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1 Definition of convergence in mean square
and in probability
Definition 1.1 A random sequence {X,},~, such that E(X?2) < oo for

each n > 1 is said to converge in mean square to a random variable X,
if B(X?) < oo and

E(X,—X)*) =0 as n — oo.
In Swedish this is called konvergens i (kvadratiskt) medel. We write also

X =lim. X,,.

n—o0

Note that this definition does not say anyhing about the (possible) conver-
gence of the sample paths of {X,} ~ | as n — oco.

Definition 1.2 A random sequence {X,,} -, is said to converge in prob-
ability to a random variable X, if

P(X,—X|>¢) —0 asn — oo Ve > 0.

Theorem 1.1 If a random sequence {X,} | converges in mean square to
a random variable X, then it also converges in probability to X .

Proof: Chebyshev’s inequality gives:
E((Xn — X)?)

2

P(X,—X|>¢) < Ve > 0,

€

from which the result immediately follows. .

2 Laws of large numbers

In the so-called mean square law of large numbers, we have convergence in
mean square to a degenerate random variable, i.e., a constant:

Theorem 2.1 Let the random variables {X,,} ~| be uncorrelated (meaning
that C(X;, X;) =0 for all i # j), and such that E(X,,) = p < oo for each
n>1and V(X,) = 0% < oo for eachn > 1. Then
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Proof: Let us set S, = 1 > =1 Xj. We have E(S,,) = pand Var(S,) = 152,
since the variables are uncorrelated. For the claimed mean square conver-
gence we need to consider

B(S. — n)) = B((S, — B(S,)) = Var(S,) = -0

so that 1
E((S, — pn)?) = 502 — 0

as n — 00, as was claimed. .

Since convergence in mean square implies convergence in probability, we
also have the weak law of large numbers:

Theorem 2.2 Let the random variables { X, },_, be uncorrelated, and such
that E(X,) = u < oo for each n > 1 and Var(X,) = 0® < oo for each

n>1. Then
1 n
n <
g=1

in probability, as n — oco.

3 Some Useful Inequalities for Random Vari-
ables

Lemma 3.1 For any random variable X,

[E(X)] < E(]X]). (3.1)

Proof: If X is a continuous random variable with probability density function
fx(x), then by a result from the basic analysis course:

B(X)| = | / " e (a)da] < / " el fx(@)de = B(X)).

The case when X is a discrete random variable is shown analogously. n

Lemma 3.2
E(|XY]) < VE(X?)E(Y?). (3.2)

VE(X +Y)?) < VEX?) + VE(Y?). (3:3)




(3.2) is known as the Cauchy inequality for random variables, and (3.3) is
known as the triangle inequality for random variables.

Proof: (3.2) follows from the inequality

X Y| 2 X? v:o 2| XY|

0< E((\/E(X2) N \/E(YQ)) ) a E(E(XQ) * E(Y?) E(XQ)E(Y2))
2B(XY]) 21— E(XY]) )
E(XDE(Y?) E(X?)E(Y?)"

by rearranging the terms. (3.3) follows from

E(X +Y)") < E(IX|+ [YDIX +Y]) = E(IX[|X + Y]) + E([Y[| X +Y])

<VEX?)E(X +Y)?) +VEY?)E(X +Y)?)
= VE(X +Y)?)(VE(X2) + VE(Y?2)),

after we divide both sides with v/ E((X + Y)?). Here, the Cauchy inequality
was used in the third step. u

4 Properties of mean square convergence

Theorem 4.1 Let the random sequences {X,,},—, and {Y,}.~, be such that
E(X?) < o0 and E(Y,?) < 0o for eachn=1,2,..., and such that

X =lim. X,, Y =Llim.Y,.

n—oo n—o0

Then,
(a) E(X,) = E(X) as n — oo,
(b) E(X?) — E(X?) as n — oo;
(¢) E(X,Y,) = E(XY) as min(n,m) — oo;

(d) If E(Z*) < oo, then E(X,Z) — E(XZ) as n — oo.



