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In this lecture, the following definitions are mentioned:

X: random variable (stokastiska variabel);

Mean (Väntevärde):

µ = E(X) =

{∑
kpX(k), if X is discrete,∫∞
−∞ xfX(x)dx, if X is continuous;

Note:

µ = E(g(X)) =

{∑
g(k)pX(k), if X is discrete,∫∞
−∞ g(x)fX(x)dx, if X is continuous;

Variance (Varians): σ2 = V (X) = E((X − µ)2) = E(X2)− (E(X))2;

Standard deviation (Standardavvikelse): σ = D(X) =
√
V (X);

There are several properties of mean and variance: X and Y are independent random variables, a,b,c are
constants, then

E(aX + bY + c) = aE(X) + bE(Y ) + c,

V (aX + bY + c) = a2V (X) + b2V (Y ), here X,Y are independent (oberoende);

Note: these two properties also work for n random variables.

If X ∼ N(µ, σ), then X−µ
σ ∼ N(0, 1);

If X1, . . . , Xn are independent and Xi ∼ N(µi, σi), then

d+
n∑
i=1

ciXi ∼ N(d+
n∑
i=1

ciµi,

√√√√ n∑
i=1

c2iσ
2
i );

Population X with an unknown parameter θ,

Random sample (slumpmässigt stickprov): X1, . . . , Xn are independent and have the same distri-
bution as the population X. Before observe/measure, X1, . . . , Xn are random variables.

Observations (observationer): x1, . . . , xn (after observe/measure), which are numbers (not random
variables);

Point Estimator (Stickprovsvariabeln): Θ̂ = f(X1, . . . , Xn), a random variable;
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Point Estimate (Punktskattning): θ̂ = f(x1, . . . , xn), a number;

Unbiased (Väntevärdesriktig): E(Θ̂) = θ;

Effective (Effektiv): Two point estimators Θ̂1 and Θ̂2 are unbiased, we say that Θ̂1 is more effective
than Θ̂2 if V (Θ̂1) < V (Θ̂2);

Consistent (Konsistent): A point estimator Θ̂ = g(X1, . . . , Xn) is consistent if

lim
n→∞

P (|Θ̂− θ| > ε) = 0, for any constant ε > 0.

(This is actually called “convergence in probability” in probability and statistics).

Theorem: If E(Θ̂) = θ and limn→∞ V (Θ̂) = 0, then Θ̂ is consistent.
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Throughout this lecture, a population is denoted as X (with an unknown parameter θ) and a random
sample is denoted as {X1, . . . , Xn} and observations are denoted by {x1, . . . , xn}.

Commonly used point estimates/estimators
population mean µ: µ̂ = x̄ Sample mean (Stickprovsmedelvärde)
Before observe/measure, M̂ = X̄ = 1

n

∑n
i=1Xi, and after observe/measure, µ̂ = x̄ = 1

n

∑n
i=1 xi.

population variance σ2:
(1) If µ is known, Before observe/measure, Σ̂2 = 1

n

∑n
i=1(Xi − µ)2,

and after observe/measure, σ̂2 = 1
n

∑n
i=1(xi − µ)2;

(2) If µ is unknown, σ̂2 = s2 Sample variance (Stickprovsvarians):

Before observe/measure, Σ̂2 = S2 = 1
n−1

∑n
i=1(Xi − X̄)2,

and after observe/measure, σ̂2 = s2 = 1
n−1

∑n
i=1(xi − x̄)2 = 1

n−1(
∑n

i=1 x
2
i − n× x̄2);

Sample standard deviation (Stickprovsstandardavvikelse): Before observe/measure, S =
√
S2,

and after observe/measure, s =
√
s2;

Method of moments (momentmetoden)—MM: # of equations depends on # of unknown para-
meters,

E(X) = x̄,

E(X2) =
1

n

n∑
i=1

x2i ,

...

E(Xk) =
1

n

n∑
i=1

xki .

Least square method (minsta-kvadrat-metoden)—LSM: The least square estimate θ̂ is the one
minimizing

Q(θ) =
n∑
i=1

(xi − E(X))2.

