Solutions

TAMS24/TEN1 2019-01-09

1. Let H_{0} be the hypothesis that the data is homogeneous between the two sites and H_{1} that this is not true. In total, we have $n=289$ observations. We can directly see that the last four albums will have too small $n_{i} \widehat{p_{j}}$ (significantly less than 5), so we have to combine these to obtain a usable test. Note that this changes what we actually test, but it's the best we can do using the tools from this course. We can calculate the following from the data given.

Album Title	Web page		Sum	$\widehat{p_{j}}$
	Nuclear War Now!	Metalstorm.net		
Altars of Madness	67	82	149	0.516
Blessed Are The Sick	18	34	52	0.180
Covenant	11	32	43	0.149
D-H	8	37	45	0.156
n_{i}	104	185	289	

The usual test quantity is found in

$$
\begin{aligned}
q= & \sum_{i=0}^{1} \sum_{j=0}^{3} \frac{\left(N_{i j}-n_{i} \widehat{p}_{j}\right)^{2}}{n_{i} \widehat{p}_{j}}=\frac{(67-53.62)^{2}}{53.62}+\frac{(82-95.38)^{2}}{95.38}+\frac{(18-18.72)^{2}}{18.72} \\
& +\frac{(34-33.29)^{2}}{33.29}+\frac{(11-15.47)^{2}}{15.47}+\frac{(32-27.53)^{2}}{27.53} \\
& +\frac{(8-16.19)^{2}}{16.19}+\frac{(37-28.81)^{2}}{28.81} \\
= & 13.76 .
\end{aligned}
$$

If H_{0} is true, then q is an observation of $Q \stackrel{\text { appr. }}{\sim} \chi^{2}((2-1)(4-1))=\chi^{2}(3)$. We reject H_{0} if q is large, so we need a critical region C of the form $C=[c, \infty)$. From a table we find that $c=\chi_{0.01}^{2}(3)=11.34$. If $q \geq c$, we reject H_{0}.

Since $q \in C$, the conclusion is that we reject H_{0}. There is very likely a difference in opinions between the two sites.

Answer: There is a difference.
2. (a) Let X_{i} be the temperatures with conventional cooling and Y_{i} the temperatures with water cooling. Assume that $X_{i} \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and that $Y_{i} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, where μ_{X} and μ_{Y} are the expected temperatures using the different cooling techniques. We can not assume that the variance is the same or that X_{i} and Y_{i} are independent, but different X_{i} and different Y_{i} are independent. We do not know that this model is true (there might be different expected temperatures for the different computers), but it's the best we can do to answer the question. Another interpretation is that it is the mean temperatures we're interested in.
It now follows that (by Cochran's and Gosset's theorems)

$$
T_{X}=\frac{\bar{X}-\mu_{X}}{S / \sqrt{5}} \sim t(4),
$$

and

$$
P\left(-t_{\alpha / 2}(4)<T_{X}<t_{\alpha / 2}(4)\right)=1-\alpha,
$$

where we can solve the inequality for

$$
\bar{X}-t_{\alpha / 2}(4) \cdot \frac{S}{\sqrt{5}}<\mu_{X}<\bar{X}+t_{\alpha / 2}(4) \cdot \frac{S}{\sqrt{5}} .
$$

From a table, we find that $t_{0.025}(4)=2.7764$.

As an observation of S_{X}, we use $\sqrt{s_{X}^{2}}$, so

$$
t_{0.025}(4) \frac{s}{\sqrt{5}}=2.7764 \cdot \frac{10.2127}{2.2361}=12.6808
$$

Since $\bar{x}=52.6$, the interval is given by

$$
I_{\mu_{X}}=(39.9,65.3) .
$$

Analogously, we find a confidence interval for μ_{Y} in

$$
I_{\mu_{Y}}=(37.1,51.4) .
$$

(b) To obtain a significant result, we can not use the intervals derived in (a) for several reasons. First, the intervals are not independent (at least we can't be sure). Secondly, the simultaneous degree of confidence will be wrong compared to what we're asked to do in this part.
The model we need to use is samples in pairs.
If x_{i} is the temperature before introducing water cooling and y_{i} the temperature after, we assume that x_{i} are observations of $X_{i} \sim \mathrm{~N}\left(\mu_{i}, \sigma_{1}^{2}\right)$ and y_{i} from $Y_{i} \sim \mathrm{~N}\left(\mu_{i}+\Delta, \sigma_{2}^{2}\right)$. Define $Z_{i}=Y_{i}-X_{i} \sim \mathrm{~N}\left(\Delta, \sigma^{2}\right)$. We consider the sequence $z_{i}=y_{i}-x_{i}$ as observations of Z_{i}. Note that the variables Z_{i} are independent since we assumed that different computers are independent.

