
TAMS32 STOKASTISKA PROCESSER

Komplettering 4

Torkel Erhardsson

24 augusti 2015

• LINEAR MINIMAL MEAN SQUARE ESTIMATION (LMMSE).

• LINEAR PREDICTION & FILTERING.

• YULE-WALKER EQUATIONS & TOEPLITZ MATRICES.

1



1 LMMSE

Assume that we are interested in the value of a random variable X, and
that we cannot observe this directly. However, we can observe the values
of an n-dimensional random variable Y = (Y1, . . . , Yn)

T . (Note: we will use
vector and matrix notation, so we think of Y as a stochastic column vector
of dimension n.) We can then try to predict (estimate) X using a linear
predictor (estimator)

X̂ = aTY + b = a1Y1 + . . .+ anYn + b,

where a = (a1, . . . , an)
T is a real valued column vector of dimension n, and

b is a real number.
It is common procedure to choose a = (a1, . . . , an)

T and b so that
the quantity

E((X − aTY − b)2), (1.1)

called the mean square prediction error, is minimized. The resulting
predictor (estimator) X̂ = âTY + b̂ is called the linear minimal mean
square estimator, or LMMSE, of X based on Y , and is sometimes de-
noted X̂LMMSE.

We shall derive some theorems for LMMSE.

Theorem 1.1 Let X be a random variable, and Y = (Y1, . . . , Yn)
T be an n-

dimensional random variable with mean (column) vector µY and covariance
matrix CY , where detCY > 0. Then, the minimal mean square estimator
(LMMSE) of X based on Y is given by X̂ = âTY + b̂, where

â = C−1

Y CX,Y , b̂ = E(X)− âTµY ,

and CX,Y is the n-dimensional column vector with elements

(CX,Y )i = C(X, Yi) ∀i = 1, . . . , n.

Proof: We rewrite the mean square prediction error by adding and sub-
tracting E(X)− aTµY inside the square, expanding the square, and taking
the expectation of each term in the expansion:

E((X − aTY − b)2) = E((X − E(X)− aT (Y − µY ) + E(X)− aTµY − b)2)

= E((X − E(X))2 + aT (Y − µY )(Y − µY )
Ta

+(E(X)− aTµY − b)2 − 2aT (Y − µY )(X − E(X))
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−2aT (Y − µY )(E(X)− aTµY − b) + (X − E(X))(E(X)− aTµY − b))

= E((X − E(X))2) + aTE((Y − µY )(Y − µY )
T )a

+(E(X)− aTµY − b)2 − 2aTE((Y − µY )(X − E(X)))

−2aTE(Y − µY )(E(X)− aTµY − b) + E(X − E(X))(E(X)− aTµY − b))

= V (X) + aTCY a+ (E(X)− aTµY − b)2 − 2aTCX,Y − 0 + 0.

In this expression, the third term is the only one that depends on b, and
it is greater than or equal to 0. If a is chosen so that the sum of the other
terms is minimized, then the third term can be set to 0 by choosing

b = b̂ = E(X)− âTµY .

It now remains to choose a so that the function f(a) = aTCY a − 2aTCX,Y

is minimized. This function is a polynomial in a1, . . . , an of degree 2. A
necessary condition for a = (a1, . . . , an)

T to be a minimum is that

∂f

∂ai
= 2(CY a)i − 2(CX,Y )i = 0 ∀i = 1, . . . , n,

or, in vector and matrix notation, CY a = CX,Y . The solution to this system
of linear equations is a = â = C−1

Y CX,Y . Furthermore, since

∂2f

∂ai∂aj
= 2(CY )i,j ∀i, j = 1, . . . , n,

the matrix of second derivatives is 2CY , which is positive definite by as-
sumption (since detCY > 0). Hence, the function f(a) = aTCY a− 2aTCX,Y

is strictly convex, which implies that â is in fact the global minimum of the
function f (see a basic course in multivariate analysis).

Theorem 1.2 Let X be a random variable, and Y = (Y1, . . . , Yn)
T be an

n-dimensional random variable with mean (column) vector µY and covari-
ance matrix CY , where detCY > 0. Then, the mean square prediction error
corresponding to the minimal mean square estimator (LMMSE) of X based
on Y is:

E((X − âTY − b̂)2) = V (X)− âTCX,Y .

Proof: From the proof of Theorem 1.1,

E((X − âTY − b̂)2) = V (X) + âTCY â+ (E(X)− âTµY − b̂)2 − 2âTCX,Y

= V (X) + âTCYC
−1

Y CX,Y + 0− 2âTCX,Y = V (X)− âTCX,Y .
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2 Examples

Example 2.1 Let both X and Y be (one-dimensional) random variables.

Then, the LMMSE X̂ = âY + b̂ of X based on Y is given by:

â =
C(X, Y )

V (Y )
, b̂ = E(X)−

C(X, Y )

V (Y )
E(Y ).

The corresponding variance of the prediction error is:

E((X − âY − b̂)2) = V (X)−
C(X, Y )

V (Y )
C(X, Y )

= V (X)(1−
C(X, Y )2

V (Y )V (X)
) = V (X)(1− ρ(X, Y )2),

where ρ(X, Y ) as usual denotes the correlation coefficient.

Example 2.2 Let (X, Y ) have a two-dimensional normal distribution. Then,
we know that the conditional distribution of X given Y = y is the normal
distribution

N

(
µX + ρ

σX

σY

(y − µY ), σ
2

X(1− ρ2)

)
,

where µX = E(X), µY = E(Y ), σ2
X = V (X), σ2

Y = V (Y ) and ρ = ρ(X, Y ).
In this case, we see that for the conditional expectation of X given Y ,

E(X|Y ) = E(X|Y = y)
∣∣
y=Y

= µX + ρ
σX

σY

(Y − µY )

= µX +
C(X, Y )

V (Y )
(Y − µY ) = âY + b̂.

