element a of G to create a permutation 7, of G (as a set) in such a way that G

itself is isomorphic to the .
group of these
14.5.6 is similar. permutations. The proof of Theorem
)

gh;proofofTheorem 14.5.6 Let G be any group. Foreach gin Gletd, : G —
¢ te;l th{a map de:ﬁned by 6, .(h) = gh (informally, 0, is the instruction ‘inultiply
Cn ic eft by_ 8’)- We begin by showing that each 6, is a permutation of G

ertainly, 6, is a map of G into itself. Next, if 0,(f) = Oy(h) then gf = gh.
Zo(thith ]; =h; t?;lls 0, is injective. Finally, take any 4 in G and notice that

o (g =gg  h=hsoth i jecti i

s at 0, is surjective. Thus each 6, is a permutation
. It follows that we have just constructed a map @ that takes g to 6,, and this
isa ?ap fFom G to the group, say P, of permutations of G. Now itgis easy to
‘see that 6 is a homomorphism from G to P. Indeed, given g and # in G

Oen(f) = (gh)f = g(hf) = Og(hf) = 6,0n( /),

and as @s ho'lds forall f, we see that O¢n = 656 Thus 6 : G — P is a homo-
_ m;:rphlsm. Fll}ally, let T" be the image of G under 6. As G is a group and 6 is
a homomorphism, we see that I" is a subgroup of P. By definition, 6 maps G

onto I'; thus @ is an isomorphism from G onto the subgfoup I'of P O

Exercise 14.5

1. Let G be the group of transformations {I, f, g, h}, where f(z) = —z
, iii);bz and h(z) = —Z. Show that the map v — fvisa permutation, of G.
: C ,e any group, and let G act on itself as described in the proof of
ayley’s theorem. Show that G acts faithfully on itself.

3. Let G be a group and H a subgroup of G. Show that G acts on the set of
left cosets by the rule that g (in G) takes h H to gh H; equivalentl
g(hH) = ghH.Now H itself is a left coset (= e H), ’so we can as}l;’ for th
subgroup of elements of G that fix H. Show that this subgroup is H 'Otrhu y
any subgroup of any group arises as the stabilizer of somic3 group acti’on S

15
Hyperbolic geometry

15.1 The hyperbolic plane

In the earlier chapters we have discussed both Euclidean geometry and spherical
(non-Euclidean) geometry, and in this last chapter we discuss a second type of
non-Euclidean geometry, namely hyperbolic geometry. Gauss introduced the
term non-Euclidean geometry t0 describe a geometry which does not satisfy
Buclid’s axiom of parallels, namely that if a point P is not on a line L, then
there is exactly one line through P that does not meet L. In spherical geometry,
the “lines’ are the great circles, and in this case any two lines meet. Hyperbolic
geometryisa geometry in which there are infinitely many lines through the point
P that do not meet the line L, and it was developed independently by Gauss (in
Germany), Bolyai (in Hungary) and Lobatschewsky (in Russia) around 1820.

We begin by describing the points and lines of hyperbolic geometry without
any reference to distance. We shall take the hyperbolic plane to be the upper
half-plane H = {x + iy : ¥y > 0} in C. Notice that the real axis R is not part of
H. A hyperbolic line (that is, a line in the hyperbolic geometry) is a semicircle
in H whose centre lies on R; such semi-circles are orthogonal to R. However,
as our concept of circles includes ‘straight lines’ (see Chapter 14), we must
also regard those straight lines that are orthogonal to R as hyperbolic lines.
Figure 15.1.1 illustrates the hyperbolic lines in H, and we remark that the two
‘different’ types of line are only different because we are viewing them from a
Euclidean perspective.

We notice immediately that Euclid’s Parallel Axiom fails; indeed, the two
semi-circles have a common point P that does not lie on the line L; moreover,
it is easy to see that there are infinitely many hyperbolic lines through P and
not meeting L. It is clear, however, that any two hyperbolic lines meet in at most
one point, and that there is is a unique hyperbolic line through any two distinct
points in H.
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Figure 15.1.1

Now let

r— f_>az+b'
z Cz+d.a,b,c,d€R, ad—bc>0}.