In this lecture, we reviewed several types of random variables:

Binomial distribution X ∼ Bin(N, p) : there are N independent and identical trials, each trial on-
ly has two results: success and failure. Assume the probability of success is p, and X = the number
of successes in these N trials. The random variable X ∼ Bin(N, p) has a probability mass function
(sannolikhetsfunktion)

pX(k) = P (X = k) =

(
N
k

)
pk(1− p)N−k, k = 1, 2, ..., N ;
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Note: E(X) = Np and V (X) = Np(1− p).

Exponential distribution X ∼ Exp(1/µ) : when we consider the waiting time/lifetime... The random
variable X ∼ Exp(1/µ) has a density function (täthetsfunktion)

fX(x) =
1

µ
e−x/µ, x ≥ 0.

Note: E(X) = µ and V (X) = µ2.

Poisson distribution X ∼ Po(µ) : when we consider number of happenings during the fixed time / length
/ area / volume. The random variable X ∼ Po(µ) has a probability mass function (sannolikhetsfunktion)

pX(k) = P (X = k) =
µk

k!
e−µ, k = 0, 1, 2...;

Note: E(X) = µ and V (X) = µ.
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Maximum-likelihood method (Maximum-likelihood-metoden): The maximum-likelihood esti-
mate θ̂ is the one maximizing the likelihood function

L(θ) =

{∏n
i=1 f(xi; θ), if X is continuous,∏n
i=1 p(xi; θ), if X is discrete.

Remark 1 on ML: In general, it is easier/better to maximize lnL(θ);

Remark 2 on ML: If there are several random samples (say m) from different populations with a same
unknown parameter θ, then the maximum-likelihood estimate θ̂ is the one maximizing the likelihood
function defined as L(θ) = L1(θ) . . . Lm(θ), where Li(θ) is the likelihood function from the i-th population.

Estimates of population variance σ2: If there is only one population with an unknown mean, then
method of moments and maximum-likelihood method, in general, give a point estimate of σ2 as follows

σ̂2 =
1

n

n∑
i=1

(xi − x̄)2 (NOT unbiased).

We adjust/correct the NOT unbiased point estimate in this way:

We calculate the NOT unbiased point estimator E(Σ̂2) = E( 1
n

∑n
i=1(Xi − X̄)2) = n−1

n σ2 6= σ2.
To get the unbiased point estimator, that is, to make the expectation equal σ2, we divide the coefficient
n−1
n , we get the new point estimator Σ̂2 = n

n−1 ×
1
n

∑n
i=1(Xi − X̄)2 = 1

n−1 ×
∑n

i=1(Xi − X̄)2.

You can check the new point estimator E( 1
n−1 ×

∑n
i=1(Xi − X̄)2) = σ2, which is unbiased. So

an adjusted (or corrected) point estimate would be the sample variance

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (unbiased).

If there are m different populations with unknown means and a same variance σ2, then an adjusted (or
corrected) ML estimate is

s2 =
(n1 − 1)s21 + . . .+ (nm − 1)s2m

(n1 − 1) + . . .+ (nm − 1)
(unbiased)

where ni is the sample size of the i-th population, and s2i is the sample variance of the i-th population.

Standard error (medelfelet) of an point estimate θ̂=an estimation of D(Θ̂)= an estimation of

√
V (Θ̂);
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In this lecture, we talked about two new types of random variables: t(f)-fördelning and χ2(f)-fördelning .
The exact definitions of these random variables are not important. We focused on the graphs of these
random variables and found various critical values in the following forms, for instance,

λ0.025 = 1.96, t0.025(30) = 2.04, χ2
0.025(30) = 47, χ2

0.975(30) = 16.8, ......

Throughout this lecture, we have a random sample {X1, . . . , Xn} from N(µ, σ).

1.1 (1−α) confidence interval (konfidensintervall) Iµ for µ (by the way (1−α) is called confindence
coefficient ( konfidensgrad ))

(a). If σ is known, then the fact is X̄−µ
σ/
√
n
∼ N(0, 1), and therefore

Iµ = x̄∓ λα/2 ·
σ√
n
.