In words, E(X|Y ) equals the LMMSE of X based on Y . This is rather
unusual; in most situations it does not hold. Furthermore, the conditio-
nal variance of X given Y is σ2

X(1 − ρ2), which equals the variance of the
prediction error for the LMMSE. This is also quite unusual.

Example 2.3 Let the process {Xn;n ∈ Z} be wide sense stationary with
mean E(Xn) = 0 and autocovariance (autocorrelation) function

CX(τ) = c|τ | ∀τ ∈ Z, (2.1)

where |c| < 1. We wish to use the current value of the process to predict
(estimate) future values. We formulate this in terms of the LMMSE theory
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above. We set X = Xn+k and Y = Xn. The LMMSE of X based on Y is
given by

X̂n+k =
C(Xn+k, Xn)

V (Xn)
Xn =

CX(k)

CX(0)
Xn = ckXn,

and the variance of the prediction error for the LMMSE is

E((Xn+k − X̂n+k)
2) = V (Xn+k)−

C(Xn+k, Xn)
2

V (Xn)
= 1− c2k.

From these expressions we see that if k is large, the predictor ckXn should
often be small, close to E(Xn+k) = 0 and the error variance close to its
maximum value. This expresses the reasonable idea that the reliability of
the prediction should decrease for prediction large steps ahead. If c is close
to zero, then again the prediction is close to E(Xn+k) = 0, the a priori
prediction. If |c| is close to 1, then the predictor is highly correlated with
the predicted variable.

Example 2.4 Let the process {Xn;n ∈ Z} be wide sense stationary with
mean E(Xn) = 0 and autocovariance (autocorrelation) function

CX(τ) = c|τ | ∀τ ∈ Z, (2.2)

where |c| < 1. Define the process {Yn;n ∈ Z} by

Yn = Xn + Zn ∀n ∈ Z,

where {Zn;n ∈ Z} is I.I.D. white noise with E(Zn) = 0 and V (Zn) = σ2
Z <

∞, and {Zn;n ∈ Z} is independent of {Xn;n ∈ Z}. We can think of Yn as
a noisy measurement of Xn, and we wish to predict (estimate) Xn based on
Yn. This is known as filtering. The LMMSE formulation is to let X = Xn

and Y = Yn. The LMMSE of X based on Y is given by

X̂n =
C(Xn, Yn)

V (Yn)
Yn =

V (Xn)

V (Xn) + V (Zn)
Yn =

1

1 + σ2
Z

Yn,

and the variance of the prediction error for the LMMSE is

E((Xn − X̂n)
2) = V (Xn)−

C(Xn, Yn)
2

V (Yn)
= 1−

1

1 + σ2
Z

.
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Example 2.5 Let {Zn;n ∈ Z} be I.I.D. white noise, with E(Zn) = 0 and
V (Zn) = 1, and define the MA(1) process {Xn;n ∈ Z} by

Xn = Zn +
1

2
Zn−1 ∀n ∈ Z.

The process {Xn;n ∈ Z} has the autocovariance (autocorrelation) function

CX(τ) = RX(τ) =





5

4
, if τ = 0;

1

2
, if |τ | = 1;

0, otherwise.

(Either check this yourself, or see Kompletteringshäfte 3.) The LMMSE of
Xn based on Y = (Xn−1, Xn−2)

T can be obtained using Theorem 1.1. We
first note that

CY =

(
5

4

1

2
1

2

5

4

)

and

CXn,Y =

(
1

2

0

)
.

The LMMSE is given by X̂n = âTY = â1Xn−1 + â2Xn−2, where

â = C−1

Y CXn,Y =

(
0.9524 −0.3810
−0.3810 0.9524

)(
1

2

0

)
=

=

(
0.4762
−0.1905

)
. (2.3)

3 One-step prediction of a wide sense statio-

nary process

Let {Xn;n ∈ Z} be a wide sense stationary random sequence with mean
function equal to zero and with autocorrelation function RX(τ). We consider
the problem of predicting (estimating) Xn based on the p most recent values
of the process, or (equivalently) on the p-dimensional random variable Y =
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(Xn−1, . . . , Xn−p). The covariance (correlation) matrix of Y is

CY =




RX(0) RX(1) . . . RX(p− 2) RX(p− 1)
RX(1) RX(0) RX(1) . . . RX(p− 2)
RX(2) RX(1) RX(0) . . . RX(p− 3)

...
...

...
...

...

RX(p− 2) RX(p− 3) . . .
. . . RX(1)

RX(p− 1) RX(p− 2) . . . RX(1) RX(0)




.

(3.1)
Using Theorem 1.1, we see that the LMMSE of Xn based on Y exists if
detCY > 0 (that is, if CY has full rank). In this case, the LMMSE is

X̂n = âTY + b = â1Xn−1 + . . .+ âpXn−p, (3.2)

where â satisfies the system of linear equations

CY â = CXn,Y , (3.3)

known as the Yule-Walker equations, where

CXn,Y = (RX(1), . . . , RX(p))
T
.

It should be noted that neither CY nor CXn,Y depend on n, so by (3.2),

the process of one-step predictors (estimators) {X̂n;n ∈ Z} is the
output of a linear time-invariant filter (a LTI), with finite impulse response
{âk+1; k = 0, . . . , p − 1} (a FIR filter). This kind of FIR filter is called a
prediction filter.

We also note that CY has the property that the elements along eve-
ry diagonal are identical. Matrices with this property are known asToeplitz
matrices. There are a number of algorithms for inverting CY that take
advantage of the Toeplitz property, e.g. Levinson - Durbin or Berlekamp-
Massey algorithms.
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