Proof: The reader is asked to prove (a) and (b) in Problem 1, Section 9.
Moreover, (d) follows directly from (c) by choosing Y;,, = Z form = 1,2,.. ..
In order to prove (c), we first observe that

|E(XaYm)| < E(|XnYn|) < VEXZ)E(YR) < 00
by the Cauchy inequality and Lemma 3.1. Similarly, |E(XY')| < oo. Next,
|E(X,Y,) — E(XY)| = |E(X,Y,, — XY)]
= [E((Xn = X)Vin + (Vi = Y)X)| < E(|(Xy = X)Vi + (Yo — Y)|X)
< E([(Xn = X)Yn|) + E(|(Yn — Y)[X),

where in the last step we used the usual triangle inequality for real numbers.
Using the Cauchy inequality again, we get:

E(|(Xn = X)Yul) < VE((X = X)2)B(Y2)

and

E(|(Y = Y)X]|) < VE((Yi = Y))E(X?).

By assumption, F((X, — X)?) — 0 as n — oo, and E((Y,, —Y)?) — 0
as m — 00. Since the square root is a continuous function, it follows that

VE(X, —X)?) = 0asn — oo, and \/E((Y,, — Y)?) = 0 as m — oo. Fi-
nally, F(Y,2) — E(Y?) by part (b), so the sequence {E(Y,2);m =1,2,...}
is bounded. Hence, (c) is proved. .

We shall often need Cauchy’s criterion for mean square convergence, which
is the next theorem.

Theorem 4.2 (Cauchy’s criterion) Let the random sequence {X,}
be such that E(X?) < oo for eachn =1,2,.... It then holds that

E((X, — Xn)?) — 0 as min(m,n) — oo (4.4)
if and only if there exists a random variable X such that

X =lim. X,.

n—oo

Proof: Proof of <=:

\/E((Xn - Xm)Q) = \/E((Xn - X+ X - Xm>2)

5



< VE((Xn = X)) + VE((X — Xin)?),

where the triangle inequality for random variables was used in the last step.
By assumption, both terms on the right hand side go to 0 as min(n, m) —
00.

Proof of =: Omitted. For those who have taken a course in functional
analysis, we remark that what needs to be proven is that the space of ran-
dom variables (defined on the same sample space ) such that F(X?) < oo,
with the norm || X|| = /E(X?), is a complete normed linear space. .

The following is a sometimes useful alternative to Cauchy’s criterion:

Theorem 4.3 (Loéve’s criterion) Let the random sequence {X,} -, be
such that E(X?) < oo for eachm =1,2,.... It then holds that

E((X, — Xn)?) — 0 as min(m,n) — oo (4.5)
if and only if there exists a finite constant C' such that
E(X,X,) — C asmin(m,n) — oco. (4.6)

Proof: Proof of <=: We assume that E(X,X,,) — C as min(m,n) — oo.
Then,
E((Xy — Xo)?) = E(XnXn + Xon X — 2X0 X0n)

—-C+C—-2C=0 asmin(m,n) — oo.
Proof of =>: We assume that E((X, — X,,)?) — 0 as min(m,n) — oo.

Then X = Lim. X, exists, according to Cauchy’s criterion. Using Theorem
n—oo

4.1(c) and choosing Y, = X,, for m = 1,2, ..., we get:
E(X,X,,) = E(X?) as min(m,n) — oo,

so (4.6) holds with C' = E(X?). .

5 Applications

Theorem 5.1 Let the random variables {X,} -, be uncorrelated (meaning
that C(X;, X;) = 0 for all i # j), and such that E(X,,) = p < oo for each



n >0 and V(X,) = 0% < oo for each n > 0. Then, the random sequence
{300 aiXi} ", converges in mean square as n — oo to a random variable

o0 n

i=0 =0

if and only if Y0 a? < 0o and Y .2, a; converges, where the second condi-
tion is not needed if p = 0.

Proof: Let Y,, = >"" ,a;X; for each n = 1,2,..., and assume that n < m.
Then,

m m m 2
R O WELEED S IV o
i=n+1 i=n-+1 i=n+1

since F(Z?) = V(Z)+ E(Z)? for any random variable, and the random vari-
ables {X,,} 7, are uncorrelated. Hence we see that E((Y;, —Y,,)?) converges
to 0 as min{n, m} — oo if and only if both Y~ a7 and > . a; con-
verge to 0 as min{n, m} — oo (where the second condition clearly is needed
only if p # 0). By the Cauchy criterion for sequences of real numbers, this

is equivalent to Y oo a? < oo and Y - a; converges. .