	Temperature difference				
z_{i}	5	-2	16	14	9

We can now calculate $s=7.2319$ and $\bar{z}=8.4$. Moreover, $n-1=4$ and $\alpha=0.05$, so $t_{\alpha / 2}(4)=t_{0.025}(4)=2.7764$. Thus,

$$
I_{\Delta}=(8.4-2.7764 \cdot 7.2319 / \sqrt{5}, 8.4+2.7764 \cdot 7.2319 / \sqrt{5})=(-0.58,17.4)
$$

Since $0 \in I_{\Delta}$, we can't reject the hypothesis that $\Delta=0$. It is not clear that there is a difference.
(c) This is a similar situation to (a), where we have to assume that the temperatures are from the same distribution $N\left(\mu_{Y}, \sigma^{2}\right)$ (or consider the mean temperature). We define

$$
V=\frac{4 S^{2}}{\sigma^{2}} \sim \chi^{2}(4)
$$

From a table we find c such that $P(c<V)=0.90$ by choosing $c=\chi_{0.10}^{2}(4)=1.064$.

We solve for σ^{2} :

$$
c<\frac{4 S^{2}}{\sigma^{2}} \quad \Leftrightarrow \quad \sigma^{2}<\frac{4 S^{2}}{c}
$$

and use $s^{2}=33.2$ as the estimate for S^{2}, leading to the confidence interval

$$
I_{\sigma^{2}}=(0,124.9)
$$

Answer:

(a) $I_{\mu_{X}}=(39.9,65.3)$ and $I_{\mu_{Y}}=(37.1,51.4)$.
(b) Inconclusive. There might not be a difference.
(c) $I_{\sigma^{2}}=(0,124.9)$.
3. Let $Z=\widehat{X}(n)-X(n)$. Then $Z=A Y(n)$, where $A=(-1, a, b)$. Thus,

$$
\begin{aligned}
E\left(Z^{2}\right) & =V(Z)+E(Z)^{2}=A C_{Y(n)} A^{T}+0 \\
& =\cdots=2-2 a+2 a^{2}+2 a b+2 b^{2}=: f(a, b) .
\end{aligned}
$$

We seek a and b that minimizes $f(a, b)$. Letting $\nabla f=0$, we find that

$$
\left\{\begin{array}{l}
f_{a}^{\prime}(a, b)=-2+4 a+2 b=0 \\
f_{b}^{\prime}(a, b)=2 a+4 b=0
\end{array}\right.
$$

Solving the system of equations, we obtain $a=2 / 3$ and $b=-1 / 3$. Is this a minimum? Calculating the derivatives of order two, we have $f_{a a}^{\prime \prime}=f_{b b}^{\prime \prime}=4$ and $f_{a b}^{\prime \prime}=2$. Looking at the quadratic form,

$$
Q(h, k)=4 k^{2}+4 h k+4 k^{2}=4(k+h / 2)^{2}+3 h^{2}
$$

we see that it is positively definite. Hence this is indeed a minimum.
Answer: The linear predictor is given by

$$
\widehat{X}(n)=\frac{2}{3} X(n-1)-\frac{1}{3} X(n-2) .
$$

4. (a) We can perform this test in several different ways. We can test whether $\beta_{2}=0$ in model 2 directly or we can compare model 1 and model 2 and see if model 2 is significantly better.
Alternative 1. To test if $\beta_{2}=0$, let $H_{0}: \beta_{2}=0$ and $H_{1}: \beta_{2} \neq 0$. Assume that H_{0} holds. Then

$$
T=\frac{\widehat{\beta}_{2}-0}{S \sqrt{h_{22}}} \sim t(4),
$$

where the distribution is clear since H_{0} holds. We need a critical region C such that $P\left(T \in C \mid H_{0}\right)=0.01$ and since H_{1} is double sided, we choose symmetrically.

We find $t_{\alpha / 2}(4)=t_{0.005}(4)=4.6041$ in a table. An observation of $S \sqrt{h_{22}}$ is given by the standard error $d\left(\widehat{\beta_{2}}\right)$ and thus we find that the observation

$$
t=\frac{0.1363}{0.1009}=1.35
$$

does not belong to the critical region. So we can not reject H_{0}. The coefficient β_{2} might very well be zero.

Alternative 2.