First, we leave the reader to check that I" is a group. Next, we note that if g is

in " then it maps H into itself. Indeed, if i
g T » I we write g(z) = (az + b)/(cz + d),

(az+b)cz+4d)’

(cz+d)(cz +d)

 (@d—bo)y (15.1.1)
T lez+dP

Exactly the same reason shows that & also maps the lower half-plane (given by

¥ < 0) into itself; thus g must also ma i i
: p the circle R U {co i i
a group, the same holds for g~!; thus (oo o el As s

Im[g(x +iy)] =

g(RU{c0}) =R U {co} = g (R U {o0}).

This implies that the coefficients a, b, ¢ and d in g may be chosen to be real (
';hat welcannotlassert that they are real, for they are only determined to wiI:}(:;z
complex scalar multiple). The case ¢ = 0 is

c#0. Then, by scaling the coefficients by the faiizz, ls/oc v::er::r}: cissumeththat
coefficients so that, in effect, ¢ = 1. Then, as g(co0) = a, and g~I( Oo)se— ”:
Wf-: see that ¢ and d are real. Finally, if ¢ = 0 then —b :’ad —gbc :OO = ;d,
b is real'. If, 'however, a # 0, then —b/a = g~1(0) so that b is acain r:;)l ’Iiit
summarize: if g(z) = (az + b)/(cz + d), and g €T, then we maycassum th )
a, b, c and d are real. This implies that, for each z, o

MZ(HZwLb)_EzHE_aHb B
“Z+d cztd 2@ Chal-d)

g 8(z)
w TN g(w)

gw)
8(@)
Figure 15.1.2

Let us now see how g in I acts on hyperbolic lines. Let z and w be distinct
points of H, and let us consider the hyperbolic line L through z and w. Now
L is part of the (unique) Euclidean circle C that passes through z, w, Z and
, so that g(C) passes through g(z), g(w), g(z) and g(w). However, (15.2.1)
now implies that g(C) passes through g(z), g(z—), g(w) and m, so that g(C)
is orthogonal to R (see Figure 15.1.2). It follows that g(L) = H N g(C), and
this proves the following result.

Theorem 15.1.1 If g € T and L is a hyperbolic line, then g(L) is a hyperbolic
line.

Theorem 15.1.1 suggests that the elements of I might be regarded as the rigid
motions of hyperbolic geometry. This suggestion is strengthened by the fact
(which will not be proved here) that any bijective map of C onto itself that
maps circles to circles is a Mobius map of z or of Z; this is a type of converse
of Theorem 13.3.2. Further, any Mobius map that preserves H must be in '
(Exercise 15.1.1). In the next section we shall introduce a distance in H, and
we shall then see that the elements of I" are indeed the isometries of H.

There is a second model of the hyperbolic plane which is useful, and often
preferable to the model H. In this model the hyperbolic plane is the unit disc
D, namely {z : |z| < 1} (see Figure 15.1.3). The Mdbius map g(z) = (z — 1)/
(z + i) maps H onto D (because H is given by |z —i| < |z +1|), and so we
may take the hyperbolic lines in the model D to be the images under g of the
hyperbolic lines in . Thus the hyperbolic lines in I are the arcs of circles in D
whose endpoints lie on the cirle |z| = 1 and which are orthogonal to this circle
at their endpoints. The two models 7 and D may be used interchangeably, and
any result about one may be transferred to the other by any Mdbius map that
maps H to D, or D to H.



Figure 15.1.3

Exercise 15.1
-1. Show that if f is a M&bius map which map
can be written in the form f(z) =

real and ad — bc # 0. Show furth
ad — bc > 0.

s R U {oco} onto itself, then f
(az+Db)/(cz + d), where a, b, c, d are
er that f(H) = H if and only if

) I 1 ] 1. . . . ] I ] 1 1 S] ] ] .
= E't <1 an ZZ € ISHIl:t pCIntS n € §‘pEI O 1.: F ane. O att ere 1s a
umque hyperbOhC llne that paSSBS llll ()HC‘h z and L0
(=}

3. Suppose that w i
1 and wy are in M. Show tha i
e . 2 . t there is i
g(wy) = w.z. This shows that the stabilizer of i et
to the stabilizer of any other point in H.

