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1 Definition of a martingale

Definition 1.1 Let {Zn}
∞
n=0

be a random sequence. A random sequence
{Xn}

∞
n=0

is called a martingale with respect to {Zn}
∞
n=0

if: (i) E(|Xn|) <∞
for each n ≥ 0; (ii) Xn = gn(Z0, Z1, . . . , Zn) for some function gn, for each
n ≥ 0; and

(iii) E(Xn|Z0, Z1, . . . , Zn−1) = Xn−1 ∀n ≥ 1. (1.1)

Condition (iii) is called the martingale property.

Another way to express condition (ii) is to say that the value of Xn is
determined by the value of (Z0, . . . , Zn), for each n ≥ 1.

Example 1.1 Let {Zn}
∞
n=0

be independent random variables with E(|Zn|) <
∞ and E(Zn) = 0. Define X0 = 0 and

Xn =
n
∑

i=1

Zi ∀n ≥ 1.

Then {Xn}
∞
n=1

is a martingale with respect to {Zn}
∞
n=0

. To prove this, we
check the conditions in Definition 1.1. Condition (i) holds, since

E(|Xn|) = E(|
n
∑

i=1

Zi|) ≤ E(
n
∑

i=1

|Zi|) =
n
∑

i=1

E(|Zi|) <∞.

Condition (ii) obviously also holds (why?). Finally, condition (iii) holds,
since

E(Xn|Z0, Z1, . . . , Zn−1) = E(Zn +Xn−1|Z0, Z1, . . . , Zn−1) =

= E(Zn|Z0, Z1, . . . , Zn−1) + E(Xn−1|Z0, Z1, . . . , Zn−1) =

= E(Zn) +Xn−1 = 0 +Xn−1 = Xn−1.

Next, we will state and prove some important theorems about mar-
tingales. The following lemma, called the generalized law of iterated
expectations, will be useful.

Lemma 1.2 Let X be a random variable such that E[|X|] <∞. Let Y and
W be random variables such that Y = g(W ) for some function g. Then,

E(X|Y ) = E(E(X|W )|Y ).
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Proof: We consider only the case when X and W (and therefore also Y ) are
discrete. Fix y, and let Ay = {w; g(w) = y}. What is the conditional pmf of
W given Y = y? Clearly, for each w ∈ Ay,

P (W = w|Y = y) =
P ({W = w} ∩ {Y = y})

P (Y = y)
=
P (W = w)

P (Y = y)
,

while P (W = w|Y = y) = 0 for each w /∈ Ay. This gives:

E(X|Y = y) =
∑

x∈R

xP (X = x|Y = y)

=
∑

x∈R

x
P ({X = x} ∩ {Y = y})

P (Y = y)
=
∑

x∈R

x
∑

w∈Ay

P ({X = x} ∩ {W = w})

P (Y = y)

=
∑

x∈R

x
∑

w∈Ay

P (X = x|W = w)P (W = w)

P (Y = y)

=
∑

w∈Ay

∑

x∈R

xP (X = x|W = w)
P (W = w)

P (Y = y)

=
∑

w∈Ay

E(X|W = w)
P (W = w)

P (Y = y)
= E(E(X|W )|Y = y).

Theorem 1.3 Let the random sequence {Xn}
∞
n=0

be a martingale with re-
spect to {Zn}

∞
n=0

. Then,

(i) E(Xn+m|Z0, Z1, . . . , Zn) = Xn ∀n ≥ 0,m ≥ 0;

(ii) E(Xn) = E(X0) ∀n ≥ 0.

Proof: For (i), we use Lemma 1.2 repeatedly: first with X = Xn+m, Y =
(Z0, Z1, . . . , Zn) and W = (Z0, Z1, . . . , Zn+m−1), then with X = Xn+m−1,
Y = (Z0, Z1, . . . , Zn) and W = (Z0, Z1, . . . , Zn+m−2), and so on. Using the
martingale property, we get:

E(Xn+m|Z0, Z1, . . . , Zn) = E(E(Xn+m|Z0, Z1, . . . , Zn+m−1)|Z0, Z1, . . . , Zn)

= E(Xn+m−1|Z0, Z1, . . . , Zn) = E(E(Xn+m−1|Z0, Z1, . . . , Zn+m−2)|Z0, Z1, . . . , Zn)

= E(Xn+m−2|Z0, Z1, . . . , Zn) = . . . = E(Xn|Z0, Z1, . . . , Zn) = Xn.

