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In this lecture, the following definitions are mentioned:
X: random variable (stokastiska variabel);
Mean (Vintevirde):

> kpx(k), if X is discrete,

[ afx(x)dz, if X is continuous;

M:E(X):{

Note:

> g(k)px (k), if X is discrete,
7 9(@) fx(x)dz, if X is continuous;

u=E(g(X)) = {

Variance (Varians): 02 = V(X) = E((X — p)?) = BE(X?) - (E(X))?%
Standard deviation (Standardavvikelse): 0 = D(X) = /V(X);

There are several properties of mean and variance: X and Y are independent random variables, a,b,c are
constants, then

E(aX +bY +¢)=aE(X)+bE(Y) +c,
V(aX +bY +¢) = a’V(X) +b*V(Y), here X,Y are independent (oberoende);

Note: these two properties also work for n random variables.

If X ~ N(u,0), then £ ~ N (0, 1);

If Xi,...,X, are independent and X; ~ N(u;,0;), then

n n
d+ ZCiXi ~ N(d+ZCiMi7
=1 =1

Population X with an unknown parameter 6,

Random sample (slumpmissigt stickprov): Xi,..., X,, are independent and have the same distri-
bution as the population X. Before observe/measure, X, ..., X,, are random variables.

Observations (observationer): x1,...,z, (after observe/measure), which are numbers (not random
variables);

Point Estimator (Stickprovsvariabeln): 6=7r (X1,...,Xy), arandom variable;
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Point Estimate (Punktskattning): 6 = f(x1,...,2,), a number;
Unbiased (Vintevirdesriktig): E(©) = 6;

Effective (Effektiv): Two point estimators O, and O, are unbiased, we say that O, is more effective
than @2 if V(@l) < V(@g);

Consistent (Konsistent): A point estimator © = g(X1,...,X,,) is consistent if

lim P(|6 — 6| > ¢) = 0, for any constant & > 0.

n—0o0

(This is actually called “convergence in probability” in probability and statistics).

Theorem: If E(©) = 0 and lim,, ., V(0) = 0, then © is consistent.
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Throughout this lecture, a population is denoted as X (with an unknown parameter ) and a random
sample is denoted as {X,..., X, } and observations are denoted by {x1,...,2,}.

Commonly used point estimates/estimators

population mean u: i = £ Sample mean (Stickprovsmedelvirde)

Before observe/measure, M = X = 13" | X; and after observe/measure, i =z = 2 37 | x;.
population variance o2 A

(1) If pu is known, Before observe/measure, %2 = L 3™ | (X; — ;)2

and after observe/measure, o2 = LS (s — )%

~

(2) If p is unknown, 02 = s> Sample variance (Stickprovsvarians):
Before observe/measure, ¥2 = $% = L5 (X, — X)?,

and after observe/measure, 02 = s> = L3 (2, —2)? = L (30 22 — n x 2%);

Sample standard deviation (Stickprovsstandardavvikelse): Before observe/measure, S = v 52,

and after observe/measure, s = V/'s2;

Method of moments (momentmetoden)—MDM: # of equations depends on # of unknown para-
meters,

E(X) =z,
1 n

E(Xz) = nz;xzza
1=

E(Xx*) = 1 > af.

Least square method (minsta-kvadrat-metoden)—LSM: The least square estimate 0 is the one
minimizing

In this lecture, we reviewed several types of random variables:
Binomial distribution X ~ Bin(N,p) : there are N independent and identical trials, each trial on-
ly has two results: success and failure. Assume the probability of success is p, and X = the number

of successes in these N trials. The random variable X ~ Bin(N,p) has a probability mass function
(sannolikhetsfunktion)

px(k) = P(X = k) = (g) P — )N k= 1,2, N
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Note: E(X) = Np and V(X) = Np(1 — p).

Exponential distribution X ~ Exp(1/p) : when we consider the waiting time/lifetime... The random
variable X ~ Exp(1/u) has a density function (tdthetsfunktion)

1
fx(z)==e™@/" x>0
i
Note: E(X) = p and V(X) = p2.
Poisson distribution X ~ Po(u) : when we consider number of happenings during the fixed time / length
/ area / volume. The random variable X ~ Po(u) has a probability mass function (sannolikhetsfunktion)

k
px(k) = P(X = k) = %e—“, k=0,1,2.;

Note: E(X) = p and V(X) = p.
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Maximum-likelihood method (Maximum-likelihood-metoden): The maximum-likelihood esti-
mate 6 is the one maximizing the likelihood function

L) = ITi2, f(zi;0), if X is continuous,
B I, p(xi;0), if X is discrete.

