TAMS32 STOKASTISKA PROCESSER Komplettering 2

Torkel Erhardsson

15 september 2020

- MEAN SQUARE CONVERGENCE.
- \bullet MEAN SQUARE CONTINUITY.
- $\bullet\,$ MEAN SQUARE INTEGRALS.

1 Definition of convergence in mean square and in probability

Definition 1.1 A random sequence $\{X_n\}_{n=1}^{\infty}$ such that $E(X_n^2) < \infty$ for each $n \ge 1$ is said to **converge in mean square** to a random variable X, if $E(X^2) < \infty$ and

$$E((X_n - X)^2) \to 0$$
 as $n \to \infty$.

In Swedish this is called konvergens i (kvadratiskt) medel. We write also

$$X = \underset{n \to \infty}{\text{l.i.m.}} X_n.$$

Note that this definition does not say anyhing about the (possible) convergence of the sample paths of $\{X_n\}_{n=1}^{\infty}$ as $n \to \infty$.

Definition 1.2 A random sequence $\{X_n\}_{n=1}^{\infty}$ is said to converge in probability to a random variable X, if

$$P(|X_n - X| > \epsilon) \to 0$$
 as $n \to \infty \ \forall \epsilon > 0$.

Theorem 1.1 If a random sequence $\{X_n\}_{n=1}^{\infty}$ converges in mean square to a random variable X, then it also converges in probability to X.

Proof: Chebyshev's inequality gives:

$$P(|X_n - X| > \epsilon) \le \frac{E((X_n - X)^2)}{\epsilon^2} \quad \forall \epsilon > 0,$$

from which the result immediately follows.

2 Laws of large numbers

In the so-called *mean square law of large numbers*, we have convergence in mean square to a degenerate random variable, i.e., a constant:

Theorem 2.1 Let the random variables $\{X_n\}_{n=1}^{\infty}$ be uncorrelated (meaning that $C(X_i, X_j) = 0$ for all $i \neq j$), and such that $E(X_n) = \mu < \infty$ for each $n \geq 1$ and $V(X_n) = \sigma^2 < \infty$ for each $n \geq 1$. Then

$$\mu = \text{l.i.m.} \ \frac{1}{n} \sum_{j=1}^{n} X_j.$$

Proof: Let us set $S_n = \frac{1}{n} \sum_{j=1}^n X_j$. We have $E(S_n) = \mu$ and $Var(S_n) = \frac{1}{n} \sigma^2$, since the variables are uncorrelated. For the claimed mean square convergence we need to consider

$$E((S_n - \mu)^2) = E((S_n - E(S_n))^2) = Var(S_n) = \frac{1}{n}\sigma^2$$

so that

$$E((S_n - \mu)^2) = \frac{1}{n}\sigma^2 \to 0$$

as $n \to \infty$, as was claimed.

Since convergence in mean square implies convergence in probability, we also have the weak law of large numbers:

Theorem 2.2 Let the random variables $\{X_n\}_{n=1}^{\infty}$ be uncorrelated, and such that $E(X_n) = \mu < \infty$ for each $n \ge 1$ and $Var(X_n) = \sigma^2 < \infty$ for each n > 1. Then

$$\frac{1}{n} \sum_{j=1}^{n} X_j \to \mu$$

in probability, as $n \to \infty$.

3 Some Useful Inequalities for Random Variables

Lemma 3.1 For any random variable X,

$$|E(X)| \le E(|X|). \tag{3.1}$$

Proof: If X is a continuous random variable with probability density function $f_X(x)$, then by a result from the basic analysis course:

$$|E(X)| = |\int_{-\infty}^{\infty} x f_X(x) dx| \le \int_{-\infty}^{\infty} |x| f_X(x) dx = E(|X|).$$

The case when X is a discrete random variable is shown analogously.

Lemma 3.2

$$E(|XY|) \le \sqrt{E(X^2)E(Y^2)}. (3.2)$$

$$\sqrt{E((X+Y)^2)} \le \sqrt{E(X^2)} + \sqrt{E(Y^2)}.$$
 (3.3)

(3.2) is known as the Cauchy inequality for random variables, and (3.3) is known as the triangle inequality for random variables.