(ii) follows from (i) and the law of iterated expectations by taking the ex-
pectation on both sides.
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Theorem 1.4 Let the random sequence {Xn}
∞
n=0

be a martingale with re-
spect to {Zn}

∞
n=0

. Then, {Xn}
∞
n=0

is also a martingale with respect to {Xn}
∞
n=0

(that is, with respect to itself).

Proof: Since {Xn}
∞
n=0

is a martingale with respect to {Zn}
∞
n=0

, condition
(i) in Definition 1.1 is satisfied. Also, condition (ii) is trivially satisfied,
since Xn = Xn for each n ≥ 1. For (iii), we observe that, for each n ≥ 1,
we can use Lemma 1.2, with X = Xn, Y = (X0, X1, . . . , Xn−1), and W =
(Z0, Z1, . . . , Zn−1). This gives:

E(Xn|X0, X1, . . . , Xn−1) = E(E(Xn|Z0, Z1, . . . , Zn−1)|X0, X1, . . . , Xn−1)

= E(Xn−1|X0, X1, . . . , Xn−1) = Xn−1.

A random sequence {Xn}
∞
n=0

which is a martingale with respect to
{Xn}

∞
n=0

(that is, with respect to itself) will be called a martingale, for
short.

We finally remark that a random sequence {Xn}
∞
n=0

is called a sub-
martingale with respect to {Zn}

∞
n=0

if it satisfies (i) and (ii) in Defini-
tion 1.1, and

(iii)′ E(Xn|Z0, Z1, . . . , Zn−1) ≥ Xn−1 ∀n ≥ 1. (1.2)

{Xn}
∞
n=0

is called a supermartingale with respect to {Zn}
∞
n=0

if it satisfies
(i), (ii) and

(iii)′′ E(Xn|Z0, Z1, . . . , Zn−1) ≤ Xn−1 ∀n ≥ 1. (1.3)

Clearly, a random sequence is a martingale with respect to {Zn}
∞
n=0

if and
only if it is both a submartingale and a supermartingale with respect to
{Zn}

∞
n=0

.

2 Doob’s inequality

Theorem 2.1 Let the random sequence {Xn}
∞
n=0

be a martingale. Then,
for every ǫ > 0 and for any n ≥ 1,

P ( max
0≤k≤n

|Xk| ≥ ǫ) ≤
E(X2

n)

ǫ2
.
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Proof: For 0 ≤ j ≤ n we have

{

max
0≤k≤n

|Xk| ≥ ǫ

}

=
n
⋃

j=0

Aj,

where Aj = {|X0| < ǫ, |X1| < ǫ, . . . , |Xj−1| < ǫ, |Xj| ≥ ǫ}. We define the
so-called indicator random variables for the events Aj, as follows:

IAj
=

{

1 if Aj occurs
0 otherwise.

Since 0 ≤
∑n

j=0
IAj

≤ 1, we get

E(X2

n) ≥ E(X2

n

n
∑

j=0

IAj
) =

n
∑

j=0

E(X2

nIAj
),

and since X2
n = (Xj + (Xn −Xj))

2 for each j = 0, . . . , n, we get

E(X2

n) ≥
n
∑

j=0

E(X2

j IAj
) + 2

n
∑

j=0

E(Xj(Xn −Xj)IAj
)

+
n
∑

j=0

E((Xn −Xj)
2IAj

)

≥

n
∑

j=0

E(X2

j IAj
) + 2

n
∑

j=0

E(Xj(Xn −Xj)IAj
).

Using the law of iterated expectations, and the fact that IAj
is determined

by the value of (X0, . . . , Xj),

E(Xj(Xn −Xj)IAj
) = E(E(XjIAj

(Xn −Xj)|X0, . . . , Xj))

= E(XjIAj
E((Xn −Xj)|X0, . . . , Xj)),

where

E((Xn −Xj)|X0, . . . , Xj) = E(Xn|X0, . . . , Xj)−Xj = Xj −Xj = 0

by the martingale property. Hence we get

E(X2

n) ≥
n
∑

j=0

E(X2

j IAj
) ≥ ǫ2

n
∑

j=0

E(IAj
)
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since X2
j ≥ ǫ2 when IAj

= 1. Also E(IAj
) = P (Aj). Hence we have

n
∑

j=0

E(IAj
) = P

(

n
⋃

j=0

Aj

)

,

since the sets Aj are disjoint. But P
(

⋃n

j=0
Aj

)

= P (max0≤k≤n |Xk| ≥ ǫ).

