐹:ℝ3 → ℝ3 i ett plan Π. Då gäller 

𝐹 ∘ 𝐹 𝐱 = 𝐱

för alla vektorer 𝐱 ∈ ℝ3 vilket ger enligt definition att 

𝐹 = 𝐹−1

Exempel 2. Betraktar ortogonal projektion 𝐹:ℝ3 → Π på ett plan Π som går genom 
origo. Om 𝐧 är en normal vektor till Π då 

𝐹 𝑡𝐧 = 𝟎 för alla 𝑡 ∈ ℝ

D v s för  𝐮𝟏 = 𝐧 och 𝐮𝟐 = 2𝐧 gäller att

𝐹 𝐮𝟏 = 𝐹 𝐮𝟐 och 𝐮𝟏 ≠ 𝐮𝟐

vilket strider mot Lemma 7.6.6. Följaktligen saknar 𝐹 invers avbildning



Exempel. Inversen av en vridning i planet.

𝐞𝟏

𝐞𝟐

𝜃

𝜃

𝐹 𝐞𝟏 = cos 𝜃, sin 𝜃

𝐹 𝐞𝟐 = −sin 𝜃 , cos 𝜃

Avbildningsmatris för en vridning i en ON bas är 

𝐴𝜃 =
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

⟹ 𝐴𝜃
−1 = 𝐴−𝜃 =

cos(−𝜃) −sin(−𝜃)
sin(−𝜃) cos(−𝜃)

=
cos𝜃 sin 𝜃
−sin 𝜃 cos 𝜃



Inverser till linjära avbildningar

Sats 7.6.7. 

Invers avbildningen 𝐹−1 är linjär och inverterbar med invers 𝐹.

Korollarium 7.6.8. 

För att  𝐹:𝕌 → 𝕍 skall kunna ha en invers är det nödvändigt att 

dim𝕌 = dim𝕍

Om 𝐹 har en invers så är V 𝐹 = 𝕍.

Sats 7.6.9. 

Låt 𝐹:𝕌 → 𝕍 vara en inverterbar linjär avbildning med avbildningsmatris 
𝐴 relativt baserna 𝐮 och 𝐯 i 𝕌 respektive 𝕍.

Då är 𝐴 kvadratisk och inverterbar och 𝐴−1 är avbildningsmatris, relativt 
samma baser, till 𝐹−1



Jämförelse med ekvationssystemsatsen

Sats 4.7.1. Låt 𝐴 vara en 𝑛 × 𝑛-matris. Följande påståenden är ekvivalenta:

• det 𝐴 ≠ 0

• 𝐴 är inverterbar

• Matrisekvationen 𝐴𝑋 = 𝑌 har entydig lösning för alla 𝑛 × 1-matriser 𝑌.

• Matrisekvationen 𝐴𝑋 = 0 har endast den triviala lösningen, 𝑋 = 0.

• rang 𝐴 = 𝑛

• 𝐴 är radekvivalent med enhetsmatrisen

Vi formulerar om denna sats för linjära avbildningar

Korollarium 7.6.13. Låt 𝐹: 𝕌 → 𝕌 vara en linjär avbildning med 
avbildningsmatris 𝐴 någon bas 𝐮 i 𝕌. Då följande påståenden är ekvivalenta:

a) det 𝐴 ≠ 0

b) 𝐹 är inverterbar

c) 𝑉 𝐹 = 𝕌.

d) 𝑁 𝐹 = {𝟎}.