We have model 1 :

$$
y=\beta_{0}+\beta_{1} x_{1}+\epsilon
$$

and model 2:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\epsilon
$$

We can test if the second model is significantly better by testing whether $\beta_{2}=0$ in a slightly different way.
Let

$$
H_{0}: \beta_{2}=0
$$

and

$$
H_{1}: \beta_{2} \neq 0
$$

If H_{0} is true, then $\boldsymbol{Y} \sim N\left(X_{1} \boldsymbol{\beta}_{\mathbf{1}}, \sigma^{2} I\right)$, so

$$
W=\frac{\left(\mathrm{SS}_{\mathrm{E}}^{(1)}-\mathrm{SS}_{\mathrm{E}}^{(2)}\right) / 1}{\mathrm{SS}_{\mathrm{E}}^{(2)} / 4} \sim F(1,4) \quad \text { if } H_{0} \text { is true }
$$

since this is a quotient of independent χ^{2} variables. If H_{0} is not true, then W will tend to grow large. The critical domain is given by $C=] c, \infty[$ for some $c>0$.

From the table we find that $c=21.1977$. The observation of W is found as

$$
w=\frac{(0.0678-0.0466) / 1}{0.0466 / 4}=1.82
$$

so clearly $w \notin C$. We can not reject the null hypothesis.
(b) We wish to find a confidence interval for β_{1} using model 2 . We know that

$$
T=\frac{\widehat{\beta}_{1}-\beta_{1}}{S \sqrt{h_{11}}} \sim t(4)
$$

So

$$
P\left(-t_{\alpha / 2}(4)<T<t_{\alpha / 2}(4)\right)=1-\alpha,
$$

where we can solve the inequality for

$$
\widehat{\beta}_{1}-t_{\alpha / 2}(4) \cdot S \sqrt{h_{11}}<\beta_{1}<\widehat{\beta}_{1}+t_{\alpha / 2}(4) \cdot S \sqrt{h_{11}} .
$$

From a table, we find that $t_{0.025}(4)=2.7764$. An observation of $S \sqrt{h_{11}}$ is given by the standard error $d\left(\widehat{\beta_{1}}\right)=0.025$ and thus we find the confidence interval

$$
I_{\beta_{1}}=\left(\widehat{\beta}_{1}-2.7764 \cdot 0.025, \widehat{\beta}_{1}+2.7764 \cdot 0.025\right)=(0.67,0.81)
$$

Answer:

(a) A significance test shows that we can't conclude that $\beta_{2} \neq 0$ at the significance level 1%. The conclusion is that we really don't know.
(b) $(0.67,0.81)$.
5. (a) A reasonable estimate that is fairly obvious is to let $\widehat{p}=x^{-1}$, where x is the observation of the number of trials it takes for the snake to bite someone. We note that the assumptions lead to the conclusion that $X \sim \operatorname{Ffg}(p)$. If the estimate $\widehat{p}=x^{-1}$ is not obviously reasonable, we can show that this is actually the MLE.
The likelihood-function $L(p)$ is given by

$$
L(p)=p(1-p)^{x-1}
$$

where x is the observation described above and p is the unknown probability. We only have one probability function to work with, so there's no product of n different probability functions. The parameter space is $\Omega_{p}=(0,1)$ (the extreme cases at $p=0$ and $p=1$ are not very interesting). We form the log-likelihood and take the derivative with respect to p (remember that x is fixed):

$$
\begin{aligned}
\log L(p) & =\log p+(x-1) \log (1-p) \\
\frac{d \log L(p)}{d p} & =\frac{1}{p}-\frac{x-1}{1-p}
\end{aligned}
$$

We're seeking an extremum, so we're looking for points where the derivative is zero:

$$
\frac{1}{p}-\frac{x-1}{1-p}=0 \quad \Leftrightarrow \quad p=\frac{1}{x}
$$

The sign-change for the derivative at the point $\widehat{p}=1 / x$ is $+0-$, so we're dealing with a maximum. It is also clear that $\widehat{p} \in \Omega_{p}$ since $x \geq 1$.
The expectation of the estimator can be calculated as follows (remember the second course in single variable analysis):

$$
E(\widehat{P})=E\left(X^{-1}\right)=\sum_{x=1}^{\infty} x^{-1} p_{X}(x)=\sum_{x=1}^{\infty} x^{-1} p(1-p)^{x-1}=\frac{p}{1-p} \sum_{x=1}^{\infty} \frac{(1-p)^{x}}{x} .
$$