Hence we have proved

E(X2

n) ≥ ǫ2P

(

max
0≤k≤n

|Xk| ≥ ǫ

)

,

which is the assertion in the theorem.

It should be noted that Doob’s inequality is stronger than Markov’s inequal-
ity, which states that, for each ǫ > 0,

P (|Xn| ≥ ǫ) ≤
E(X2

n)

ǫ2
∀n ≥ 0.

On the other hand, Markov’s inequality holds not only for martingales but
for any random sequence {Xn}

∞
n=0

.

3 Stopping times and optional stopping

Definition 3.1 Let {Zn}
∞
n=0

be a random sequence. A random variable T
taking values in {0, 1, 2, . . .} ∪ {∞} is called a stopping time with respect
to {Zn}

∞
n=0

, if I{T = n} = gn(Z0, Z1, . . . , Zn) for some function gn, for
each n ≥ 0. Here, I{T = n} is the indicator random variable for the event
{T = n}, defined by

I{T = n} =

{

1 if {T = n} occurs
0 otherwise.

In words, T is a stopping time with respect to {Zn}
∞
n=0

if, for each n ≥ 0,
it is possible to decide from the value of (Z0, Z1, . . . , Zn) whether {T = n}
occurs or not.

Example 3.1 Let {Zn}
∞
n=0

be a random sequence, and let a ∈ R. Then, the
random variable Ta = inf{n ≥ 1;Zn ≥ a} is a stopping time with respect
to {Zn}

∞
n=0

, since {Ta = 0} never occurs, and

{Ta = n} = {Z1 < a,Z2 < a, . . . , Zn ≥ a} ∀n ≥ 1.
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On the other hand, the random variable Sa = sup{n ≥ 0;Zn ≥ a} is not a
stopping time with respect to {Zn}

∞
n=0

, since it cannot always be decided
just from the value of (Z0, Z1, . . . , Zn) whether {Sa = n} occurs or not: if
Zn ≥ a, the values of Zn+1, Zn+2, . . . also matter.

Theorem 3.2 Let S and T be stopping times with respect to the random
sequence {Zn}

∞
n=0

. Then, S+T , max{S, T} and min{S, T} are also stopping
times with respect to {Zn}

∞
n=0

.

Proof: We prove only the second claim. Since

{max{S, T} = n} =
(

{S = n}∩(∪n
k=0{T = k})

)

∪
(

{T = n}∩(∪n
k=0{S = k})

)

,

and since S and T are stopping times, it can be decided from the value of
(Z0, Z1, . . . , Zn) whether {max{S, T} = n} occurs or not.

Next, we will show that a martingale which is “stopped” at a stop-
ping time T is still a martingale. To do this, we will need the following
lemma.

Lemma 3.3 Let the random sequence {Xn}
∞
n=0

be a martingale with respect
to {Zn}

∞
n=0

. Let the random sequence {Hn}
∞
n=1

be such that: (i) |Hn| ≤ Cn <
∞ for each n ≥ 1 (where Cn is a constant), and: (ii) Hn = hn(Z0, . . . , Zn−1)
for some function hn, for each n ≥ 1. Define the random sequence {Yn}

∞
n=0

by Y0 = X0, and

Yn =
n
∑

i=1

Hi(Xi −Xi−1) +X0 ∀n ≥ 1.

Then, {Yn}
∞
n=0

is a martingale with respect to {Zn}
∞
n=0

.

Proof: Condition (i) in Definition 1.1 holds, since

E(|Yn|) = E(|
n
∑

i=1

Hi(Xi −Xi−1)|) ≤
n
∑

i=1

E(|Hi(Xi −Xi−1)|)

≤
n
∑

i=1

CiE(|Xi −Xi−1|) =
n
∑

i=1

CiE(|Xi|+ |Xi−1|) <∞.

Condition (ii) clearly also holds (why?), and condition (iii) holds since

E(Yn|Z0, . . . , Zn−1) = E(Yn−1 +Hn(Xn −Xn−1)|Z0, . . . , Zn−1)
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= Yn−1 + E(Hn(Xn −Xn−1)|Z0, . . . , Zn−1)

= Yn−1 +Hn(E(Xn|Z0, . . . , Zn−1)−Xn−1) = Yn−1.