(b). If σ is unknown, then the fact is X̄−µ
S/
√
n
∼ t(n− 1), and therefore

Iµ = x̄∓ tα/2(n− 1) · s√
n
.

1.2. (1− α) confidence interval (konfidensintervall) Iσ2 for σ2 (or Iσ for σ)

The fact is (n−1)S2

σ2 ∼ χ2(n− 1), and therefore

Iσ2 =

(
(n− 1)s2

χ2
α
2
(n− 1)

,
(n− 1)s2

χ2
1−α

2
(n− 1)

)

Remark. All intervals in above 1 and 2 are two-sided (tv̊asidigt). In the lecture, we also worked on
several intervals which are one-sided (ensidigt) in the forms (−∞, b) and (a,+∞).
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In this lecture, we had three topics:

(1) confidence intervals for two (or more) random samples from normal distributions.



One sample


Iµ =

x̄∓ λα/2
σ√
n
, if σ is known;

[
the fact X̄−µ

σ/
√
n
∼ N(0, 1)

]
x̄∓ tα/2(n− 1) s√

n
, if σ is unknown;

[
the fact X̄−µ

s/
√
n
∼ t(n− 1)

]
Iσ2 =

(
(n−1)s2

χ2
α
2

(n−1)
, (n−1)s2

χ2
1−α

2
(n−1)

)
;
[

the fact (n−1)S2

σ2 ∼ χ2(n− 1)
]

Unknown σ2 can be estimated by the sample variance s2 = 1
n−1

∑n
i=1(xi − x̄)2

Two samples



Iµ1−µ2 =



(x̄− ȳ)∓ λα/2
√

σ2
1
n1

+
σ2
2
n2
, if σ1 and σ2 are known; the fact (X̄−Ȳ )−(µ1−µ2)√

σ21
n1

+
σ22
n2

∼ N(0, 1)


(x̄− ȳ)∓ tα/2(n1 + n2 − 2) · s ·

√
1
n1

+ 1
n2
, if σ1 = σ2 = σ is unknown;[

the fact (X̄−Ȳ )−(µ1−µ2)

S·
√

1
n1

+ 1
n2

∼ t(n1 + n2 − 2)

]
≈ (x̄− ȳ)∓ tα/2(f) ·

√
s21
n1

+
s22
n2
, if σ1 6= σ2 both are unknown; the fact (X̄−Ȳ )−(µ1−µ2)√

S21
n1

+
S22
n2

≈ t(f)

[
degrees of freedom f =

(s21/n1+s22/n2)
2

(s21/n1)
2

n1−1
+

(s22/n2)
2

n2−1

]
Iσ2 =

(
(n1+n2−2)s2

χ2
α
2

(n1+n2−2)
, (n1+n2−2)s2

χ2
1−α

2
(n1+n2−2)

)
, if σ1 = σ2 = σ;[

the fact (n1+n2−2)S2

σ2 ∼ χ2(n1 + n2 − 2)
]

Unknown σ2 can be estimated by the samples variance s2 =
(n1−1)s21+(n2−1)s22

n1+n2−2

m samples: The unknown σ2
1 = . . . = σ2

m = σ2 can be estimated by s2 =
(n1−1)s21+...+(nm−1)s2m

(n1−1)+...+(nm−1) .

{X1, . . . , Xn}
from N(µ, σ)

{X1, . . . , Xn1}
from N(µ1, σ1)
{Y1, . . . , Yn2}
from N(µ2, σ2)

N(µ1, σ1) indep.
N(µ2, σ2)

An important example: The idea of using hjälpvariabel to find confidence intervals is EXTREMELY
important. There are a lot more different confidence intervals besides above. For instance, we consider
two independent samples: {X1, . . . , Xn1} from N(µ1, σ) and {Y1, . . . , Yn2} from N(µ2, σ). In this case, we
can easily prove that

c1X̄ + c2Ȳ ∼ N

c1µ1 + c2µ2, σ

√
c2

1

n1
+
c2

2

n2

 .
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• If σ is known, then the fact (c1X̄+c2Ȳ )−(c1µ1+c2µ2)

σ

√
c21
n1

+
c22
n2

∼ N(0, 1). So we can find Ic1µ1+c2µ2 ;

• If σ is unknown, then the fact (c1X̄+c2Ȳ )−(c1µ1+c2µ2)

S

√
c21
n1

+
c22
n2

∼ t(n1 + n2 − 2). So we can find Ic1µ1+c2µ2 .