Remark 1 on ML: In general, it is easier/better to maximize In L(6);

Remark 2 on ML: If there are several random samples (say m) from different populations with a same
unknown parameter 6, then the maximum-likelihood estimate 6 is the one maximizing the likelihood
function defined as L(0) = L1(0) ... Ly (0), where L;(0) is the likelihood function from the i-th population.

Estimates of population variance o?: If there is only one population with an unknown mean, then
method of moments and maximum-likelihood method, in general, give a point estimate of o2 as follows

n

-~ 1
2= 2N (@ —2)?  (NOT unbiased).
o n;(a: z) ( unbiased)

We adjust/correct the NOT unbiased point estimate in this way:
We calculate the NOT unbiased point estimator E(32) = E(2 Y | (X; — X)?) = 2162 #£ 02

n
To get the unbiased point estimator, that is, to make the expectation equal o2, we divide the coefficient
—1 . . 5 1 — 1 —
2=2, we get the new point estimator ¥2 = o x 23" (X - X)2=_L x> (Xi—X).
You can check the new point estimator E(ﬁ x Y (Xi — X)?) = o2, which is unbiased. So

an adjusted (or corrected) point estimate would be the sample variance

1
2 _ )2 :
§ =7 ;:1(:131 z) (unbiased).

If there are m different populations with unknown means and a same variance o2, then an adjusted (or
corrected) ML estimate is
5 (=182 +.. + (nm —1)s3,

s = CTEE ) T r— (unbiased)

where n; is the sample size of the i-th population, and s% is the sample variance of the i-th population.

Standard error (medelfelet) of an point estimate §=an estimation of D(©)= an estimation of 1/ V (0);
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In this lecture, we talked about two new types of random variables: t( f)-férdelning and x2(f)-fordelning.
The exact definitions of these random variables are not important. We focused on the graphs of these
random variables and found various critical values in the following forms, for instance,

Ao.025 = 1.96, t0.025(30) = 2.04, X0.025(30) = 47, Xo975(30) = 16.8, ...

Throughout this lecture, we have a random sample {X1,..., X, } from N(u, o).

1.1 (1—«) confidence interval (konfidensintervall) I, for u (by the way (1—«) is called confindence
coefficient ( konfidensgrad ))
—p

a). If o is known, then the fact is X N 0,1), and therefore
o/v/n

o

I“:j:':)\aﬂ'\/ﬁ

(b). If o is unknown, then the fact is % ~ t(n — 1), and therefore

S

IN :i'ZFta/Q(n— 1) . %

1.2. (1 — a) confidence interval (konfidensintervall) I . for o2 (or I, for o)
The fact is %712)52 ~ x%(n — 1), and therefore

7= (n —1)s? (n —1)s?
T\ RLeoD

Remark. All intervals in above 1 and 2 are two-sided (tvasidigt). In the lecture, we also worked on
several intervals which are one-sided (ensidigt) in the forms (—o0,b) and (a, +00).
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In this lecture, we had three topics:

(1) confidence intervals for two (or more) random samples from normal distributions.

One sample
{Xl,...,Xn} Iy2 =
from N(u,0)

Two samples

{X1,...,Xn,}
from N(p1,071)
{"N,....Y,,}

from N (ug,09)

N(p2,02)

Unknown o

H1—p2 =

N(p1,01) indep.
I = <

| Unknown o

m samples: The unknown o} = ... = 02, = 02 can be estimated by s*> =

1)

IF )\a/zﬁ, if o is known; [
T Ftaa(n— )\/ﬁ, if o is unknown; [ the fact 7 ~t(n — 1)}

n—1)s n—1)s n—1)52
<X(a (n) 1)’ X%(g(,)ll)> ; |: the fact % ~ X (n _ 1)]
2
2 can be estimated by the sample variance s? = ﬁ S (g — 7)?2

2
(Z—-9)F /\a/zm 1f o1 and o9 are known;

the fact =11 )  N(g, 1)
1472
n1 n2

(T —y) Ftap(ni+n2—2)-s- \/ﬂ, if 01 = 09 = o is unknown;

the fact =) —Gu—w2) t(ny + ng — 2)]

Ea

~ (T —9) Ftagp(f)- s + TTZ if 01 # o9 both are unknown;

ny

the fact w ~t(f)
+

degrees of freedom f = GRS,

ny—1 ng—1

(53/n1+53/m2)’ ]

