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1. Let H0 be the hypothesis that the data is homogeneous between the two sites and H1 that
this is not true. In total, we have n = 289 observations. We can directly see that the last
four albums will have too small nip̂j (significantly less than 5), so we have to combine
these to obtain a usable test. Note that this changes what we actually test, but it’s the
best we can do using the tools from this course. We can calculate the following from the
data given.

Album Title Web page Sum p̂j
Nuclear War Now! Metalstorm.net

Altars of Madness 67 82 149 0.516
Blessed Are The Sick 18 34 52 0.180
Covenant 11 32 43 0.149
D–H 8 37 45 0.156
ni 104 185 289

The usual test quantity is found in

q =
1∑
i=0

3∑
j=0

(Nij − nip̂j)2

nip̂j
=

(67− 53.62)2

53.62
+

(82− 95.38)2

95.38
+

(18− 18.72)2

18.72

+
(34− 33.29)2

33.29
+

(11− 15.47)2

15.47
+

(32− 27.53)2

27.53

+
(8− 16.19)2

16.19
+

(37− 28.81)2

28.81
= 13.76.

If H0 is true, then q is an observation of Q
appr.∼ χ2((2− 1)(4− 1)) = χ2(3). We reject H0

if q is large, so we need a critical region C of the form C = [c,∞). From a table we find
that c = χ2

0.01(3) = 11.34. If q ≥ c, we reject H0.
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Since q ∈ C, the conclusion is that we reject H0. There is very likely a difference in
opinions between the two sites.

Answer: There is a difference.



2. (a) Let Xi be the temperatures with conventional cooling and Yi the temperatures with
water cooling. Assume that Xi ∼ N(µX , σ

2
X) and that Yi ∼ N(µY , σ

2
Y ), where µX

and µY are the expected temperatures using the different cooling techniques. We
can not assume that the variance is the same or that Xi and Yi are independent, but
different Xi and different Yi are independent. We do not know that this model is
true (there might be different expected temperatures for the different computers),
but it’s the best we can do to answer the question. Another interpretation is that it
is the mean temperatures we’re interested in.

It now follows that (by Cochran’s and Gosset’s theorems)

TX =
X − µX
S/
√

5
∼ t(4),

and
P (−tα/2(4) < TX < tα/2(4)) = 1− α,

where we can solve the inequality for

X − tα/2(4) · S√
5
< µX < X + tα/2(4) · S√

5
.

From a table, we find that t0.025(4) = 2.7764.
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y

−tα/2(4) tα/2(4)

As an observation of SX , we use
√
s2
X , so

t0.025(4)
s√
5

= 2.7764 · 10.2127

2.2361
= 12.6808.

Since x = 52.6, the interval is given by

IµX = (39.9, 65.3).

Analogously, we find a confidence interval for µY in

IµY = (37.1, 51.4).

(b) To obtain a significant result, we can not use the intervals derived in (a) for several
reasons. First, the intervals are not independent (at least we can’t be sure). Secondly,
the simultaneous degree of confidence will be wrong compared to what we’re asked
to do in this part.

The model we need to use is samples in pairs.

If xi is the temperature before introducing water cooling and yi the temperature after,
we assume that xi are observations of Xi ∼ N(µi, σ

2
1) and yi from Yi ∼ N(µi + ∆, σ2

2).
Define Zi = Yi−Xi ∼ N(∆, σ2). We consider the sequence zi = yi−xi as observations
of Zi. Note that the variables Zi are independent since we assumed that different
computers are independent.



Temperature difference
zi 5 -2 16 14 9

We can now calculate s = 7.2319 and z = 8.4. Moreover, n− 1 = 4 and α = 0.05,
so tα/2(4) = t0.025(4) = 2.7764. Thus,

I∆ = (8.4− 2.7764 · 7.2319/
√

5, 8.4 + 2.7764 · 7.2319/
√

5) = (−0.58, 17.4).

Since 0 ∈ I∆, we can’t reject the hypothesis that ∆ = 0. It is not clear that there is
a difference.

(c) This is a similar situation to (a), where we have to assume that the temperatures are
from the same distribution N(µY , σ

2) (or consider the mean temperature). We define

V =
4S2

σ2
∼ χ2(4).