Proof: (3.2) follows from the inequality

$$0 \le E\left(\left(\frac{|X|}{\sqrt{E(X^2)}} - \frac{|Y|}{\sqrt{E(Y^2)}}\right)^2\right) = E\left(\frac{X^2}{E(X^2)} + \frac{Y^2}{E(Y^2)} - \frac{2|XY|}{\sqrt{E(X^2)E(Y^2)}}\right)$$
$$= 1 + 1 - \frac{2E(|XY|)}{\sqrt{E(X^2)E(Y^2)}} = 2\left(1 - \frac{E(|XY|)}{\sqrt{E(X^2)E(Y^2)}}\right),$$

by rearranging the terms. (3.3) follows from

$$E((X+Y)^{2}) \leq E((|X|+|Y|)|X+Y|) = E(|X||X+Y|) + E(|Y||X+Y|)$$

$$\leq \sqrt{E(X^{2})E((X+Y)^{2})} + \sqrt{E(Y^{2})E((X+Y)^{2})}$$

$$= \sqrt{E((X+Y)^{2})} (\sqrt{E(X^{2})} + \sqrt{E(Y^{2})}),$$

after we divide both sides with $\sqrt{E((X+Y)^2)}$. Here, the Cauchy inequality was used in the third step.

4 Properties of mean square convergence

Theorem 4.1 Let the random sequences $\{X_n\}_{n=1}^{\infty}$ and $\{Y_n\}_{n=1}^{\infty}$ be such that $E(X_n^2) < \infty$ and $E(Y_n^2) < \infty$ for each n = 1, 2, ..., and such that

$$X = \underset{n \to \infty}{\text{l.i.m.}} X_n, \quad Y = \underset{n \to \infty}{\text{l.i.m.}} Y_n.$$

Then,

- (a) $E(X_n) \to E(X)$ as $n \to \infty$;
- (b) $E(X_n^2) \to E(X^2)$ as $n \to \infty$;
- (c) $E(X_n Y_m) \to E(XY)$ as $\min(n, m) \to \infty$;
- (d) If $E(Z^2) < \infty$, then $E(X_n Z) \to E(XZ)$ as $n \to \infty$.

Proof: The reader is asked to prove (a) and (b) in Problem 1, Section 9. Moreover, (d) follows directly from (c) by choosing $Y_m = Z$ for m = 1, 2, ... In order to prove (c), we first observe that

$$|E(X_nY_m)| \le E(|X_nY_m|) \le \sqrt{E(X_n^2)E(Y_m^2)} < \infty$$

by the Cauchy inequality and Lemma 3.1. Similarly, $|E(XY)| < \infty$. Next,

$$|E(X_n Y_m) - E(XY)| = |E(X_n Y_m - XY)|$$

$$= |E((X_n - X)Y_m + (Y_m - Y)X)| \le E(|(X_n - X)Y_m + (Y_m - Y)|X)$$

$$< E(|(X_n - X)Y_m|) + E(|(Y_m - Y)|X),$$

where in the last step we used the *usual* triangle inequality for real numbers. Using the Cauchy inequality again, we get:

$$E(|(X_n - X)Y_m|) < \sqrt{E((X_n - X)^2)E(Y_m^2)}$$

and

$$E(|(Y_m - Y)X|) \le \sqrt{E((Y_m - Y)^2)E(X^2)}$$
.

By assumption, $E((X_n-X)^2)\to 0$ as $n\to\infty$, and $E((Y_m-Y)^2)\to 0$ as $m\to\infty$. Since the square root is a continuous function, it follows that $\sqrt{E((X_n-X)^2)}\to 0$ as $n\to\infty$, and $\sqrt{E((Y_m-Y)^2)}\to 0$ as $m\to\infty$. Finally, $E(Y_m^2)\to E(Y^2)$ by part (b), so the sequence $\{E(Y_m^2); m=1,2,\ldots\}$ is bounded. Hence, (c) is proved.

We shall often need Cauchy's criterion for mean square convergence, which is the next theorem.

Theorem 4.2 (Cauchy's criterion) Let the random sequence $\{X_n\}_{n=1}^{\infty}$ be such that $E(X_n^2) < \infty$ for each $n = 1, 2, \ldots$ It then holds that

$$E((X_n - X_m)^2) \to 0$$
 as $\min(m, n) \to \infty$ (4.4)

if and only if there exists a random variable X such that

$$X = \underset{n \to \infty}{\text{l.i.m.}} X_n.$$

Proof: Proof of \iff :

$$\sqrt{E((X_n - X_m)^2)} = \sqrt{E((X_n - X + X - X_m)^2)}$$

$$\leq \sqrt{E((X_n - X)^2)} + \sqrt{E((X - X_m)^2)},$$

where the triangle inequality for random variables was used in the last step. By assumption, both terms on the right hand side go to 0 as $\min(n, m) \to \infty$.