4. Veri i
Verify the steps in the following argument. Let 8@) = (z—1)/(z+1i); th
=(z — i); then

ma
g maps H onto D, where D — {z : |z] < 1}. Note that g() =0and

( l’) = OQ. N()W SLI[) f )S 7‘1 onto c f
'. f n 1ts If and ﬁXeS 1, then

-1
i : &~ maps D onto itself
Thus gfg~! is a Euclidean rotation about the ori s 0 and oo

of hyperbolic isometries that fixa
of Euclidean rotations that fix the

any point in 'H is conjugate

gin, and hence the group

§tven point w is isomorphic to the group
origin.

15.2 The hyperbolic distance

We shall i : .
e isomertlgw 1fntroduce a distance in , and then show that the elements of I’
e = ks g S
w— ;h:r this distance (in fact, they are the only orientation presersi
< = o
Te are two ways to define this hyperbolic distance, and we sh:ﬁ

Figure 15.2.1

start with the more elementary way. Consider distinct points z; and z3 in H,
and let L be the hyperbolic line through these points. Then L has endpoints
u and v, say, chosen so that u, z1, 22 and v occur in this order along L (see
Figure 15.2.1). We can find a Mdbius map g in I such that g(u) = 0 and
g(v) = oo (see Exercise 15.2.1); then g(z1) = ia and g(z2) = ib, say, where
0 < a < b. If we now recall that cross-ratios are invariant under M&bius maps,

we have
[u, z1, z2, v] = [0, ia, ib,00] = b/a > 1.
This allows us to make the following definition.

Definition 15.2.1 The hyperbolic distance between 21 and zp in H is
log [u, z1, 22, v] when 21 # 73, and zero otherwise. We denote this distance

by p(z1, 22)- i

Theorem 15.2.2 The elements of T preserve the hyperbolic distance between
two points in H.

Proof This is immediate because the hyperbolic distance is defined as a cross-

ratio, cross-ratios are invariant under Mobius maps, and each g in T is a Mdbius

map. i

Notice that if, in Definition 15.2.1, we have z; = ia and zp = ib, where
0 < a < b, then

p(ia,ib) =1ogl0, ia, ib,co]l =log b/a
(see Definition 13.4.1). This leads to the following more general result.
Theorem 15.2.3 The hyperbolic distance is additive along hyperbolic lines.

Proof Suppose that 71, 22, z3 lieona hyperbolic line L with end-points % and v
suchthatu, z1, 22, 23, v occur in this orderalong L. Wecan find some g in I" such
that g(u) = 0 and g(v) = o0, and then g(z;) = iaj, where 0<a <ay <as.



AS Pzi, z;) =log aj/a; wheni < J we see that

p(z1, z3) = log a3 /a;
= log as/a, + log ax/a
= p(z1, 22) + p(z2, z3).
O

V‘Ve are now in a p()SlthIl to give eXphClt f()] llluale 10] the h y [)e[ b()[lC d]Sta] 1Ce
(See EerCISe 15'2'2)' i

Theorem 15.2.4 Fpr zand win H

Sj\nh2 .l_p(z’ w) — M
2 4Im[z] Im[w]’

|z — w]?
P . 4Im[z] Im[w]’
roof First, choose g in I" (as above) so that 8(z) =ia and g(w) =ib, wh
= ib, where

O<a<b.Byapp1' th

ying the map z = z/a (whichis in I )

— , We ma
.@=1.Then p(z, w) = p(i, ib) =logb, so that i

(15.2.1)

1
cosh? = =
2/0(2, w) (15.2.2)

1
sinh? = = dinp? -1y
5P w) = sinh? (log v/B) = TR (15.2.3)

Next, let

F(z, w) = _le—wP
4Im[z] Im[w]"

Then, from (13.1.2) and (15.1.1

), we see th is i i i
ot e at F is invariant under any g in I';

F(8(2), gw)) = F(z, w).
Thus

(b —1)°
T (15.2.4)

F(z,w)=F(i,ib) =

and this together with (15.2.3) gi
-2.3) gives (15.2.1). The second
follows from the fact that, for all z, cosh? 7z = 1 + sinh? zon e )
. (]

hyp\(:]; ;Tilz:lril;;}ité z.:lts.’[hleorem 15.2.4 suggests, in calculations involving the
oreshof o i 11s almost always advantageous to use the functions sinh

ol Wi,th ) cl))r 3 ,;)(;, w); ?nly rarely is p(z, w) used by itself.
define a2 Tiel discussion of an alternative (but equivalent) way to
Ce. rirst, we define the hyperbolic length of a curve y in H to be

el

the line integral

I
vy ¥

where, as usual z = x + iy. Now let L be the hyperbolic line through two points
z and w in H, and let o be the arc of L that lies between z and w. It can be
shown that o has hyperbolic length p(z, w) and, moreover, that any other curve
joining z to w has a greater hyperbolic length than o. Thus the hyperbolic line
through two points does indeed give the shortest path between these points.