From a table we find c such that P (c < V ) = 0.90 by choosing c = χ2
0.10(4) = 1.064.

x
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1.06

We solve for σ2:

c <
4S2

σ2
⇔ σ2 <

4S2

c

and use s2 = 33.2 as the estimate for S2, leading to the confidence interval

Iσ2 = (0, 124.9) .

Answer:

(a) IµX = (39.9, 65.3) and IµY = (37.1, 51.4).

(b) Inconclusive. There might not be a difference.

(c) Iσ2 = (0, 124.9).

3. Let Z = X̂(n)−X(n). Then Z = AY (n), where A = (−1, a, b ). Thus,

E(Z2) = V (Z) + E(Z)2 = ACY (n)A
T + 0

= · · · = 2− 2a+ 2a2 + 2ab+ 2b2 =: f(a, b).

We seek a and b that minimizes f(a, b). Letting ∇f = 0, we find that{
f ′a(a, b) = −2 + 4a+ 2b = 0

f ′b(a, b) = 2a+ 4b = 0



Solving the system of equations, we obtain a = 2/3 and b = −1/3. Is this a minimum?
Calculating the derivatives of order two, we have f ′′aa = f ′′bb = 4 and f ′′ab = 2. Looking at
the quadratic form,

Q(h, k) = 4k2 + 4hk + 4k2 = 4(k + h/2)2 + 3h2,

we see that it is positively definite. Hence this is indeed a minimum.

Answer: The linear predictor is given by

X̂(n) =
2

3
X(n− 1)− 1

3
X(n− 2).

4. (a) We can perform this test in several different ways. We can test whether β2 = 0
in model 2 directly or we can compare model 1 and model 2 and see if model 2 is
significantly better.

Alternative 1. To test if β2 = 0, let H0 : β2 = 0 and H1 : β2 6= 0. Assume that H0

holds. Then

T =
β̂2 − 0

S
√
h22

∼ t(4),

where the distribution is clear since H0 holds. We need a critical region C such
that P (T ∈ C |H0) = 0.01 and since H1 is double sided, we choose symmetrically.
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We find tα/2(4) = t0.005(4) = 4.6041 in a table. An observation of S
√
h22 is given by

the standard error d(β̂2) and thus we find that the observation

t =
0.1363

0.1009
= 1.35

does not belong to the critical region. So we can not reject H0. The coefficient β2

might very well be zero.

Alternative 2.

We have model 1:
y = β0 + β1x1 + ε

and model 2:
y = β0 + β1x1 + β2x2 + ε.



We can test if the second model is significantly better by testing whether β2 = 0 in a
slightly different way.

Let
H0 : β2 = 0,

and
H1 : β2 6= 0.

If H0 is true, then Y ∼ N(X1β1, σ
2I), so

W =
(SS

(1)
E − SS

(2)
E )/1

SS
(2)
E /4

∼ F (1, 4) if H0 is true

since this is a quotient of independent χ2 variables. If H0 is not true, then W will
tend to grow large. The critical domain is given by C =]c,∞[ for some c > 0.
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From the table we find that c = 21.1977. The observation of W is found as

w =
(0.0678− 0.0466)/1

0.0466/4
= 1.82,

so clearly w 6∈ C. We can not reject the null hypothesis.

(b) We wish to find a confidence interval for β1 using model 2. We know that

T =
β̂1 − β1

S
√
h11

∼ t(4).

So
P (−tα/2(4) < T < tα/2(4)) = 1− α,

where we can solve the inequality for

β̂1 − tα/2(4) · S
√
h11 < β1 < β̂1 + tα/2(4) · S

√
h11.
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From a table, we find that t0.025(4) = 2.7764. An observation of S
√
h11 is given by

the standard error d(β̂1) = 0.025 and thus we find the confidence interval

Iβ1 =
(
β̂1 − 2.7764 · 0.025, β̂1 + 2.7764 · 0.025

)
= (0.67, 0.81).

Answer:

(a) A significance test shows that we can’t conclude that β2 6= 0 at the significance
level 1%. The conclusion is that we really don’t know.

(b) (0.67, 0.81).

5. (a) A reasonable estimate that is fairly obvious is to let p̂ = x−1, where x is the observation
of the number of trials it takes for the snake to bite someone. We note that the
assumptions lead to the conclusion that X ∼ Ffg(p). If the estimate p̂ = x−1 is not
obviously reasonable, we can show that this is actually the MLE.