Let $f(t)=\sum_{k=1}^{\infty} \frac{t^{k}}{k}$. We can calculate this series by observing that

$$
f(t)=\sum_{k=1}^{\infty} \frac{t^{k}}{k}=\sum_{k=1}^{\infty} \int_{0}^{t} u^{k-1} d u=\int_{0}^{t}\left(\sum_{k=1}^{\infty} u^{k-1}\right) d u=\int_{0}^{t} \frac{1}{1-u} d u=-\ln (1-t)
$$

provided that $0<t<1$ (where the series is absolutely convergent). Thus we have shown that

$$
E(\widehat{P})=\frac{p f(1-p)}{1-p}=\frac{-p \ln p}{1-p} \neq p
$$

so the estimator is not unbiased.
(b) Let X be the number of trials it takes for someone to finally get bitten. We concluded above that $X \sim \operatorname{Ffg}(p)$, where p is the unknown probability of a bite. We want to test

$$
H_{0}: p=0.4
$$

versus

$$
H_{1}: p<0.4
$$

Given that H_{0} is true, we expect that it takes $1 / 0.4=2.5$ times to end the game. Is $x=5$ significantly greater? Large observations indicate that the probability is low. We need the critical region C.

Since

$$
p(x)=p(1-p)^{x-1},
$$

we can calculate that

$$
\begin{aligned}
P(X \geq x) & =\sum_{k=x}^{\infty} p(1-p)^{k-1}=p(1-p)^{x-1} \sum_{k=0}^{\infty}(1-p)^{k} \\
& =p(1-p)^{x-1} \frac{1}{1-(1-p)}=(1-p)^{x-1} .
\end{aligned}
$$

Testing values for x we find that $P(X \geq 7) \leq 0.05$ but $P(X \geq 6)>0.05$. So

$$
C=\{x \in \mathbf{Z}: x \geq 7\}
$$

and our observation $x=5 \notin C$. Hence we can't reject H_{0}. The snake might be feisty to a value of $p=0.4$.
(c) The power at $p=0.2$ can be calculated straight from the definition:

$$
\begin{aligned}
h(0.2) & =P\left(H_{0} \text { rejected } \mid p=0.2\right)=P(X \in C \mid p=0.2) \\
& =\sum_{x=7}^{\infty} 0.2 \cdot 0.8^{x-1}=0.262 .
\end{aligned}
$$

Answer: (a) $\widehat{P}=\frac{1}{x}$; not unbiased. (b) We can't reject H_{0}. \quad (c) The power is 0.262 .
6. Since A is a symmetric matrix, there exists an orthonormal basis where A is a diagonal matrix. In other words, there is an orthonormal matrix C such that $A=C D C^{T}$. Let $\boldsymbol{Z}=C^{T} \boldsymbol{Y}$. Now, since $A^{2}=A$, the only possible eigenvalues of A are 0 and 1 . These are the values on the diagonal of D. We assume that these are in decreasing order $1,1, \ldots, 1,0, \ldots, 0$. The rank of A is l, so there are precisely l ones. Now,

$$
\begin{aligned}
\boldsymbol{Y}^{T} A \boldsymbol{Y} & =\boldsymbol{Y}^{T} C D C^{T} \boldsymbol{Y}=(C \boldsymbol{Z})^{T} C D C^{T} C \boldsymbol{Z} \\
& =\boldsymbol{Z}^{T} C^{T} C D C^{T} C \boldsymbol{Z}=\boldsymbol{Z}^{T} D \boldsymbol{Z}
\end{aligned}
$$

since $C^{T} C=I$. The fact that D is of the form described above shows that

$$
\boldsymbol{Z}^{T} D \boldsymbol{Z}=\sum_{j=1}^{l} Z_{j}^{2}
$$

We can also see that the components of \boldsymbol{Z} are independent since

$$
\operatorname{cov}(\boldsymbol{Z})=\operatorname{cov}\left(C^{T} \boldsymbol{Y}\right)=C^{T} \operatorname{cov}(\boldsymbol{Y}) C=C^{T} C=I
$$

due to the fact that $\operatorname{cov}(\boldsymbol{Y})=I$.
We have thus shown that $\boldsymbol{Y}^{T} A \boldsymbol{Y}$ can be expressed as a sum of l squares of independent $N(0,1)$-distributed variables. This implies that

$$
\boldsymbol{Y}^{T} A \boldsymbol{Y} \sim \chi^{2}(l)
$$

Answer: $\boldsymbol{Y}^{T} A \boldsymbol{Y} \sim \chi^{2}(l)$.

