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1 Definition of convergence in mean square

and in probability

Definition 1.1 A random sequence {Xn}
∞

n=1 such that E(X2
n) < ∞ for

each n ≥ 1 is said to converge in mean square to a random variable X,
if E(X2) < ∞ and

E((Xn −X)2) → 0 as n → ∞.

In Swedish this is called konvergens i (kvadratiskt) medel. We write also

X = l.i.m.
n→∞

Xn.

Note that this definition does not say anyhing about the (possible) conver-
gence of the sample paths of {Xn}

∞

n=1 as n → ∞.

Definition 1.2 A random sequence {Xn}
∞

n=1 is said to converge in prob-
ability to a random variable X, if

P (|Xn −X| > ǫ) → 0 as n → ∞ ∀ǫ > 0.

Theorem 1.1 If a random sequence {Xn}
∞

n=1 converges in mean square to
a random variable X, then it also converges in probability to X.

Proof: Chebyshev’s inequality gives:

P (|Xn −X| > ǫ) ≤
E((Xn −X)2)

ǫ2
∀ǫ > 0,

from which the result immediately follows.

2 Laws of large numbers

In the so-called mean square law of large numbers, we have convergence in
mean square to a degenerate random variable, i.e., a constant:

Theorem 2.1 Let the random variables {Xn}
∞

n=1 be uncorrelated (meaning
that C(Xi, Xj) = 0 for all i 6= j), and such that E(Xn) = µ < ∞ for each
n ≥ 1 and V (Xn) = σ2 < ∞ for each n ≥ 1. Then

µ = l.i.m.
n→∞

1

n

n
∑

j=1

Xj.
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Proof: Let us set Sn = 1
n

∑n

j=1Xj . We have E(Sn) = µ and V ar(Sn) =
1
n
σ2,

since the variables are uncorrelated. For the claimed mean square conver-
gence we need to consider

E((Sn − µ)2) = E((Sn − E(Sn))
2) = V ar(Sn) =

1

n
σ2

so that

E((Sn − µ)2) =
1

n
σ2 → 0

as n → ∞, as was claimed.

Since convergence in mean square implies convergence in probability, we
also have the weak law of large numbers:

Theorem 2.2 Let the random variables {Xn}
∞

n=1 be uncorrelated, and such
that E(Xn) = µ < ∞ for each n ≥ 1 and V ar(Xn) = σ2 < ∞ for each
n ≥ 1. Then

1

n

n
∑

j=1

Xj → µ

in probability, as n → ∞.

3 Some Useful Inequalities for Random Vari-

ables

Lemma 3.1 For any random variable X,

|E(X)| ≤ E(|X|). (3.1)

Proof: IfX is a continuous random variable with probability density function
fX(x), then by a result from the basic analysis course:

|E(X)| = |

∫

∞

−∞

xfX(x)dx| ≤

∫

∞

−∞

|x|fX(x)dx = E(|X|).

The case when X is a discrete random variable is shown analogously.

Lemma 3.2
E(|XY |) ≤

√

E(X2)E(Y 2). (3.2)
√

E((X + Y )2) ≤
√

E(X2) +
√

E(Y 2). (3.3)
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(3.2) is known as the Cauchy inequality for random variables, and (3.3) is
known as the triangle inequality for random variables.

Proof: (3.2) follows from the inequality

0 ≤ E
(( |X|
√

E(X2)
−

|Y |
√

E(Y 2)

)2)
= E

( X2

E(X2)
+

Y 2

E(Y 2)
−

2|XY |
√

E(X2)E(Y 2)

)

= 1 + 1−
2E(|XY |)

√

E(X2)E(Y 2)
= 2
(

1−
E(|XY |)

√

E(X2)E(Y 2)

)

,

by rearranging the terms. (3.3) follows from

E((X + Y )2) ≤ E((|X|+ |Y |)|X + Y |) = E(|X||X + Y |) + E(|Y ||X + Y |)

≤
√

E(X2)E((X + Y )2) +
√

E(Y 2)E((X + Y )2)

=
√

E((X + Y )2)
(
√

E(X2) +
√

E(Y 2)
)

,

after we divide both sides with
√

E((X + Y )2). Here, the Cauchy inequality
was used in the third step.