(n1+4no—2)s> (n1+no—2)s> .
if o1 = 09 = 0
xz% (n14n2-2)’ Xf,% (n1+n2-2) |’ L 2 ’

[ the fact % ~x%(ny +ng — 2)}

2 _ (ni—1)si+(n2—1)s3
- ni+ng—2

2

can be estimated by the samples variance s

_ (ni—1)s24..+(nm—1)s2,

2 2 3
(n1—1)+...4+(nm—1)

An important example: The idea of using hjélpvariabel to find confidence intervals is EXTREMELY
important. There are a lot more different confidence intervals besides above. For instance, we consider
two independent samples: { X1, ..., X, } from N(u1,0) and {Y7,...,Y,,} from N(ug, o). In this case, we

can easily prove that

-5 i <
X +cY ~N | cipur +cops, oy —+—=
ny N2
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e If o is known, then the fact (CIXJrCQY);(C”‘;“Q“?) ~ N(0,1
e

). So we can find Ic, ;1 4copos
n1 n2

g

e If ¢ is unknown, then the fact

(a1 X+eoY)—(cipiteapn) | #(

5 ny + ng —
c (&
S 714'_72

nyp o n2

). So we can find I, i, +-copo

Questions to think about: In the above example, what if we have two populations N(u1,01) and
N (p2,02) with o1 # 09? (two cases: both o1 and o9 are known; both o1 and o9 are unknown).

(2) confidence intervals from normal approximations

X ~Bin(N,p): I,=pF )\a/ﬂ/ , the fact ——— ~ N(0,1).
/P(1 P)

(we require that Np > 10 and N(1 —

>10)
N — 1
X ~ Hyp(N,n,p) : Ip:f):F)\a/Q\/ o (1 —p), the fact

PP N0
L l.p1-P)
X ~Po(p): I,=zF /\a/z\/g, the fact X i’u ~ N(0,1).
" Vi
(we require that nz > 15)
1 T T
XNExp(M). o], = 1-1-)‘\‘;%2 )\\/ﬁ thefact M/\f ~ N(0,1),
o[, =ZF )\a/z%, the fact ))é/?/’% ~ N(0,1).
(we require that n > 30)

An important example: Again, the use of the fact to find confidence intervals is EXTREMELY
important. There are more confidence intervals besides above. For instance, we consider two independent
samples: X from Bin(Ny,p1) and Y from Bin(Na,p2), with unknown p; and ps. As we know that

A 1-— . 1—
P~ N P1, M and P, ~ N D2, M ,

n no

soPL— Py~ N <p1 — Do, \/Pl(illm) 4+ p2(l=p2)

na

> . Therefore, the fact is

A A (1 — D 5o (1 — B
Ip1—ps Z(pl—m):F)\a/z\/pl( p1) +p2( Pz).
ni n9

(4) Large sample size (n > 30, population may be completely unknown)

(Pr—Py)—

(p1—p2)
Pl(l P
ny

~ N (0,1
_,_Pz(iLQPz) ( ’ )7

If there is no information about the population(s), then we can apply Central Limit Theorem (usually
with a large sample n > 30) to get an approximated normal distributions. Here are two examples
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Example 1: Let {X3,..., X,},n > 30, be a random sample from a population, then (no matter what
distribution the population is)

X—p
o Vo),

Example 2: Let {X1,..., X, },n1 > 30, be a random sample from a population, and {Y1,...,Y,, }, no >
30, be a random sample from another population which is independent from the first population, then
(no matter what distributions the populations are)

(X —Y) = (11— p2)

2 2
il_i_iz
ny ng

Final remark of this lecture: Ideally, you should be able to derive/prove all these confidence intervals
after this lecture. I strongly suggest you at least try to prove all these. It is VERY important that you
understand all (for instance, you should feel easy to derive all the corresponding one-sided confidence
intervals).

~ N(0,1).
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A new topic: Hypothesis testing (Hypotesprivning).

In this lecture, we focused on Hypothesis testing without Normal ( aprroximation ) and the general
theory of hypothesis testing. Namely, there is a random sample {X1,..., X,,} from a population X with
an unknown parameter 6,

Hy: 0 =20g vUS. H1:9<00,0I‘9>90,0I‘67£00

Hj is true Hy is false and 6 = 6
reject Hy (type I error or significance level) « (power) h(6;)
don’t reject H -« (type II error) B(01) =1 — h(61)

We also talked about p-value and mentioned that

reject Hy if and only if p-value < a.