Questions to think about: In the above example, what if we have two populations N(µ1, σ1) and
N(µ2, σ2) with σ1 6= σ2? (two cases: both σ1 and σ2 are known; both σ1 and σ2 are unknown).

(2) confidence intervals from normal approximations.

X ∼ Bin(N, p) : Ip = p̂∓ λα/2

√
p̂(1− p̂)
N

, the fact
P̂ − p√
P̂ (1−P̂ )

N

≈ N(0, 1).

(we require that Np̂ > 10 and N(1− p̂) > 10)

X ∼ Hyp(N,n, p) : Ip = p̂∓ λα/2

√
N − n
N − 1

· 1

n
· p̂(1− p̂), the fact

P̂ − p√
N−n
N−1 ·

1
n · P̂ (1− P̂ )

≈ N(0, 1).

X ∼ Po(µ) : Iµ = x̄∓ λα/2

√
x̄

n
, the fact

X̄ − µ√
X̄
n

≈ N(0, 1).

(we require that nx̄ > 15)

X ∼ Exp( 1

µ
) : • Iµ =

 x̄

1 +
λα/2√
n

,
x̄

1− λα/2√
n

 , the fact
X̄ − µ
µ/
√
n
≈ N(0, 1),

• Iµ = x̄∓ λα/2
x̄√
n
, the fact

X̄ − µ
X̄/
√
n
≈ N(0, 1).

(we require that n ≥ 30)

An important example: Again, the use of the fact to find confidence intervals is EXTREMELY
important. There are more confidence intervals besides above. For instance, we consider two independent
samples: X from Bin(N1, p1) and Y from Bin(N2, p2), with unknown p1 and p2. As we know that

P̂1 ≈ N

p1,

√
p1(1− p1)

n1

 and P̂2 ≈ N

p2,

√
p2(1− p2)

n2

 ,

so P̂1 − P̂2 ≈ N
(
p1 − p2,

√
p1(1−p1)

n1
+ p2(1−p2)

n2

)
. Therefore, the fact is (P̂1−P̂2)−(p1−p2)√

P̂1(1−P̂1)
n1

+
P̂2(1−P̂2)

n2

≈ N (0, 1) ,

Ip1−p2 = (p̂1 − p̂2)∓ λα/2

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
.

(4) Large sample size (n ≥ 30, population may be completely unknown).

If there is no information about the population(s), then we can apply Central Limit Theorem (usually
with a large sample n ≥ 30) to get an approximated normal distributions. Here are two examples:
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Example 1: Let {X1, . . . , Xn}, n ≥ 30, be a random sample from a population, then (no matter what
distribution the population is)

X̄ − µ
s/
√
n
≈ N(0, 1).

Example 2: Let {X1, . . . , Xn1}, n1 ≥ 30, be a random sample from a population, and {Y1, . . . , Yn2}, n2 ≥
30, be a random sample from another population which is independent from the first population, then
(no matter what distributions the populations are)

(X̄ − Ȳ )− (µ1 − µ2)√
s21
n1

+
s22
n2

≈ N(0, 1).

Final remark of this lecture: Ideally, you should be able to derive/prove all these confidence intervals
after this lecture. I strongly suggest you at least try to prove all these. It is VERY important that you
understand all (for instance, you should feel easy to derive all the corresponding one-sided confidence
intervals).
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A new topic: Hypothesis testing (Hypotesprövning).

In this lecture, we focused on Hypothesis testing without Normal ( aprroximation ) and the general
theory of hypothesis testing. Namely, there is a random sample {X1, . . . , Xn} from a population X with
an unknown parameter θ,

H0 : θ = θ0 vs. H1 : θ < θ0, or θ > θ0, or θ 6= θ0

H0 is true H0 is false and θ = θ1
reject H0 (type I error or significance level) α (power) h(θ1)

don’t reject H0 1− α (type II error) β(θ1) = 1− h(θ1)

We also talked about p-value and mentioned that

reject H0 if and only if p-value < α.