Proof of \Longrightarrow : Omitted. For those who have taken a course in functional analysis, we remark that what needs to be proven is that the space of random variables (defined on the same sample space Ω) such that $E(X^2) < \infty$, with the norm $||X|| = \sqrt{E(X^2)}$, is a complete normed linear space.

The following is a sometimes useful alternative to Cauchy's criterion:

Theorem 4.3 (Loève's criterion) Let the random sequence $\{X_n\}_{n=1}^{\infty}$ be such that $E(X_n^2) < \infty$ for each n = 1, 2, ... It then holds that

$$E((X_n - X_m)^2) \to 0$$
 as $\min(m, n) \to \infty$ (4.5)

if and only if there exists a finite constant C such that

$$E(X_n X_m) \to C$$
 as $\min(m, n) \to \infty$. (4.6)

Proof: Proof of \Leftarrow : We assume that $E(X_nX_m) \to C$ as $\min(m,n) \to \infty$. Then,

$$E((X_n - X_m)^2) = E(X_n X_n + X_m X_m - 2X_n X_m)$$

$$\to C + C - 2C = 0 \quad \text{as } \min(m, n) \to \infty.$$

Proof of \Longrightarrow : We assume that $E((X_n - X_m)^2) \to 0$ as $\min(m, n) \to \infty$. Then $X = \underset{n \to \infty}{\text{l.i.m.}} X_n$ exists, according to Cauchy's criterion. Using Theorem 4.1(c) and choosing $Y_m = X_m$ for m = 1, 2, ..., we get:

$$E(X_n X_m) \to E(X^2)$$
 as $\min(m, n) \to \infty$,

so (4.6) holds with $C = E(X^2)$.

5 Applications

Theorem 5.1 Let the random variables $\{X_n\}_{n=0}^{\infty}$ be uncorrelated (meaning that $C(X_i, X_j) = 0$ for all $i \neq j$), and such that $E(X_n) = \mu < \infty$ for each

 $n \geq 0$ and $V(X_n) = \sigma^2 < \infty$ for each $n \geq 0$. Then, the random sequence $\{\sum_{i=0}^n a_i X_i\}_{n=0}^{\infty}$ converges in mean square as $n \to \infty$ to a random variable

$$\sum_{i=0}^{\infty} a_i X_i = \lim_{n \to \infty} \sum_{i=0}^{n} a_i X_i$$

if and only if $\sum_{i=0}^{\infty} a_i^2 < \infty$ and $\sum_{i=0}^{\infty} a_i$ converges, where the second condition is not needed if $\mu = 0$.

Proof: Let $Y_n = \sum_{i=0}^n a_i X_i$ for each n = 1, 2, ..., and assume that n < m. Then,

$$E((Y_n - Y_m)^2) = E((\sum_{i=n+1}^m a_i X_i)^2) = \sigma^2 \sum_{i=n+1}^m a_i^2 + \mu^2 \left(\sum_{i=n+1}^m a_i\right)^2,$$

since $E(Z^2) = V(Z) + E(Z)^2$ for any random variable, and the random variables $\{X_n\}_{n=0}^{\infty}$ are uncorrelated. Hence we see that $E((Y_n - Y_m)^2)$ converges to 0 as $\min\{n,m\} \to \infty$ if and only if both $\sum_{i=n+1}^m a_i^2$ and $\sum_{i=n+1}^m a_i$ converge to 0 as $\min\{n,m\} \to \infty$ (where the second condition clearly is needed only if $\mu \neq 0$). By the Cauchy criterion for sequences of real numbers, this is equivalent to $\sum_{i=0}^{\infty} a_i^2 < \infty$ and $\sum_{i=0}^{\infty} a_i$ converges.

Theorem 5.2 Let the random sequence $\{X_n\}_{n=0}^{\infty}$ be a martingale and assume that

$$E(X_n^2) \le C < \infty \qquad \forall n \ge 0$$
 (5.7)

for some constant C. Then, $\{X_n\}_{n=0}^{\infty}$ converges in mean square to a random variable X as $n \to \infty$.