In computer lab 1, you will use the confidence intervals from the ratio of two population variances.

In order to study this, we need a new distribution F-férdelning: If X ~ x?(r1) is independent of

Y ~ x?(ra), then 3)2:;

~ F(r1,ry). (here 1 and ry are degrees of freedom)

Now suppose we have two independent samples {X1,..., X, } from N(u1,01), and {Y7,...,Y,,} from

N (u2,02). We have already known that w ~ x%(n1—1) and % ~ x2%(n2 —1), so by definition
91 92
St/ot
the fact 32 /02 ~ F(ni —1,ns —1).
Therefore ) )
52 52
IU%/Ul = (s% . Fl_%(nl - 1,77,2 - 1), g . F%(nl - 1,77,2 - 1)) .
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Continuation of hypothesis testing: We considered special cases of hypothesis testing using a test sta-
tistic directly related to the parameter of interest. Compare the test statistic with the fact in confidence
intervals, and try to understand the equivalence between hypothesis testing and confidence intervals!!!

Throughout the lectures,

TS := “test statistic” — — — depends on the fact and Hy

C := “rejection region ”="“critical region” — — — depends on the fact and H;
reject Hy if TS € C;
reject Hy if and only if p-value < a.

(1) Hypothesis testing for population mean(s).

One sample: {X1,...,X,,} from N(u,o). Null hypothesis Hy : = pp.

( . . — T—po — (— _
HI'M<NO'TS—U/\/57C— o0, Aa)a

o 1s known: Hy:p>pg: TS = f?j%, C =(\a,+0),

X—
U/\/% ~ N(0,1) p—valueiz P(N(0,1) > TS);
Hy:p 7& Ho - TS = j/_j%a C = (_oo¢_)\a/2) U ()\a/g,—I-OO),
p-value = 2P(N(0,1) > |TS]).
Hl < o - TS :‘j/_\l;%v :(_007_t04(n_1))7
p-value = P(t(n — 1) < TS);
o is unknown: | Hy:p>po: TS = f;\’;%, C = (ta(n —1),+00),
57% ~t(n—1) p-value = P(t(n — 1) > TS);
(

Hy:p#Fpo: TS = ;E/_\%%v C = _007_ta/2(n_1)) U (toz/Z(n_l)a"i'oo),

p-value = 2P(t(n — 1) > |TS)).

1/3



Two samples: { X7, ...,

;

01,09 are known:

(X—Y)—(#l—lm) ~ N(O,l)

01 = 09 is unknown:

S\fartag

(X-Y)—(pa—p2) t(ny +no — 2)

X, } from N(p1,01); {Y1, ...

Hy:py < pg:

Hy:pg > o

Hy:py # po

Hy:py > o

Hy:py # po

Y, } from N (usg,09); Null hypothesis Hy : 11 = po.

TS — (f;g)a_Qa C = (7007 7>\a)a
142
ni 2
p-value = P(N(0,1) < TS);
TS = (;_y; , C = (A, +00),
142
p-value = P(N(0,1) > TS);
TS = 2, € = (=00, ~Aas2) U (ayz, +0),
n1 n2
p-value = 2P(N(0,1) > |TS|).
Hy:pp <pg: TS = \/(% C = (—o00, —ta(n1 +n2 —2)),
p-value = P(t(n1 +ng — 2) < TS);
TS = (lf’r)l C = (ta(n1 +ng —2),4+00),
p-value = (t(m +ng —2) > TS);
TS = ( 7}) , C = (—o00,—t a/g(n1+n2—2))

7

U (tay2(n1 +n2 — 2), +00),
p-value = 2P(t(n; + ng — 2) > |TSJ).

01 # o9 both unknown: similarly as in the tree of confidence intervals.

(2) Hypothesis testing for population variance(s).

;

{Xh . 'aan} from N(M,O')

e )

R B
Hy: 0% =o0j

{X1,..., Xn, } from N(p1,01)
{Y1,...,Yy,} from N(puz,02)
St/0y ~ F(ni—1,ny—1)

S%/U% 1 5 102
Hy : 0? = 03

(3) Large sample size (n >

Hy

H,y

20'2<0'82

c0? >0 TS :(71;7252, C =(x2(n-

Hy:0} <0}

Hy

Hy :0? # 02

90

TS = 207, 0 = (0. (0 - 1),
p-value = P(x%(n — 1) < TS);

0 1), +00),
p-value = P(x%(n — 1) > TS);

o?#ot: TS =S ¢ = (0,3 o(n—1) U (& (n—1),+0),

0

p-value = 2P(x?(n — 1) > TS) or 2P(x*(n — 1) < TS).