Finally, if g is in ', and g(z) = (az + b)/(cz + d), then, from (13.1.2), we
see that

18 = 22 =%
) =——,
¢ ez + dP?
where g’(z)is the usual derivative of g. In conjunction with (15.1.1) this gives
gl 1

Im[g(z)]  Imlz]’
This (together with the formula for a change of variable in a line integral) shows
that for each g in I, and each curve y, g(y) has the same hyperbolic length
asy.

Exercise 15.2

1. Show that for any « and v in R U {oo} with u # v, thereis a g in I with
g(u) = 0 and g(v) = oo. [Hint: apply z + —1/(z — v) and then a
translation.] - : '

2. The functions sinh and cosh are defined by sinhz = (e* — ¢7%)/2 and
cosh z = (e? + e7%)/2. Show that (a) cosh? z — sinh? z = 1, and (b)
cosh2z = 2cosh?z — 1 = 1 + 2sinh®z.

3. Find the hyperbolic distance between the points 1 +iy and =1 +iy asa
function of y. Show that for a given positive ¢ there is a value of y such that
this distance is t.

4. Let L be the Euclidean line given by Im[z] = 2. Show that 2i is the point
on L that is closest (as measured by the hyperbolic distance) to the point i.

15.3 Hyperbolic circles

Suppose that w € H, and r > 0. The hyperbolic circle with hyperbolic centre
w and hyperbolic radius r is the set {z € H : p(z, w) = r}.



Figure 15.3.1 '

Theorem 15.3.1 Each hyperbolic circle is a Euclidean circle in H.

Proof Let C be the hyperbolic circle with centre w and radius 7. There is a
map g in I" with g(w) = ; (see Exercise 15.1.2), so that 8(C) is the hyperbolic
circle with centre i and radius . Now by Theorem 15.2.4,z € g(C) if and only
if |z — i|?/4y = sinh? %r, where z = x + iy. This equation simplifies to give
x% + (y — coshr)? = sinh? 7, 80 that g(C) is a Euclidean circle in . As gl
‘maps circles to circles, and H to itself, we see that &7'(8(C)), namely C, is a
Euclidean circle in 7. : O

Notice that the hyperbolic centre of a hyperbolic circle is not the same as its
Euclidean centre (and similarly for the radii); indeed, the hyperbolic circle g(O)
in the proof of Theorem 15.3.1 has hyperbolic centre i, and Euclidean centre
icoshr (and coshr > 1). A hyperbolic circle with centre and hyperbolic
radius r is illustrated in Figure 15.3.1. Finally, it can be shown that the length of
a hyperbolic circle of hyperbolic'radius 7 is 25 sinh 7, and that its hyperbolic
area (which we have not defined) is 47 sinh?( %r). Notice that the hyperbolic
radius of a hyperbolic circle of radius » grows roughly like 7re”; in the Euclidean
case, itis 2777 Finally, we mention (but do not prove) the hyperbolic counterpart
of the fact that the area of a spherical triangle is 7 less than its angle sum.

Theorem 15.3.2 The greq of a hyperbolic triangle with angles o, B and y is
T—(a+B+y).n particular, this area cannot exceed 7.

Exercise 15.3

1. Find the equation of the hyperbolic circle with centre 2; and radius 2,
Suppose that this circle meets the imaginary axis at ig and ; b, where

0<a<2<b. Findg and b, and verify directly that p(ia, 2i) =e? =
0(2i, ib).

Figure 15.3.2

2. Consider the unit sphere in R? as a model of spherical geor.netry in which
distances are measured on the surface of the sphere. What is ’fhe e
circumference of the circle whose centre is at the ‘.north pole (see} 12,.u(r:(;,e
15.3.2) and whose radius is 7? Now compare the circumference % ? cir
of radius 7 in Buclidean geometry, spherical geometry and hyperbolic

geometry.