In computer lab 1, you will use the confidence intervals from the ratio of two population variances.

In order to study this, we need a new distribution F -fördelning : If X ∼ χ2(r1) is independent of

Y ∼ χ2(r2), then X/r1
Y/r2

∼ F (r1, r2). (here r1 and r2 are degrees of freedom)

Now suppose we have two independent samples {X1, . . . , Xn1} from N(µ1, σ1), and {Y1, . . . , Yn2} from

N(µ2, σ2). We have already known that
(n1−1)S2

1

σ2
1

∼ χ2(n1−1) and
(n2−1)S2

2

σ2
2

∼ χ2(n2−1), so by definition

the fact
S2
1/σ

2
1

S2
2/σ

2
2

∼ F (n1 − 1, n2 − 1).

Therefore

Iσ2
2/σ

2
1

=

(
s22
s21
· F1−α

2
(n1 − 1, n2 − 1),

s22
s21
· Fα

2
(n1 − 1, n2 − 1)

)
.
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Continuation of hypothesis testing: We considered special cases of hypothesis testing using a test sta-
tistic directly related to the parameter of interest. Compare the test statistic with the fact in confidence
intervals, and try to understand the equivalence between hypothesis testing and confidence intervals!!!
Throughout the lectures,

TS := “test statistic” −−− depends on the fact and H0

C := “rejection region ”=“critical region”−−− depends on the fact and H1

reject H0 if TS ∈ C;

reject H0 if and only if p-value < α.

(1) Hypothesis testing for population mean(s).

One sample: {X1, . . . , Xn} from N(µ, σ). Null hypothesis H0 : µ = µ0.

σ is known:
X̄−µ
σ/
√
n
∼ N(0, 1)



H1 : µ < µ0 : TS = x̄−µ0
σ/
√
n
, C = (−∞,−λα),

p-value = P (N(0, 1) ≤ TS);

H1 : µ > µ0 : TS = x̄−µ0
σ/
√
n
, C = (λα,+∞),

p-value = P (N(0, 1) ≥ TS);

H1 : µ 6= µ0 : TS = x̄−µ0
σ/
√
n
, C = (−∞,−λα/2) ∪ (λα/2,+∞),

p-value = 2P (N(0, 1) ≥ |TS|).

σ is unknown:
X̄−µ
s/
√
n
∼ t(n− 1)



H1 : µ < µ0 : TS = x̄−µ0
s/
√
n
, C = (−∞,−tα(n− 1)),

p-value = P (t(n− 1) ≤ TS);

H1 : µ > µ0 : TS = x̄−µ0
s/
√
n
, C = (tα(n− 1),+∞),

p-value = P (t(n− 1) ≥ TS);

H1 : µ 6= µ0 : TS = x̄−µ0
s/
√
n
, C = (−∞,−tα/2(n− 1)) ∪ (tα/2(n− 1),+∞),

p-value = 2P (t(n− 1) ≥ |TS|).
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Two samples: {X1, . . . , Xn1} from N(µ1, σ1); {Y1, . . . , Yn1} from N(µ2, σ2); Null hypothesis H0 : µ1 = µ2.

σ1, σ2 are known:
(X̄−Ȳ )−(µ1−µ2)√

σ21
n1

+
σ22
n2

∼ N(0, 1)



H1 : µ1 < µ2 : TS = (x̄−ȳ)√
σ21
n1

+
σ22
n2

, C = (−∞,−λα),

p-value = P (N(0, 1) ≤ TS);

H1 : µ1 > µ2 : TS = (x̄−ȳ)√
σ21
n1

+
σ22
n2

, C = (λα,+∞),

p-value = P (N(0, 1) ≥ TS);

H1 : µ1 6= µ2 : TS = (x̄−ȳ)√
σ21
n1

+
σ22
n2

, C = (−∞,−λα/2) ∪ (λα/2,+∞),

p-value = 2P (N(0, 1) ≥ |TS|).