4 Properties of mean square convergence

Theorem 4.1 Let the random sequences {Xn}
∞

n=1 and {Yn}
∞

n=1 be such that
E(X2

n) < ∞ and E(Y 2
n ) < ∞ for each n = 1, 2, . . ., and such that

X = l.i.m.
n→∞

Xn, Y = l.i.m.
n→∞

Yn.

Then,

(a) E(Xn) → E(X) as n → ∞;

(b) E(X2
n) → E(X2) as n → ∞;

(c) E(XnYm) → E(XY ) as min(n,m) → ∞;

(d) If E(Z2) < ∞, then E(XnZ) → E(XZ) as n → ∞.
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Proof: The reader is asked to prove (a) and (b) in Problem 1, Section 9.
Moreover, (d) follows directly from (c) by choosing Ym = Z for m = 1, 2, . . ..
In order to prove (c), we first observe that

|E(XnYm)| ≤ E(|XnYm|) ≤
√

E(X2
n)E(Y 2

m) < ∞

by the Cauchy inequality and Lemma 3.1. Similarly, |E(XY )| < ∞. Next,

|E(XnYm)− E(XY )| = |E(XnYm −XY )|

= |E((Xn −X)Ym + (Ym − Y )X)| ≤ E(|(Xn −X)Ym + (Ym − Y )|X)

≤ E(|(Xn −X)Ym|) + E(|(Ym − Y )|X),

where in the last step we used the usual triangle inequality for real numbers.
Using the Cauchy inequality again, we get:

E(|(Xn −X)Ym|) ≤
√

E((Xn −X)2)E(Y 2
m)

and
E(|(Ym − Y )X|) ≤

√

E((Ym − Y )2)E(X2).

By assumption, E((Xn − X)2) → 0 as n → ∞, and E((Ym − Y )2) → 0
as m → ∞. Since the square root is a continuous function, it follows that
√

E((Xn −X)2) → 0 as n → ∞, and
√

E((Ym − Y )2) → 0 as m → ∞. Fi-
nally, E(Y 2

m) → E(Y 2) by part (b), so the sequence {E(Y 2
m);m = 1, 2, . . .}

is bounded. Hence, (c) is proved.

We shall often need Cauchy’s criterion for mean square convergence, which
is the next theorem.

Theorem 4.2 (Cauchy’s criterion) Let the random sequence {Xn}
∞

n=1

be such that E(X2
n) < ∞ for each n = 1, 2, . . .. It then holds that

E((Xn −Xm)
2) → 0 as min(m,n) → ∞ (4.4)

if and only if there exists a random variable X such that

X = l.i.m.
n→∞

Xn.

Proof: Proof of ⇐=:

√

E((Xn −Xm)2) =
√

E((Xn −X +X −Xm)2)
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≤
√

E((Xn −X)2) +
√

E((X −Xm)2),

where the triangle inequality for random variables was used in the last step.
By assumption, both terms on the right hand side go to 0 as min(n,m) →
∞.
Proof of =⇒: Omitted. For those who have taken a course in functional
analysis, we remark that what needs to be proven is that the space of ran-
dom variables (defined on the same sample space Ω) such that E(X2) < ∞,
with the norm ||X|| =

√

E(X2), is a complete normed linear space.

The following is a sometimes useful alternative to Cauchy’s criterion:

Theorem 4.3 (Loève’s criterion) Let the random sequence {Xn}
∞

n=1 be
such that E(X2

n) < ∞ for each n = 1, 2, . . .. It then holds that

E((Xn −Xm)
2) → 0 as min(m,n) → ∞ (4.5)

if and only if there exists a finite constant C such that

E(XnXm) → C as min(m,n) → ∞. (4.6)

Proof: Proof of ⇐=: We assume that E(XnXm) → C as min(m,n) → ∞.
Then,

E((Xn −Xm)
2) = E(XnXn +XmXm − 2XnXm)

→ C + C − 2C = 0 as min(m,n) → ∞.

Proof of =⇒: We assume that E((Xn − Xm)
2) → 0 as min(m,n) → ∞.

Then X = l.i.m.
n→∞

Xn exists, according to Cauchy’s criterion. Using Theorem

4.1(c) and choosing Ym = Xm for m = 1, 2, . . ., we get:

E(XnXm) → E(X2) as min(m,n) → ∞,

so (4.6) holds with C = E(X2).