The likelihood-function L(p) is given by

L(p) = p(1− p)x−1,

where x is the observation described above and p is the unknown probability. We
only have one probability function to work with, so there’s no product of n different
probability functions. The parameter space is Ωp = (0, 1) (the extreme cases at p = 0
and p = 1 are not very interesting). We form the log-likelihood and take the derivative
with respect to p (remember that x is fixed):

logL(p) = log p+ (x− 1) log(1− p),
d logL(p)

dp
=

1

p
− x− 1

1− p
.

We’re seeking an extremum, so we’re looking for points where the derivative is zero:

1

p
− x− 1

1− p
= 0 ⇔ p =

1

x
.

The sign-change for the derivative at the point p̂ = 1/x is +0−, so we’re dealing with
a maximum. It is also clear that p̂ ∈ Ωp since x ≥ 1.

The expectation of the estimator can be calculated as follows (remember the second
course in single variable analysis):

E(P̂ ) = E(X−1) =
∞∑
x=1

x−1pX(x) =
∞∑
x=1

x−1p(1− p)x−1 =
p

1− p

∞∑
x=1

(1− p)x

x
.

Let f(t) =
∞∑
k=1

tk

k
. We can calculate this series by observing that

f(t) =
∞∑
k=1

tk

k
=
∞∑
k=1

∫ t

0

uk−1 du =

∫ t

0

(
∞∑
k=1

uk−1

)
du =

∫ t

0

1

1− u
du = − ln(1− t),

provided that 0 < t < 1 (where the series is absolutely convergent). Thus we have
shown that

E(P̂ ) =
pf(1− p)

1− p
=
−p ln p

1− p
6= p,

so the estimator is not unbiased.



(b) Let X be the number of trials it takes for someone to finally get bitten. We concluded
above that X ∼ Ffg(p), where p is the unknown probability of a bite. We want to
test

H0 : p = 0.4

versus
H1 : p < 0.4.

Given that H0 is true, we expect that it takes 1/0.4 = 2.5 times to end the game.
Is x = 5 significantly greater? Large observations indicate that the probability is low.
We need the critical region C.
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C

Since
p(x) = p(1− p)x−1,

we can calculate that

P (X ≥ x) =
∞∑
k=x

p(1− p)k−1 = p(1− p)x−1

∞∑
k=0

(1− p)k

= p(1− p)x−1 1

1− (1− p)
= (1− p)x−1.

Testing values for x we find that P (X ≥ 7) ≤ 0.05 but P (X ≥ 6) > 0.05. So

C = {x ∈ Z : x ≥ 7}

and our observation x = 5 6∈ C. Hence we can’t reject H0. The snake might be feisty
to a value of p = 0.4.

(c) The power at p = 0.2 can be calculated straight from the definition:

h(0.2) = P (H0 rejected | p = 0.2) = P (X ∈ C | p = 0.2)

=
∞∑
x=7

0.2 · 0.8x−1 = 0.262.

Answer: (a) P̂ =
1

x
; not unbiased. (b) We can’t reject H0. (c) The power is 0.262.



6. Since A is a symmetric matrix, there exists an orthonormal basis where A is a diagonal
matrix. In other words, there is an orthonormal matrix C such that A = CDCT .
Let Z = CTY . Now, since A2 = A, the only possible eigenvalues of A are 0 and 1.
These are the values on the diagonal of D. We assume that these are in decreasing
order 1, 1, . . . , 1, 0, . . . , 0. The rank of A is l, so there are precisely l ones. Now,

Y TAY = Y TCDCTY = (CZ)TCDCTCZ

= ZTCTCDCTCZ = ZTDZ,

since CTC = I. The fact that D is of the form described above shows that

ZTDZ =
l∑

j=1

Z2
j .

We can also see that the components of Z are independent since

cov(Z) = cov(CTY ) = CT cov(Y )C = CTC = I

due to the fact that cov(Y ) = I.

We have thus shown that Y TAY can be expressed as a sum of l squares of indepen-
dent N(0, 1)-distributed variables. This implies that

Y TAY ∼ χ2(l).

Answer: Y TAY ∼ χ2(l).