σ1 = σ2 is unknown:
(X̄−Ȳ )−(µ1−µ2)

S
√

1
n1

+ 1
n2

∼ t(n1 + n2 − 2)



H1 : µ1 < µ2 : TS = (x̄−ȳ)

s
√

1
n1

+ 1
n2

, C = (−∞,−tα(n1 + n2 − 2)),

p-value = P (t(n1 + n2 − 2) ≤ TS);

H1 : µ1 > µ2 : TS = (x̄−ȳ)

s
√

1
n1

+ 1
n2

, C = (tα(n1 + n2 − 2),+∞),

p-value = P (t(n1 + n2 − 2) ≥ TS);

H1 : µ1 6= µ2 : TS = (x̄−ȳ)

s
√

1
n1

+ 1
n2

, C = (−∞,−tα/2(n1 + n2 − 2))

∪ (tα/2(n1 + n2 − 2),+∞),

p-value = 2P (t(n1 + n2 − 2) ≥ |TS|).

σ1 6= σ2 both unknown: similarly as in the tree of confidence intervals.

(2) Hypothesis testing for population variance(s).

{X1, . . . , Xn1} from N(µ, σ)
(n−1)S2

σ2 ∼ χ2(n− 1)

H0 : σ2 = σ2
0



H1 : σ2 < σ2
0 : TS = (n−1)s2

σ2
0

, C = (0, χ2
1−α(n− 1)),

p-value = P (χ2(n− 1) ≤ TS);

H1 : σ2 > σ2
0 : TS = (n−1)s2

σ2
0

, C = (χ2
α(n− 1),+∞),

p-value = P (χ2(n− 1) ≥ TS);

H1 : σ2 6= σ2
0 : TS = (n−1)s2

σ2
0

, C = (0, χ2
1−α

2
(n− 1)) ∪ (χ2

α
2
(n− 1),+∞),

p-value = 2P (χ2(n− 1) ≥ TS) or 2P (χ2(n− 1) ≤ TS).

{X1, . . . , Xn1} from N(µ1, σ1)

{Y1, . . . , Yn2} from N(µ2, σ2)
S2
1/σ

2
1

S2
2/σ

2
2
∼ F (n1 − 1, n2 − 1)

H0 : σ2
1 = σ2

2



H1 : σ2
1 < σ2

2 : TS = s2
1/s

2
2, C = (0, F1−α(n1 − 1, n2 − 1)),

p-value = P (F (n1 − 1, n2 − 1) ≤ TS);

H1 : σ2
1 > σ2

2 : TS = s2
1/s

2
2, C = (Fα(n1 − 1, n2 − 1),+∞),

p-value = P (F (n1 − 1, n2 − 1) ≥ TS);

H1 : σ2
1 6= σ2

2 : TS = s2
1/s

2
2, C = (0, F1−α

2
(n1 − 1, n2 − 1))

∪ (Fα
2
(n1 − 1, n2 − 1),+∞),

p-value = 2P (F (n1 − 1, n2 − 1) ≥ TS)

or 2P (F (n1 − 1, n2 − 1) ≤ TS).

(3) Large sample size (n ≥ 30, population may be completely unknown): If there is no information
about the population(s), then we can apply Central Limit Theorem (usually with a large sample n ≥
30). The idea is exactly the same as the one used in confidence intervals. One example is: a sample

2/3



{X1, . . . , Xn}, n ≥ 30, from some population (which is unknown) with a mean µ and standard deviation

σ. Null hypothesis H0 : µ = µ0. Then it follows from CLT that X̄−µ
s/
√
n
≈ N(0, 1), therefore

H1 : µ < µ0 : TS = x̄−µ0
s/
√
n
, C = (−∞,−λα),

p-value = P (N(0, 1) ≤ TS);

H1 : µ > µ0 : TS = x̄−µ0
s/
√
n
, C = (λα,+∞),

p-value = P (N(0, 1) ≥ TS);

H1 : µ 6= µ0 : TS = x̄−µ0
s/
√
n
, C = (−∞,−λα/2) ∪ (λα/2,+∞),

p-value = 2P (N(0, 1) ≥ |TS|).