5 Applications

Theorem 5.1 Let the random variables {Xn}
∞

n=0 be uncorrelated (meaning
that C(Xi, Xj) = 0 for all i 6= j), and such that E(Xn) = µ < ∞ for each
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n ≥ 0 and V (Xn) = σ2 < ∞ for each n ≥ 0. Then, the random sequence
{
∑n

i=0 aiXi}
∞

n=0
converges in mean square as n → ∞ to a random variable

∞
∑

i=0

aiXi = l.i.m.
n→∞

n
∑

i=0

aiXi

if and only if
∑

∞

i=0 a
2
i < ∞ and

∑

∞

i=0 ai converges, where the second condi-
tion is not needed if µ = 0.

Proof: Let Yn =
∑n

i=0 aiXi for each n = 1, 2, . . ., and assume that n < m.
Then,

E((Yn − Ym)
2) = E((

m
∑

i=n+1

aiXi)
2) = σ2

m
∑

i=n+1

a2i + µ2

(

m
∑

i=n+1

ai

)2

,

since E(Z2) = V (Z)+E(Z)2 for any random variable, and the random vari-
ables {Xn}

∞

n=0 are uncorrelated. Hence we see that E((Yn−Ym)
2) converges

to 0 as min{n,m} → ∞ if and only if both
∑m

i=n+1 a
2
i and

∑m

i=n+1 ai con-
verge to 0 as min{n,m} → ∞ (where the second condition clearly is needed
only if µ 6= 0). By the Cauchy criterion for sequences of real numbers, this
is equivalent to

∑

∞

i=0 a
2
i < ∞ and

∑

∞

i=0 ai converges.

Theorem 5.2 Let the random sequence {Xn}
∞

n=0 be a martingale and as-
sume that

E(X2
n) ≤ C < ∞ ∀n ≥ 0 (5.7)

for some constant C. Then, {Xn}
∞

n=0 converges in mean square to a random
variable X as n → ∞.

Proof: We use the Cauchy criterion. Assume that n < m. Then,

E((Xn −Xm)
2) = E(X2

n) + E(X2
m)− 2E(XmXn),

where

E(XmXn) = E(E(XmXn|X0, . . . , Xn)) = E(XnE(Xm|X0, . . . , Xn)) = E(X2
n),

by the martingale property. Hence,

E((Xn −Xm)
2) = E(X2

m)− E(X2
n) ≥ 0.

7



Hence, the sequence of numbers {E(X2
n);n = 0, 1, . . .} is nondecreasing.

Since, by assumption, it is also bounded above by C < ∞, it must be
convergent. This in turn implies that

E((Xn −Xm)
2) = E(X2

m)− E(X2
n) → 0

as min{m,n} → ∞.

6 Mean square continuity

Definition 6.1 Let {X(t); t ≥ 0} be a stochastic process in continuous
time. The process is said to be mean square continuous if

E((X(t+ τ)−X(t))2) → 0

as τ → 0, for every t ≥ 0.

Theorem 6.1 Let {X(t); t ≥ 0} be a wide sense stationary stochastic pro-
cess in continuous time. Then, the process is mean square continuous if and
only if the autocorrelation function RX(τ) is continuous at τ = 0, or (equiv-
alently) that the autocovariance function CX(τ) is continuous at τ = 0.

Proof: For any stochastic process {X(t); t ≥ 0}, we can write:

E((X(t+ τ)−X(t))2) = E(X(t+ τ)X(t+ τ))− E(X(t+ τ)X(t))

−E(X(t)X(t+ τ)) + E(X(t)X(t))

= RX (t+ τ, 0)−RX (t, τ)−RX (t, τ) +RX (t, 0) .