Proof: We use the Cauchy criterion. Assume that n < m. Then,

$$E((X_n - X_m)^2) = E(X_n^2) + E(X_m^2) - 2E(X_m X_n),$$

where

$$E(X_m X_n) = E(E(X_m X_n | X_0, \dots, X_n)) = E(X_n E(X_m | X_0, \dots, X_n)) = E(X_n^2),$$

by the martingale property. Hence,

$$E((X_n - X_m)^2) = E(X_m^2) - E(X_n^2) \ge 0.$$

Hence, the sequence of numbers $\{E(X_n^2); n = 0, 1, ...\}$ is nondecreasing. Since, by assumption, it is also bounded above by $C < \infty$, it must be convergent. This in turn implies that

$$E((X_n - X_m)^2) = E(X_m^2) - E(X_n^2) \to 0$$

as $\min\{m, n\} \to \infty$.

6 Mean square continuity

Definition 6.1 Let $\{X(t); t \geq 0\}$ be a stochastic process in continuous time. The process is said to be mean square continuous if

$$E((X(t+\tau) - X(t))^2) \to 0$$

as $\tau \to 0$, for every $t \ge 0$.

Theorem 6.1 Let $\{X(t); t \geq 0\}$ be a wide sense stationary stochastic process in continuous time. Then, the process is mean square continuous if and only if the autocorrelation function $R_X(\tau)$ is continuous at $\tau = 0$, or (equivalently) that the autocovariance function $C_X(\tau)$ is continuous at $\tau = 0$.

Proof: For any stochastic process $\{X(t); t \geq 0\}$, we can write:

$$E((X(t+\tau) - X(t))^{2}) = E(X(t+\tau)X(t+\tau)) - E(X(t+\tau)X(t))$$
$$-E(X(t)X(t+\tau)) + E(X(t)X(t))$$
$$= R_{X}(t+\tau,0) - R_{X}(t,\tau) - R_{X}(t,\tau) + R_{X}(t,0).$$

Hence, if $\{X(t); t \geq 0\}$ is wide sense stationary, then

$$E((X(t+\tau) - X(t))^2) = 2R_X(0) - 2R_X(\tau) = 2C_X(0) - 2C_X(\tau).$$

7 Mean square integral

Definition 7.1 Let $\{X(t); t \geq 0\}$ be a stochastic process in continuous time. Choose a sequence $\{\underline{t}^{(n)} = (t_0^{(n)}, t_1^{(n)}, \dots, t_n^{(n)}); n = 1, 2, \dots\}$ such that $a = t_0^{(n)} < t_1^{(n)} < \dots < t_n^{(n)} = b$ for each $n = 1, 2, \dots$, and such that $\max_{i=1,\dots,n} |t_i^{(n)} - t_{i-1}^{(n)}| \to 0$ as $n \to \infty$. Choose also a sequence $\{\underline{\xi}^{(n)} = (\xi_1^{(n)}, \dots, \xi_n^{(n)}); n = 1, 2, \dots\}$ such that $t_{i-1}^{(n)} \leq \xi_i^{(n)} \leq t_i^{(n)}$ for $i = 1, \dots, n$. The mean square integral $\int_a^b X(t) dt$ is defined as the mean square limit

$$\int_{a}^{b} X(t)dt = \lim_{n \to \infty} \sum_{i=1}^{n} X(\xi_{i}^{(n)})(t_{i}^{(n)} - t_{i-1}^{(n)}), \tag{7.8}$$

whenever the limit exists and is independent of the choice of $\{\underline{t}^{(n)}; n = 1, 2, \ldots\}$ and $\{\xi^{(n)}; n = 1, 2, \ldots\}$

Theorem 7.1 The mean square integral $\int_a^b X(t)dt$ exists if and only if the double integral

$$\int_{a}^{b} \int_{a}^{b} E(X(t)X(u))dtdu$$

exists as a Riemann integral. In this case, it also holds that

$$E(\int_{a}^{b} X(t)dt) = \int_{a}^{b} E(X(t))dt \tag{7.9}$$

and

$$E((\int_{a}^{b} X(t)dt)^{2}) = \int_{a}^{b} \int_{a}^{b} E(X(t)X(u))dtdu.$$
 (7.10)