Besides confidence intervals, we briefly mentioned Prediktionsintervall. Roughly speaking, a prediktions-
intervall is an interval for a newly selected element, while a confidence interval is for some unknown
parameter (mean or variance), not for a specific element.
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We have a NEW topic in this lecture: Multi-dimension random variables (or random vectors), which are
related to linear regressions.

Covariance (Kovarians) of (X,Y ): σX,Y = cov(X,Y ) = E [(X − µX)(Y − µY )] ,
cov(X,X) = V (X) and cov(X,Y ) = cov(Y,X).

Correlation coefficient (Korrelation) of (X,Y ): ρX,Y = cov(X,Y )√
V (X)·V (Y )

=
σX,Y

σX ·σY .

A rule: for real constants a, ai, b and bj ,

cov(a+

m∑
i=1

aiXi, b+

n∑
j=1

bjYj) =

m∑
i=1

n∑
j=1

aibjcov(Xi, Yj).

X and Y are uncorrelated: if ρ(X,Y ) = 0, i.e. cov(X,Y ) = 0.

An important theorem: Suppose that a random vector X has a mean µX and a covariance matrix
CX. Define a new random vector Y = AX + b, for some matrix A and vector b. Then

µY = AµX + b, CY = ACXA
′.

Standard normal vectors: {Xi} are independent and Xi ∼ N(0, 1),

X =


X1

X2
...
Xn

 , thus µX =


0
0
...
0

 , CX =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 , density fX(x) =
1

(
√

2π)n
e−

1
2
x′x.

General normal vectors: Y = AX + b, where X is a standard normal vector, and

µY = b, CY = AA′, density fY(y) =
1

(
√

2π)n
√

det(CY)
e−

1
2 [(y−µy)′C−1

Y (y−µy)].

Independent and Uncorrelated:
1. If X and Y are independent, then X and Y are uncorrelated. Conversely, generally, if X and Y are
uncorrelated, we can’t say X and Y are independent. For example:
If we have the following random variables X,Y ,

X 0 1

pX(k) 0.5 0.5
and

Y -1 1

pX(k) 0.5 0.5

Then we can get

XY -1 0 1

pXY (k) 0.25 0.5 0.25
and

X2Y -1 0 1

pX2Y (k) 0.25 0.5 0.25

Now we let Z = XY, we can see X and Z are not independent!!!
But cov(X,Z) = E(XZ)− E()XE(Z) = 0, that is X and Z are uncorrelated!!!
2. If X and Y are jointly normally distributed, then Uncorrelated implies independent.
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Simple and Multiple linear regressions (Enkel och Multipel linjär regression) are the main topic.

Simple linear regression: Yi = β0 + β1xi + εi, εj ∼ N(0, σ), i = 1, . . . , n.

Multiple linear regression: Yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi, εi ∼ N(0, σ), i = 1, . . . , n.

Both ‘Simple linear regression’ and ‘Multiple linear regression’ can be written as vector forms:

Y = Xβ + ε : Y =


Y1
Y2
...
Yn

 ,X =


1 x11 · · · x1k
1 x21 · · · x2k
...

...
...

1 xn1 · · · xnk

 ,β =

β1...
βk

 , ε ∼ N(0, σ2In×n).

Y ∼ N(µY, CY), where µY = Xβ and CY = σ2In×n.

Estimate of the coefficient β: β̂ = (X′X)−1 X′y.

Estimator of the coefficient β: B̂ = (X′X)−1 X′Y ∼ N
(
β, σ2 (X′X)−1

)
.

Estimated regression line is: µ̂ = y = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂kxk.

Analysis of variance:

SSTOT =

n∑
j=1

(yj − ȳ)2,
SSTOT
σ2

=

∑n
j=1(Yj − Ȳ )2

σ2
∼ χ2(n− 1), if β1 = . . . = βk = 0;

SSR =
n∑
j=1

(µ̂j − ȳ)2,
SSR
σ2

=

∑n
j=1(µ̂j − Ȳ )2

σ2
∼ χ2(k), if β1 = . . . = βk = 0;

SSE =
n∑
j=1

(yj − µ̂j)2,
SSE
σ2

=

∑n
j=1(Yj − µ̂j)2

σ2
∼ χ2(n− k − 1).