Theorem 5.2 Let the random sequence {X,} ~, be a martingale and as-
sume that

E(X?)<C<oo VYn>0 (5.7)

for some constant C'. Then, {X,},-, converges in mean square to a random
variable X as n — 0.

Proof: We use the Cauchy criterion. Assume that n < m. Then,
E((X, — X)?) = B(X2) + E(XZ) = 2B(X,,X,),
where
B(X;, X)) = E(B(X0nXn|Xo, ..., X0)) = E(XoE(Xn|Xo, ..., X)) = B(X?
by the martingale property. Hence,
E((X, — X)?) = B(XZ) = B(X?) > 0,
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Hence, the sequence of numbers {F(X?);n = 0,1,...} is nondecreasing.
Since, by assumption, it is also bounded above by C' < oo, it must be
convergent. This in turn implies that

E((Xy — Xin)?) = E(X;) — E(X;) = 0

as min{m,n} — oo. .

6 Mean square continuity

Definition 6.1 Let {X(t);t > 0} be a stochastic process in continuous
time. The process is said to be mean square continuous if

E(X(t+T1)— X(t))Q) —0
as T — 0, for every t > 0.

Theorem 6.1 Let {X(t);t > 0} be a wide sense stationary stochastic pro-
cess in continuous time. Then, the process is mean square continuous if and
only if the autocorrelation function Rx(T) is continuous at T = 0, or (equiv-
alently) that the autocovariance function Cx () is continuous at T = 0.

Proof: For any stochastic process {X (t);t > 0}, we can write:
E(X(t+7)—X(1)")=BEX(t+7)X(t+7)—E(X(t+71)X(t))

—EXH)X(t+71))+EX(t)X(1))
= RX (t—i_T?O) - RX (t77—> - RX (t77—> +RX <t70>
Hence, if {X(t);¢ > 0} is wide sense stationary, then

E((X(t+7) — X(1))*) = 2Rx(0) — 2Rx (1) = 2Cx (0) — 2Cx (7).



7 Mean square integral

Definition 7.1 Let {X(t);t > } be a stochastic process in continuous

time. Choose a sequence {t(” = ( ),tl . %)) n=12,...} such that
a = t(n) < t§”) < ...<tM = for each n = 1,2,..., and such that
max;—i n|t§") — t§2)1| — 0 as n — oo. Choose also a sequence {5"
GRA. ,(ln));nzl,Q }such thatt11<§")<t fori=1,.

The mean square integral f X(t)dt is defined as the mean square lzmzt

/ X(t)dt = Lim. ZX N — ), (7.8)
whenever the limit exists and is independent of the choice of {t™:n =

2,...} and {§(”);n =1,2,...}

Theorem 7.1 The mean square integral f:X(t)dt exists if and only if the

double integral
/ / w))dtdu

erists as a Riemann integral. In this case, it also holds that

E(/bX(t)dt) - /bE(X(t))dt (7.9)

/ X (t)dt)? / / u))dtdu (7.10)

Proof Proof of =>: Let V,, = > CXEM) M — M) where {t™:n =
2,...} and {§(” ;n = 1,2,...} are sequences with the properties men-
tioned in Definition 7.1. Let also Z, = Y27, X(n™) (™ — u{™)), where

(2

{u™;n=1,2,...} and {ﬂ(”); n=1,2,...} are two other sequences with the
same properties as {t{™;n =1,2,...} and {§(");n =1,2,...}. We have:

and

= Z ij BX(EMX ") = ) @™ —u™),  (7.11)

i=1 j=1

where the right hand side is a Riemann sum. By Theorem 4.1(c),
b
EY,Zn) — E((/ X (t)dt)?) as min(m,n) — oo,
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where the limit does not depend on the choice of the sequences {t™:n =
2,...}, {é(");n =1,2,...} {u™;n =1,2,...} and {ﬂ(”);n =1,2,...}.
By the definition of the Riemann integral, therefore, the double integral

/ / ))dtdu

exists as a Riemann integral, and

/ X (t)dt)? / / ))dtdu.