TS =s3/s2, C = (0, Fi_a(n1 —1,ny — 1)),
p-value = P(F(n; — 1,ny — 1) < TS);
c0f>03: TS =5s%/s3, C = (Fu(ny —1,n2 — 1), +00),

p-value = P(F(n; — 1,ny — 1) > TS);
TS =s2/s3, C = (O,Fl,%(nl—l,ng—l))
U (Fg(n1 —1,n2 — 1), +00),
p-value = 2P(F(n; — 1,ny — 1) > TS)
or 2P(F(ny —1,np — 1) <TS).

30, population may be completely unknown): If there is no information

about the population(s), then we can apply Central Limit Theorem (usually with a large sample n >
30). The idea is exactly the same as the one used in confidence intervals. One example is: a sample
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Xpn},n > 30, from some population (which is unknown) with a mean p and standard deviation

{Xq,...
o. Null hypothes1s Ho : = po. Then it follows from CLT that = 7 ~ N(0,1), therefore

Hi:p<po: TS :s/\/ﬁ’

p-value = P(N(0,1) < TS);

Hy:p>pg: TS = f/_\‘/‘%, C = (Ao, +00),
p—value = P(N(O, 1) > TS);

Hy:p#po: TS = s/f’ C = (-0, As/2) U (Aaj2, +00),
p-value = 2P(N(0,1) > |TS|).

\

Besides confidence intervals, we briefly mentioned Prediktionsintervall. Roughly speaking, a prediktions-
intervall is an interval for a newly selected element, while a confidence interval is for some unknown

parameter (mean or variance), not for a specific element.
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We have a NEW topic in this lecture: Multi-dimension random variables (or random vectors), which are
related to linear regressions.

Covariance (Kovarians) of (X,Y): oxy = cov(X,Y) = E[(X — px)(Y — py)],
cov(X,X) =V(X) and cov(X,Y) = cov(Y, X).

cov(X,Y) _ 9Xy
VVX) V(YY) oxov’

Correlation coefficient (Korrelation) of (X,Y): pxy =

A rule: for real constants a,a;,b and b;,

m n m n
cov(a + Z a; X;, b+ Z b;Y;) = Z Z a;bjcou(X;,Y5).
i=1 j=1 i=1 j=1
X and Y are uncorrelated: if p(X,Y) =0, i.e. cov(X,Y) = 0.
An important theorem: Suppose that a random vector X has a mean ux and a covariance matrix

Cx. Define a new random vector Y = AX + b, for some matrix A and vector b. Then

py = Apx +b, Cy = ACxA'.

Standard normal vectors: {X;} are independent and X; ~ N(0,1),

X4 0 10 --- 0
< Xo . 0 o 01 .- 0 q fx (%) 1 1 s
= , thus =1.1, =1. . , densit X) = e 2% %,
: X : x Do : vIx (v/2m)n
X, 0 00 --- 1

General normal vectors: Y = AX + b, where X is a standard normal vector, and
1

(V2m)n\/det(Cy)

o5 y—ny) O3 (y—hy)]

py =b, Cy =AA, density fy(y) =

Independent and Uncorrelated:

1. If X and Y are independent, then X and Y are uncorrelated. Conversely, generally, if X and Y are
uncorrelated, we can’t say X and Y are independent. For example:

If we have the following random variables X,Y,

X 0 1 " Y 101
px(k) | 05 05 & px(k) | 05 05
Then we can get
XY -1 0 1 and X%y -1 0 1
pxy(k) [ 025 0.5 0.25 px2y (k) 1025 0.5 0.25

Now we let Z = XY, we can see X and Z are not independent!!!
But cov(X,Z) = E(XZ) — E()XE(Z) =0, that is X and Z are uncorrelated!!!
2. If X and Y are jointly normally distributed, then Uncorrelated implies independent.

1/1
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Simple and Multiple linear regressions (Enkel och Multipel linjdr regression) are the main topic.

Simple linear regression: Y; = 3y + fiz; +¢;, ¢; ~ N(0,0),i=1,...,n.

Multiple linear regression: Y; = 5y + fixi1 + fexio + ... + Brxik + i, i~ N(0,0),i=1,...