A typical application of Lemma 3.3 is given in the following exam-
ple.

Example 3.4 Let {Zn}
∞
n=1

be independent random variables with E(|Zn|) <
∞ and E(Zn) = 0. Each of these random variables is the outcome of a game.
Define X0 = 0 and

Xn =
n
∑

i=1

Zi ∀n ≥ 1.

Then, we know from Example 1.1 that {Xn}
∞
n=1

is a martingale. Suppose
that, immediately before the nth game, a player can decide to join the game
by betting an amount Hn, which is bounded by a constant C <∞, but may
depend on the outcomes of all the preceding games. The player’s net gain
from the nth game is then HnZn = Hn(Xn −Xn−1), and the player’s total
net gain from the first n games is

Yn =
n
∑

i=1

Hi(Xi −Xi−1) ∀n ≥ 1.

Lemma 3.3 says that “you can’t beat a fair game”: no matter how you
choose your bets {Hn}

∞
n=1

, your total net gain will be a martingale with
mean E(Y0) = E(X0) = 0.

Theorem 3.5 Let the random sequence {Xn}
∞
n=0

be a martingale with re-
spect to {Zn}

∞
n=0

. Let T be a stopping time with respect to {Zn}
∞
n=0

. Define
the random sequence {Yn}

∞
n=0

by

Yn = Xmin{T,n} ∀n ≥ 0.

Then, {Yn}
∞
n=0

is a martingale with respect to {Zn}
∞
n=0

. It is called a stopped
martingale.

Proof: Let Hn = I{T ≥ n} for each n ≥ 1. Then, the random sequence
{Hn}

∞
n=1

satisfies the two conditions of Lemma 3.3 (condition (ii) since
Hn = 1− I{T ≤ n− 1}). Moreover,

Yn = Xmin{T,n} =
n
∑

i=1

Hi(Xi −Xi−1) +X0 ∀n ≥ 0,
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so the claim follows from Lemma 3.3.

Theorem 3.6 (Optional stopping) Let the random sequence {Xn}
∞
n=0

be
a martingale with respect to {Zn}

∞
n=0

. Let T be a stopping time with respect
to {Zn}

∞
n=0

. Assume that either: (i) T ≤ a <∞ (where a is a constant), or:
(ii) E(X2

n) ≤ C < ∞ for all n ≥ 0 (where C is a constant not depending
on n). Then,

E(XT ) = E(X0).

Proof: In the case when (i) holds,

E(XT ) = E(Xmin{T,a}) = E(Xmin{T,0}) = E(X0),

where the second equality follows from Theorem 1.3 and the fact that a
stopped martingale is a martingale. The case when (ii) holds is omitted.

Example 3.7 Let {Zn}
∞
n=1

be independent identically distributed random
variables, such that P (Zn = 1) = P (Zn = −1) = 1

2
. Define X0 = 0 and

Xn =
n
∑

i=1

Zi ∀n ≥ 1.

The random sequence {Xn}
∞
n=0

is called a simple symmetric random
walk, and we know from Example 1.1 that it is a martingale. Let a < 0 < b,
and let T = inf{n ≥ 1;Xn = a or Xn = b}. T is a stopping time (why?),
and T < ∞, since {Zn}

∞
n=1

will contain at least one subsequence of length
b−a consisting only of 1s (prove this!), which will drive {Xn}

∞
n=1

out of the
interval (a, b). Therefore, XT can only take the values a or b. We would like
to compute P (XT = b) = p.

To do this, consider the stopped martingale
{

Xmin{T,n}

}∞

n=0
. Since

this martingale can only take values in the interval [a, b], condition (ii) in
Theorem 3.6 is satisfied (with C = max{a2, b2}). Theorem 3.6 therefore
gives:

E(Xmin{T,T}) = E(XT ) = aP (XT = a) + bP (XT = b) = a(1− p) + bp

= E(X0) = 0 ⇒ p =
−a

b− a
.
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4 Problems

1. Let {Xn}
∞
n=1

be independent and identically distributed random vari-
ables, with E(Xn) = µ and V (Xn) = σ2. Define

W0 = 0,Wn =
n
∑

i=1

Xi

and
Sn = (Wn − nµ)2 − nσ2.