By Theorem 4.1(a), we also get
b
Z E(X(EM) D — 4 - E(/ X(1)dt) as n — oo,

where the limit does not depend on the choice of the sequences {t(;n =
2,...} and {§(");n = 1,2,...}. Therefore, f: E(X(t))dt exists as a Rie-

mann integral, and
b b
B / X (t)dt) = / E(X(8))dt.

Proof of «=: We define Y,, and Z,, as before. It then holds that

n

=Y "N BX(EM)XE)EY - 1) — 1),
i=1 j=1

The existence of the Riemann integral implies that

n

1=

ZE ( )))(t(n) t( ))(t(m) - t;iq)
1 j=1

— / / ))dtdu as min(m,n) — oo.

By Loeve’s criterion, this implies that ¥ = l.i.m. Y,, exists, and by Theo-
n—oo
rem 4.1(b),

Y2 / / ))dtdu,



where the right hand side does not depend on the choice of the sequences
{t:n = 1,2,...} and {5(”);71 = 1,2,...}. To show that the random
variable Y does not in any way depend on the choice of the sequences
{t":;n=1,2,...} and {g(");n =1,2,...}, let Z =1lim. Z,, and compute

E((Y —2)*)=EXY?) + E(Z*) —2E(YZ).

We have already seen that F(Z%) = E(Y?). From equation (7.11), Theo-
rem 4.1(d), and since the existence of the Riemann integral implies that

n

=

ST EXE)X )Y — 1) (uf™ = ul™)
1 j=1

N / / ))dtdu as min(m,n) — oo,

we get that E(YZ) = E(Y?). Therefore, E((Y — Z)?) = 0, which implies
that P(Y = Z) 1 .

It turns out that mean square integrals obey many of the same rules as
ordinary Riemann integrals.

Theorem 7.2 (a)

/?mwn+ﬁywyuzaliwwﬁ+ﬁlxwdt

(b)
/abX(t)dt + /ch(t)dt - /:X(t)dt

Proof: Omitted.

8 Problems
1. Let the random sequence {X,,} -, be such that E(X?) < oo for each
n=1,2,..., and assume that
X =lim. X,,.
n—o0
Prove that
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E(X) = lim E(X,).

n—o0

E(X?) = lim E(X?).

n—oo

V(X) = lim V(X,).

n—o0

2. Let X{ be a non-negative random variable (i.e., P (X, > 0) = 1), such
that F(X?) < co. Define

X1 =6+ VX, n=0,1,2,...,.
Show that
lLim. X,, = 9.

n—oo

3. Let {X,} ~, be a sequence of random variables with mean zero, such
that

] 1 fori=j
E(XiX;) = { 0 otherwise.
Does the series
k
k=1

converge in mean square as n — oo?

4. Show that if
X =lim. X,, Y =Llim. Y,,

n—oo n—oo

then
aX +bY =lim. (aX, +bY,)

n—oo

for any constants a and b. Start from the definition and use suitable
inequalities.

5. Let {Z,},~__ be a sequence of independent, identically distributed
random variables such that E(Z,) =0 and V(Z,) = 02 < o0.
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(a) Show that if |¢| < 1, for each fixed n, the series

m

Z Ci Zn—i

=0
converges in mean square as 1m — oQ.

(b) Define for each n € Z the random variable X,, by

00
%
X, = E c aniv
=0

which is legitimate in view of (a) when |c¢| < 1. Show that the
random variables X, satisfy the stochastic difference equation

X, =cXp 1+ 2, Vn € Z.

[e.9]

[Remark: we say that the process {X,} ~ _
process of order 1, with acronym AR(1).]

is an autoregressive

(c) Compute the expectation E (X,,) and the variance V(X,,) using
Theorem 4.1.

(d) Find the variance V' (X,,) without using the definition of X,, as
the limit of a random series, but using the facts (to be proven

later, in Lecture 8) that the process {X,} ~ _ is wide sense
stationary, and that Z,, is independent of X,,_; for each n € Z
and £ > 1.

6. A stochastic process {X(¢);¢t > 0} has mean value function pux = 0,
and autocorrelation function

Rx(t,7)=E(X ()X (t+ 7)) = /min (t,t+ 7).

Is the process {X(¢);t > 0} mean square continuous?
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