Both ‘Simple linear regression’ and ‘Multiple linear regression’ can be written as vector forms:

Yy 1z - g
b1
Y5 1 @y -+ o 9
Y:X,B—{—EZ Y = . ’X: . . . aB: ,ENN(O,O'Ian).
Y, 1 zp1 - Tk Bk

Y ~ N(uy,Cy), where py = X3 and Cy = 2L xn.

Estimate of the coefficient 8: 3= (X'X)"' Xy.
Estimator of the coefficient 3: B = (X'X)"'X'Y ~ N (,6’, o? (X’X)A) :

Estimated regression line is: =y = BO + 3196'1 + Bg.’l}g 4+ ...+ kak

Analysis of variance:

- _ SSror 2 (Y;—Y)? .
_ , 2 _ 24 2 _ _
SSTOT;(yj—yL = = = ~ XA —1), if fr=...= B =0
" SSp iy —Y)?
_ ~ —\2 R J=1\"J 2 : _ _
SSR—;%—@/), 5 = ~ (k) i Br= = B =0;
" SSp 25 (Y5 — f15)?
_ ~ N2 E _ 4uj=1\"J J 2
SSE_];(Z/]_:U]) ) 0_2 - 0_2 ~ X (n_k_l)
SS
SSror = SSk + SSp, and R? = 28
SSror
% % % 02 is estimated as 62 = s2 = %
* x x For the Hypothesis testing: Hy : 31 = ... = 8; = 0 vs Hy : at least one 3; # 0,
SSg/k
755,3/(5_/;9_1) ~ Flk,n—k—1)
TS — SSgr/k

SS5/(n—k—1)
C = (Fulk,n—k—1),400).
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s %% We know B = (X'X)" ' X'Y ~ N (ﬁ, o? (X'X)*l) , thus if we denote

hoo hot -+ hok
(x'x)~ = hio hi -+ hag
higr higa -+ hpg

then Bj ~ N(B;,0+/h;;) and Bi/_ﬁ ~ N(0,1). But o is generally unknown, therefore

T/ 55
B~ §;
S\/hjj

Confidence interval of 3; is: I, = Bj Ftopn—k—1)- sv/hij

~tn—k—1), [s\/hjj is sometimes denoted as d(Bj) or se(ﬁj) .

Hypothesis testing Hy : 3; =0 vs Hy : 8 # 0 has

TS = s
{ sq/hjj

C = (=00, ~tap(n—k—1)) U (tq2(n —k—1),+0c0).
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Continued: Simple and Multiple linear regressions (Enkel och Multipel linjdr regression):

Y =080+ Bix1+ ...+ Brxp +¢, €~ N(0,0), (the model);
w=EY)=p0o+ fix1+ ...+ Prrr, (the mean);
i= o+ Bz + ...+ Bk, (the estimated regression line).

For a given/fixed x = (1,21,...,2x), i is an estimate of unknown p (and Y). Then we can talk about
‘accuracy’ of this estimate in terms of confidence intervals (and prediction intervals).

Confidence interval of y: [, = i+ t,/5(n —k—1)-5-4/x (X'X) 'x.

Prediction interval of Y: Iy = i+t (n—k—1)-s- \/1 +x (X'X) ' x.

Suppose we have two models:

Model 1: Y =By + fr1x1 + ... + Brxg + €
Model 2: Y = Bo + f121 + ... + Brwk + Ber1Thi1 + - - - + BripTrip T €,

and we want to test Ho : Bx41 = ... = Bryp = 0 vs Hy : at least one Sj4; # 0,

(1) _ o
S~ Flpn— k= p = 1)
_ (589852 /p
582 /(n—k—p—1)
C = (Fualp,n—k—p—1),+00).
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For y2-test, we have two parts. The first part is about y?-test of pupulation:

Hy :X ~ distribution (with or without unknown parameters);
H; : X ~ distribution

Then

k

Ni — np;)?
fact : g M ~ x%(k — 1 — #of unknown parameters);
« np;
i=1

TS = Z —npi)’

C= (Xa(k — 1 — #of unknown parameters), ~+00) .

The second part is about y2-test of Homogeneity (independence). Suppose we have a data with r rows
and k columns,

Hj : grouping in rows and grouping in columns are independent (i.e. they don’t affect each other);

H : grouping in rows and grouping in columns are NOT independent (i.e. they affect each other)).

Then

fact ZZ N =g (= 1 - 1)

n
jl’Ll p”

TS = ZZ (Nij — npis)*

n
j=11=1 pl]

C = (Xi((r - 1)(k-1)), —I-oo) .
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