15.4 Hyperbolic trigonometry

A hyperbolic triangle is a triangle whose sides are arcs of hyperbplic hrllgsl.l\;\;e
begin with the hyperbolic version of Pythagoras’ theorem (see Figure 15.4.1).
t=4

Theorem 15.4.1 Suppose that a hyperbolic triangle has sides of hyperbolzlc
lengths a, b and c, and that the two sides of lengths a and b are orthogonal.

Then cosh ¢ = cosha coshb.

In our proof of this result we shall need to use the fact that Ia Mzg}usliaf hiz
is, 1 gles between circles. In particular,
conformal; that is, it preserves the ang s feu
im;ﬁies that if two circles C and C’ are orthogonal, ?.nd if g is any 1\/'Iob111_1i1 maopkl
then g(C) and g(C’) are orthogonal. We shall not give a proof of this (althoug

the proof is not difficult).

Proof Let the vertices of the hyperbolic triang.le be v,, v.;, alrji Izl);l\gl;rz v:j
opposite the side of length @, and so on. There is some g in e e ch .
and v, = ik, where k > 1. As g preserves 2the ozrthogona 1;3;0 ek
that g maps v, to some point s + it, where s* + ¢~ = 1 (see 15$ = — S.+ :
preserves hyperbolic distances, this means that we may assume that v, = s



a
b
Figure 15.4.1
/\ ik
| S-+it

Figure 15.4.2

As

K +1

cosha =

, coshb = 1 coshc = Kt
the given f t "
given formula follows.
O
It is interesting to examine Pythagoras’ theorem for small tri
_ 1 triang
Icaraiz tizl;gii;ﬁs;oshz = + 2220+ 74 /41 4 ... wesee tkijr\;:;::;n;afr?;
ot inﬁnitesm,lane‘flr(l)lrmﬁla is, up to the second-order terms, c? = az’—i— b2.
i 32 .e ype_:rl?ohc version of Pythagoras’ theorem agrees
e dean d;zion. This is bec.ause the hyperbolic distance is obtained
e Buclidean di ance 1:'>y applying a ‘local scaling factor’ of 1/y at z.
cF iopcn thz ‘inﬁmis e.ssentlally con§tant on an infinitesimal neighbourhood
o Eucnd,ean - ne:sm;;ﬂ hyperbolic geometry is just a scaled version of
ey dista; "0 thy. owever, as the scaling factor varies considerably
Eucnde:n aeomeus, Fe global hypejrb.olic geometry is very different from the
e lar: h y. For exar%qple, if in Pythagoras’ theorem, a, b and ¢ are
ge, then, as cosh x is approximately ¢* /2 when x is large, we have

v, =ik — o
b =ik and v, =i. Now p(i, ik) = a, p(i, s + it) = b and p(ik s+it)=c

(approximately) 4e® = e%eb so that c =a+b—1log2. In other words, in a
‘large’ hyperbolic right-angled triangle, the length of the hypotenuse is almost
the sum of the lengths of the other two sides! If this were the case in Euclidean
geometry, then the triangle would be very “flat’, but this is not so in hyperbolic
geometry.

Finally, we remark that hyperbolic trigonometry is as rich and well under-
stood as Buclidean trigonometry (and spherical trigonometry) is. For example,
there is a sine rule, and cosine rules in hyperbolic geometry. In most applications
it is the hyperbolic trigonometry that is important, and hyperbolic geometry by
itself has relatively few applications.

Exercise 15.4

1. Suppose that a, b and ¢ are the sides of a right-angled hyperbolic triangle
with the right-angle opposite the side of length c. Prove thatc < a + b; this
is a special case of the triangle inequality.

2. Consider a right-angled hyperbolic triangle with both sides ending at the
right angle having length a. Let the height of this triangle be & (the distance
from the right angle to the third side). Find h as a function of a. What is the
limiting behaviour of & as a — +0c0?