Show that {Sn}
∞
n=0

is a martingale. (That is: show that {Sn}
∞
n=0

is a
martingale with respect to some suitably chosen underlying random
sequence, for example {Xn}

∞
n=1

. It then follows by Theorem 1.4 that
{Sn}

∞
n=0

is also a martingale with respect to itself.)

2. Let X be a random variable such that E(|X|) < ∞, and let {Zn}
∞
n=0

be a random sequence. Define the random sequence {Xn}
∞
n=0

by

Xn = E(X|Z0, Z1, . . . , Zn) ∀n ≥ 0.

Show that {Xn}
∞
n=0

is a martingale. (You need not show that the
condition E(|Xn|) <∞ holds.)

3. Let {B(t); t ≥ 0} be a Brownian motion. Let Xn = B(tn) for 0 = t0 <
t1 < . . . < tn < . . .. Show that {Xn}

∞
n=0

is a martingale.

4. Let {Xn}
∞
n=0

be a sequence of random variables. In many statistical
applications, it is assumed that {Xn}

∞
n=0

are independent and iden-
tically distributed, and such that their pdf:s are either ψ or φ. This
means that the joint pdf of (X0, X1, . . . , Xn) is either

ψX0,X1,...,Xn
(x0, x1, . . . , xn) = ψ (x0)ψ (x1) · · ·ψ (xn)

or
φX0,X1,...,Xn

(x0, x1, . . . , xn) = φ (x0)φ (x1) · · ·φ (xn) .

The likelihood ratio Ln is defined as

Ln =
ψ (x0)ψ (x1) · · ·ψ (xn)

φ (x0)φ (x1) · · ·φ (xn)
.

where we assume that φ (x) > 0 for all x. Show that Ln is a martingale
with respect to {Xn}

∞
n=0

, if {Xn}
∞
n=0

are independent and identically
distributed random variables with pdf φ.
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Remark: Under the condition just mentioned, it can be proven that
Ln → 0, as n→ 0 (you are not required to prove this). What does this
mean in terms of choosing between ψ and φ as models for {Xn}

∞
n=0

,
using the likelihood ratio as a criterion ?

5. Prove the two remaining claims in Theorem 3.2.

6. Just as in Example 3.7, let {Zn}
∞
n=1

be independent identically dis-
tributed random variables, such that P (Zn = 1) = P (Zn = −1) = 1

2
.

Define X0 = 0 and

Xn =
n
∑

i=1

Zi ∀n ≥ 1.

The random sequence {Xn}
∞
n=0

is a martingale with respect to {Zn}
∞
n=1

.
Let a < 0 < b, and let T = inf{n ≥ 0;Xn = a or Xn = b}. It
was pointed out in Example 3.7 that T is a stopping time, and that
P (T <∞) = 1.

(a) Determine the constant c so that {Yn}
∞
n=0

, defined by

Yn = (b−Xn)(Xn − a) + cn ∀n ≥ 0,

is a martingale with respect to {Zn}
∞
n=1

.

(b) Use this martingale to show that E(T ) = −ab. (Hint: Tn =
min(T, n) is also a stopping time. Furthermore, you may use that
E(Tn) → E(T ), E(XTn

) → E(XT ), and E(X2
Tn
) → E(X2

T ), as n →
∞. No proofs of these results are required.)

7. Let Z0 = 0, and let {Zn}
∞
n=1

be independent and identically distribut-
ed random variables, such that

P (Zn = 2) = P (Zn = 0) =
1

2
∀n ≥ 1.

Define the random sequence {Xn}
∞
n=0

by X0 = 1 and

Xn =
n
∏

i=1

Zi ∀n ≥ 1.

(a) Verify that {Xn}
∞
n=0

is a martingale.
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(b) Define the stopping time T = min{n ≥ 1;Xn = 0}. Can you
prove, using the optional stopping theorem, that E(XT ) = E(X0)? If
not, what is the problem?

8. Let {Xn}
∞
n=0

be a nonnegative martingale with E(X0) = 1, and let
a > 0. Prove that, for any fixed n ≥ 0,

P (Xk ≥ a for some 0 ≤ k ≤ n) ≤
1

a
.

Hint: Use Markov’s inequality and the optional stopping theorem with
an appropriately chosen bounded stopping time.
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