Hence, if {X(t); t ≥ 0} is wide sense stationary, then

E((X(t+ τ)−X(t))2) = 2RX(0)− 2RX(τ) = 2CX(0)− 2CX(τ).
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7 Mean square integral

Definition 7.1 Let {X(t); t ≥ 0} be a stochastic process in continuous

time. Choose a sequence {t(n) = (t
(n)
0 , t

(n)
1 , . . . , t

(n)
n );n = 1, 2, . . .} such that

a = t
(n)
0 < t

(n)
1 < . . . < t

(n)
n = b for each n = 1, 2, . . ., and such that

maxi=1,...,n |t
(n)
i − t

(n)
i−1| → 0 as n → ∞. Choose also a sequence {ξ(n) =

(ξ
(n)
1 , . . . , ξ

(n)
n );n = 1, 2, . . .} such that t

(n)
i−1 ≤ ξ

(n)
i ≤ t

(n)
i for i = 1, . . . , n.

The mean square integral
∫ b

a
X(t)dt is defined as the mean square limit

∫ b

a

X(t)dt = l.i.m.
n→∞

n
∑

i=1

X(ξ
(n)
i )(t

(n)
i − t

(n)
i−1), (7.8)

whenever the limit exists and is independent of the choice of {t(n);n =
1, 2, . . .} and {ξ(n);n = 1, 2, . . .}

Theorem 7.1 The mean square integral
∫ b

a
X(t)dt exists if and only if the

double integral
∫ b

a

∫ b

a

E(X(t)X(u))dtdu

exists as a Riemann integral. In this case, it also holds that

E(

∫ b

a

X(t)dt) =

∫ b

a

E(X(t))dt (7.9)

and

E((

∫ b

a

X(t)dt)2) =

∫ b

a

∫ b

a

E(X(t)X(u))dtdu. (7.10)

Proof: Proof of =⇒: Let Yn =
∑n

i=1 X(ξ
(n)
i )(t

(n)
i − t

(n)
i−1), where {t(n);n =

1, 2, . . .} and {ξ(n);n = 1, 2, . . .} are sequences with the properties men-

tioned in Definition 7.1. Let also Zn =
∑n

i=1 X(η
(n)
i )(u

(n)
i − u

(n)
i−1), where

{u(n);n = 1, 2, . . .} and {η(n);n = 1, 2, . . .} are two other sequences with the

same properties as {t(n);n = 1, 2, . . .} and {ξ(n);n = 1, 2, . . .}. We have:

E(YnZm) =
n
∑

i=1

m
∑

j=1

E(X(ξ
(n)
i )X(η

(n)
j ))(t

(n)
i − t

(n)
i−1)(u

(m)
j − u

(m)
j−1), (7.11)

where the right hand side is a Riemann sum. By Theorem 4.1(c),

E(YnZm) → E((

∫ b

a

X(t)dt)2) as min(m,n) → ∞,
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where the limit does not depend on the choice of the sequences {t(n);n =
1, 2, . . .}, {ξ(n);n = 1, 2, . . .}, {u(n);n = 1, 2, . . .} and {η(n);n = 1, 2, . . .}.
By the definition of the Riemann integral, therefore, the double integral

∫ b

a

∫ b

a

E(X(t)X(u))dtdu

exists as a Riemann integral, and

E((

∫ b

a

X(t)dt)2) =

∫ b

a

∫ b

a

E(X(t)X(u))dtdu.

By Theorem 4.1(a), we also get

E(Yn) =
n
∑

i=1

E(X(ξ
(n)
i ))(t

(n)
i − t

(n)
i−1) → E(

∫ b

a

X(t)dt) as n → ∞,

where the limit does not depend on the choice of the sequences {t(n);n =

1, 2, . . .} and {ξ(n);n = 1, 2, . . .}. Therefore,
∫ b

a
E(X(t))dt exists as a Rie-

mann integral, and

E(

∫ b

a

X(t)dt) =

∫ b

a

E(X(t))dt.

Proof of ⇐=: We define Yn and Zn as before. It then holds that

E(YnYm) =
n
∑

i=1

m
∑

j=1

E(X(ξ
(n)
i )X(ξ

(n)
j ))(t

(n)
i − t

(n)
i−1)(t

(m)
j − t

(m)
j−1).

The existence of the Riemann integral implies that

n
∑

i=1

m
∑

j=1

E(X(ξ
(n)
i )X(ξ

(n)
j ))(t

(n)
i − t

(n)
i−1)(t

(m)
j − t

(m)
j−1)

→

∫ b

a

∫ b

a

E(X(t)X(u))dtdu as min(m,n) → ∞.