15.5 Hyperbolic three-dimensional space

We end this text with a very brief description of three-dimensional hyperbolic
geometry, and a sketch of the proof of Theorem 14.3.2. These are given in
this and the next section, and they combine many of the ideas that have been
introduced in this text. We take hyperbolic space to be the upper-half of R?,
namely

H? = {(x,y,1) eR® 11 >0}

It is convenient to identify the point (x,y,t) with the quaternion x + yi+ tj,
and also to identify the quaternion i with the complex number i. Thus we can
write (x, y,t) as z + tj, where z is the complex number x + iy: Note that in
this notation we have the convenient formula

2j = (x + yi)j = xj + yk = xj — yji =JZ. (15.5.1)

Suppose now that g(z) =(az + b)/(cz + d), where ad — bc # 0. We can
now let g act on hyperbolic space H3 by the rule ‘

g z+1j [az+t)+b][c@+)+ . (15.5.2)




where this computation is to be carried out in the algebra of quaternions. This
lengthy (but elementary) exercise shows that

(az + b)(€Z + d) + act? + |ad — beltj
lez +dJ? + [¢]*e?

Notice that as quaternions are not commutative, we have to choose (and then
be consistent about) which side we shall write the inverse in (15.5.2). However,
in (15.5.3), the denominator is real (and positive), and as every real number
commutes with every quaternion, we can write it in the usual form for a fraction
without any ambiguity. Notice also that if we putz = 0in (15.5.3), we recapture
the correct formula for the action of g on C.

The consequences of (15.5.3) are far-reaching. First, if we consider g to be
atranslation, say g(z) = z + b, then we find that 8(z +tj) = (z + b) + tj; thus
g is just the ‘horizontal’ translation by b. If 8(z) = az, then we find that

glz+1tj=

(15.5.3)

gz +1tj) = az + |altj.

If |a| = 1, so that g is a rotation of the complex plane, then g acts on H> as a
rotation about the vertical axis through the origin. If a > 0, so that g acts as a
‘stretching’ from the origin by a factor a in C, then g also acts as a stretching
(from the origin, and by the same factor) in H3. Of course; the more interesting
case is when g(z) = 1/z; here
Z+1j

We define the lines in H to be the ‘vertical’ semi-circles, and the ‘vertical’
rays (exactly as in the two-dimensional case; see Figure 15.5.1), and we can
define the hyperbolic distance between two points again by a cross-ratio (think-
ing of the vertical plane through the two points as the complex plane), or by

integrating |dx|/x3, where x = (x1, X2, x3), over curves. When all this has been
done, we arrive at the following beautiful result.

8z +1tj) =

Figure 15.5.1

Theorem 15.5.1 Every Mobius map acts on hyperbolic space H> as a hyper-
bolic isometry, and every isometry that preserves orientation is a Mobius map.

15.6 Finite Mobius groups

Finally, we give only the briefest sketch of the ideas behind a proof of Theorem
14.3.2. The aim of this sketch is to give the reader a glimpse of some beautiful
interaction between algebra and geometry, and it is far from being complete.
First, the Mobius maps (that act on Co) can be extended (either as a composition
of reflections and inversions, or in terms of the quaternion algebra) to act on all
of R?. The upper-half H> of R? with the hyperbolic metric ds = |dx|/x is a
model of three-dimensional hyperbolic geometry, and the Mébius group is the
group of orientation-preserving isometries of this space.

Now let G be a finite Mdbius group; then G may be regarded as a finite -
group of isometries of 73, so that each point in > has a finite orbit. Take any
orbit and let B be the smallest hyperbolic ball that contains the orbit. Analytic
arguments show that B is unique, and as the chosen orbit is invariant under G,
sois B, and hence (finally) so too is the hyperbolic centre of B. This argument
proves that the elements of the finite group G have a common fixed point ¢ in
3. There is now a Mdbius map (which acts on all of R? U {co}) that converts
the upper-half space model of three-dimesional hyperbolic space into the unit
ball model (much as there is a M6bius map that takes the upper half-plane to
the unit disc). This can be chosen so that ¢ is carried to the origin; thus the finite
Mbobius G is conjugate to a Mobius group G’ of hyperbolic isometries that act
on the unit ball in R3 with the extra property that every element of G’ fixes 0.
It is not difficult to show that every such isometry is a Euclidean rotation of R3
and the sketch of the proof is complete. O
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Using geodesic coordinates
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