Proof: Proof of \Longrightarrow : Let $Y_n = \sum_{i=1}^n X(\xi_i^{(n)})(t_i^{(n)} - t_{i-1}^{(n)})$, where $\{\underline{t}^{(n)}; n = 1, 2, \ldots\}$ and $\{\underline{\xi}^{(n)}; n = 1, 2, \ldots\}$ are sequences with the properties mentioned in Definition 7.1. Let also $Z_n = \sum_{i=1}^n X(\eta_i^{(n)})(u_i^{(n)} - u_{i-1}^{(n)})$, where $\{\underline{u}^{(n)}; n = 1, 2, \ldots\}$ and $\{\underline{\eta}^{(n)}; n = 1, 2, \ldots\}$ are two other sequences with the same properties as $\{\underline{t}^{(n)}; n = 1, 2, \ldots\}$ and $\{\xi^{(n)}; n = 1, 2, \ldots\}$. We have:

$$E(Y_n Z_m) = \sum_{i=1}^n \sum_{j=1}^m E(X(\xi_i^{(n)}) X(\eta_j^{(n)})) (t_i^{(n)} - t_{i-1}^{(n)}) (u_j^{(m)} - u_{j-1}^{(m)}), \quad (7.11)$$

where the right hand side is a Riemann sum. By Theorem 4.1(c),

$$E(Y_n Z_m) \to E((\int_a^b X(t)dt)^2)$$
 as $\min(m, n) \to \infty$,

where the limit does not depend on the choice of the sequences $\{\underline{t}^{(n)}; n = 1, 2, \ldots\}$, $\{\underline{\xi}^{(n)}; n = 1, 2, \ldots\}$, $\{\underline{u}^{(n)}; n = 1, 2, \ldots\}$ and $\{\underline{\eta}^{(n)}; n = 1, 2, \ldots\}$. By the definition of the Riemann integral, therefore, the double integral

$$\int_{a}^{b} \int_{a}^{b} E(X(t)X(u))dtdu$$

exists as a Riemann integral, and

$$E(\left(\int_{a}^{b} X(t)dt\right)^{2}) = \int_{a}^{b} \int_{a}^{b} E(X(t)X(u))dtdu.$$

By Theorem 4.1(a), we also get

$$E(Y_n) = \sum_{i=1}^n E(X(\xi_i^{(n)}))(t_i^{(n)} - t_{i-1}^{(n)}) \to E(\int_a^b X(t)dt) \quad \text{as } n \to \infty,$$

where the limit does not depend on the choice of the sequences $\{\underline{t}^{(n)}; n = 1, 2, ...\}$ and $\{\underline{\xi}^{(n)}; n = 1, 2, ...\}$. Therefore, $\int_a^b E(X(t))dt$ exists as a Riemann integral, and

$$E(\int_{a}^{b} X(t)dt) = \int_{a}^{b} E(X(t))dt.$$

Proof of \iff : We define Y_n and Z_n as before. It then holds that

$$E(Y_n Y_m) = \sum_{i=1}^n \sum_{j=1}^m E(X(\xi_i^{(n)}) X(\xi_j^{(n)})) (t_i^{(n)} - t_{i-1}^{(n)}) (t_j^{(m)} - t_{j-1}^{(m)}).$$

The existence of the Riemann integral implies that

$$\sum_{i=1}^{n} \sum_{j=1}^{m} E(X(\xi_i^{(n)}) X(\xi_j^{(n)})) (t_i^{(n)} - t_{i-1}^{(n)}) (t_j^{(m)} - t_{j-1}^{(m)})$$

$$\rightarrow \int_a^b \int_a^b E(X(t)X(u))dtdu$$
 as $\min(m,n) \rightarrow \infty$.

By Loève's criterion, this implies that $Y = \underset{n \to \infty}{\text{l.i.m.}} Y_n$ exists, and by Theorem 4.1(b),

$$E(Y^2) = \int_a^b \int_a^b E(X(t)X(u))dtdu,$$

where the right hand side does not depend on the choice of the sequences $\{\underline{t}^{(n)}; n = 1, 2, \ldots\}$ and $\{\underline{\xi}^{(n)}; n = 1, 2, \ldots\}$. To show that the random variable Y does not in any way depend on the choice of the sequences $\{\underline{t}^{(n)}; n = 1, 2, \ldots\}$ and $\{\underline{\xi}^{(n)}; n = 1, 2, \ldots\}$, let $Z = \underset{n \to \infty}{\text{l.i.m.}} Z_n$, and compute