By Loève’s criterion, this implies that Y = l.i.m.
n→∞

Yn exists, and by Theo-

rem 4.1(b),

E(Y 2) =

∫ b

a

∫ b

a

E(X(t)X(u))dtdu,
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where the right hand side does not depend on the choice of the sequences
{t(n);n = 1, 2, . . .} and {ξ(n);n = 1, 2, . . .}. To show that the random
variable Y does not in any way depend on the choice of the sequences
{t(n);n = 1, 2, . . .} and {ξ(n);n = 1, 2, . . .}, let Z = l.i.m.

n→∞

Zn, and compute

E((Y − Z)2) = E(Y 2) + E(Z2)− 2E(Y Z).

We have already seen that E(Z2) = E(Y 2). From equation (7.11), Theo-
rem 4.1(d), and since the existence of the Riemann integral implies that

E(YnZm) =
n
∑

i=1

m
∑

j=1

E(X(ξ
(n)
i )X(η

(n)
j ))(t

(n)
i − t

(n)
i−1)(u

(m)
j − u

(m)
j−1)

→

∫ b

a

∫ b

a

E(X(t)X(u))dtdu as min(m,n) → ∞,

we get that E(Y Z) = E(Y 2). Therefore, E((Y − Z)2) = 0, which implies
that P (Y = Z) = 1.

It turns out that mean square integrals obey many of the same rules as
ordinary Riemann integrals.

Theorem 7.2 (a)

∫ b

a

(αX(t) + βY (t)) dt = α

∫ b

a

X(t)dt+ β

∫ b

a

Y (t)dt

(b)
∫ b

a

X(t)dt+

∫ c

b

X(t)dt =

∫ c

a

X(t)dt

Proof: Omitted.

8 Problems

1. Let the random sequence {Xn}
∞

n=1 be such that E(X2
n) < ∞ for each

n = 1, 2, . . ., and assume that

X = l.i.m.
n→∞

Xn.

Prove that
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(a)
E(X) = lim

n→∞

E(Xn).

(b)
E(X2) = lim

n→∞

E(X2
n).

(c)
V (X) = lim

n→∞

V (Xn).

2. Let X0 be a non-negative random variable (i.e., P (X0 ≥ 0) = 1), such
that E(X2

0 ) < ∞. Define

Xn+1 = 6 +
√

Xn, n = 0, 1, 2, . . . , .

Show that
l.i.m.
n→∞

Xn = 9.

3. Let {Xn}
∞

n=1 be a sequence of random variables with mean zero, such
that

E(XiXj) =

{

1 for i = j

0 otherwise.

Does the series
n
∑

k=1

Xk

k

converge in mean square as n → ∞?

4. Show that if
X = l.i.m.

n→∞

Xn, Y = l.i.m.
n→∞

Yn,

then
aX + bY = l.i.m.

n→∞

(aXn + bYn)

for any constants a and b. Start from the definition and use suitable
inequalities.

5. Let {Zn}
∞

n=−∞
be a sequence of independent, identically distributed

random variables such that E(Zn) = 0 and V (Zn) = σ2 < ∞.
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(a) Show that if |c| < 1, for each fixed n, the series

m
∑

i=0

ciZn−i

converges in mean square as m → ∞.

(b) Define for each n ∈ Z the random variable Xn by

Xn =
∞
∑

i=0

ciZn−i,

which is legitimate in view of (a) when |c| < 1. Show that the
random variables Xn satisfy the stochastic difference equation

Xn = cXn−1 + Zn ∀n ∈ Z.

[Remark: we say that the process {Xn}
∞

n=−∞
is an autoregressive

process of order 1, with acronym AR(1).]

(c) Compute the expectation E (Xn) and the variance V (Xn) using
Theorem 4.1.

(d) Find the variance V (Xn) without using the definition of Xn as
the limit of a random series, but using the facts (to be proven
later, in Lecture 8) that the process {Xn}

∞

n=−∞
is wide sense

stationary, and that Zn is independent of Xn−k for each n ∈ Z

and k ≥ 1.

6. A stochastic process {X(t); t ≥ 0} has mean value function µX = 0,
and autocorrelation function

RX (t, τ) = E(X (t)X (t+ τ)) =
√

min (t, t+ τ).

Is the process {X(t); t ≥ 0} mean square continuous?
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