SSTOT = SSR + SSE , and R2 =
SSR
SSTOT

.

∗ ∗ ∗ σ2 is estimated as σ̂2 = s2 = SSE
n−k−1 .

∗ ∗ ∗ For the Hypothesis testing: H0 : β1 = . . . = βk = 0 vs H1 : at least one βj 6= 0,
SSR/k

SSE/(n−k−1) ∼ F (k, n− k − 1)

TS = SSR/k
SSE/(n−k−1)

C = (Fα(k, n− k − 1),+∞).
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∗ ∗ ∗ We know B̂ = (X′X)−1 X′Y ∼ N
(
β, σ2 (X′X)−1

)
, thus if we denote

(
X′X

)−1
=


h00 h01 · · · h0k
h10 h11 · · · h1k

...
...

...
hk1 hk2 · · · hkk

 ,

then B̂j ∼ N(βj , σ
√
hjj) and

B̂j−βj
σ
√
hjj
∼ N(0, 1). But σ is generally unknown, therefore

B̂j − βj
S
√
hjj
∼ t(n− k − 1),

[
s
√
hjj is sometimes denoted as d(β̂j) or se(β̂j)

]
.

Confidence interval of βj is: Iβj = β̂j ∓ tα/2(n− k − 1) · s
√
hjj ;

Hypothesis testing H0 : βj = 0 vs H1 : βj 6= 0 has TS =
β̂j

s
√
hjj

C = (−∞,−tα/2(n− k − 1)) ∪ (tα/2(n− k − 1),+∞).
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Continued: Simple and Multiple linear regressions (Enkel och Multipel linjär regression):

Y = β0 + β1x1 + . . .+ βkxk + ε, ε ∼ N(0, σ), (the model);

µ = E(Y ) = β0 + β1x1 + . . .+ βkxk, (the mean);

µ̂ = β̂0 + β̂1x1 + . . .+ β̂kxk, (the estimated regression line).

For a given/fixed x = (1, x1, . . . , xk)
′, µ̂ is an estimate of unknown µ (and Y ). Then we can talk about

‘accuracy’ of this estimate in terms of confidence intervals (and prediction intervals).

Confidence interval of µ: Iµ = µ̂± tα/2(n− k − 1) · s ·
√

x′ (X′X)−1 x.

Prediction interval of Y : IY = µ̂± tα/2(n− k − 1) · s ·
√

1 + x′ (X′X)−1 x.

Suppose we have two models:{
Model 1: Y = β0 + β1x1 + . . .+ βkxk + ε;

Model 2: Y = β0 + β1x1 + . . .+ βkxk + βk+1xk+1 + . . .+ βk+pxk+p + ε,

and we want to test H0 : βk+1 = . . . = βk+p = 0 vs H1 : at least one βk+i 6= 0,
(SS

(1)
E −SS

(2)
E )/p

SS
(2)
E /(n−k−p−1)

∼ F (p, n− k − p− 1)

TS =
(SS

(1)
E −SS

(2)
E )/p

SS
(2)
E /(n−k−p−1)

C = (Fα(p, n− k − p− 1),+∞).
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For χ2-test, we have two parts. The first part is about χ2-test of pupulation:

H0 :X ∼ distribution (with or without unknown parameters);

H1 :X � distribution

Then

fact :

k∑
i=1

(Ni − npi)2

npi
∼ χ2(k − 1−#of unknown parameters);

TS =
k∑
i=1

(Ni − npi)2

npi
;

C =
(
χ2
α(k − 1−#of unknown parameters), +∞

)
.

The second part is about χ2-test of Homogeneity (independence). Suppose we have a data with r rows
and k columns,

H0 : grouping in rows and grouping in columns are independent (i.e. they don’t affect each other);

H1 : grouping in rows and grouping in columns are NOT independent (i.e. they affect each other)).

Then

fact :

k∑
j=1

r∑
i=1

(Nij − npij)2

npij
∼ χ2((r − 1)(k − 1));

TS =

k∑
j=1

r∑
i=1

(Nij − npij)2

npij
;

C =
(
χ2
α((r − 1)(k − 1)), +∞

)
.
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