$$E((Y - Z)^{2}) = E(Y^{2}) + E(Z^{2}) - 2E(YZ).$$

We have already seen that $E(Z^2) = E(Y^2)$. From equation (7.11), Theorem 4.1(d), and since the existence of the Riemann integral implies that

$$E(Y_n Z_m) = \sum_{i=1}^n \sum_{j=1}^m E(X(\xi_i^{(n)}) X(\eta_j^{(n)})) (t_i^{(n)} - t_{i-1}^{(n)}) (u_j^{(m)} - u_{j-1}^{(m)})$$

$$\rightarrow \int_a^b \int_a^b E(X(t)X(u))dtdu$$
 as $\min(m,n) \rightarrow \infty$,

we get that $E(YZ) = E(Y^2)$. Therefore, $E((Y-Z)^2) = 0$, which implies that P(Y=Z) = 1.

It turns out that mean square integrals obey many of the same rules as ordinary Riemann integrals.

Theorem 7.2 (a)

$$\int_{a}^{b} (\alpha X(t) + \beta Y(t)) dt = \alpha \int_{a}^{b} X(t) dt + \beta \int_{a}^{b} Y(t) dt$$

$$\int_{a}^{b} X(t)dt + \int_{b}^{c} X(t)dt = \int_{a}^{c} X(t)dt$$

Proof: Omitted.

8 Problems

1. Let the random sequence $\{X_n\}_{n=1}^{\infty}$ be such that $E(X_n^2) < \infty$ for each $n = 1, 2, \ldots$, and assume that

$$X = \text{l.i.m. } X_n.$$

Prove that

(a)
$$E(X) = \lim_{n \to \infty} E(X_n).$$

(b)
$$E(X^2) = \lim_{n \to \infty} E(X_n^2).$$

(c)
$$V(X) = \lim_{n \to \infty} V(X_n).$$

2. Let X_0 be a non-negative random variable (i.e., $P(X_0 \ge 0) = 1$), such that $E(X_0^2) < \infty$. Define

$$X_{n+1} = 6 + \sqrt{X_n}, \qquad n = 0, 1, 2, \dots, \dots$$

Show that

$$\lim_{n\to\infty} X_n = 9.$$

3. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables with mean zero, such that

$$E(X_i X_j) = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{otherwise.} \end{cases}$$

Does the series

$$\sum_{k=1}^{n} \frac{X_k}{k}$$

converge in mean square as $n \to \infty$?

4. Show that if

$$X = \underset{n \to \infty}{\text{l.i.m.}} X_n, \qquad Y = \underset{n \to \infty}{\text{l.i.m.}} Y_n,$$

then

$$aX + bY = \lim_{n \to \infty} (aX_n + bY_n)$$

for any constants a and b. Start from the definition and use suitable inequalities.

5. Let $\{Z_n\}_{n=-\infty}^{\infty}$ be a sequence of independent, identically distributed random variables such that $E(Z_n)=0$ and $V(Z_n)=\sigma^2<\infty$.

(a) Show that if |c| < 1, for each fixed n, the series

$$\sum_{i=0}^{m} c^i Z_{n-i}$$

converges in mean square as $m \to \infty$.

(b) Define for each $n \in \mathbb{Z}$ the random variable X_n by

$$X_n = \sum_{i=0}^{\infty} c^i Z_{n-i},$$

which is legitimate in view of (a) when |c| < 1. Show that the random variables X_n satisfy the stochastic difference equation

$$X_n = cX_{n-1} + Z_n \qquad \forall n \in \mathbb{Z}.$$

[Remark: we say that the process $\{X_n\}_{n=-\infty}^{\infty}$ is an autoregressive process of order 1, with acronym AR(1).]

- (c) Compute the expectation $E(X_n)$ and the variance $V(X_n)$ using Theorem 4.1.
- (d) Find the variance $V(X_n)$ without using the definition of X_n as the limit of a random series, but using the facts (to be proven later, in Lecture 8) that the process $\{X_n\}_{n=-\infty}^{\infty}$ is wide sense stationary, and that Z_n is independent of X_{n-k} for each $n \in \mathbb{Z}$ and $k \geq 1$.
- 6. A stochastic process $\{X(t); t \geq 0\}$ has mean value function $\mu_X = 0$, and autocorrelation function

$$R_X(t,\tau) = E(X(t)X(t+\tau)) = \sqrt{\min(t,t+\tau)}.$$

Is the process $\{X(t); t \geq 0\}$ mean square continuous?