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1 LMMSE

Assume that we are interested in the value of a random variable X, and
that we cannot observe this directly. However, we can observe the values
of an n-dimensional random variable Y = (Y1,...,Y,)T. (Note: we will use
vector and matrix notation, so we think of Y as a stochastic column vector
of dimension n.) We can then try to predict (estimate) X using a linear
predictor (estimator)

X=dY+b=aYi+...+a,Y, +b,

where a = (ay, . ..,a,)" is a real valued column vector of dimension n, and
b is a real number.
It is common procedure to choose a = (ay,...,a,)? and b so that

the quantity
E((X —a'Y —b)?), (1.1)

called the mean square prediction error, is minimized. The resulting
predictor (estimator) X =@’V + b is called the linear minimal mean
square estimator, or LMMSE, of X based on Y, and is sometimes de-

noted XLMMSE~
We shall derive some theorems for LMMSE.

Theorem 1.1 Let X be a random variable, andY = (Y1,...,Y,)T be an n-
dimensional random variable with mean (column) vector py and covariance

matriz Cy, where det Cy > 0. Then, the minimal mean square estimator
(LMMSE) of X based on'Y is given by X =aly + b where

820;10)(7)/, /5: E(X) —aT,uy,
and Cxy 1s the n-dimensional column vector with elements
(C)@y)i:O(X,Y;) VZ:L,H

Proof: We rewrite the mean square prediction error by adding and sub-
tracting E(X) — a” uy inside the square, expanding the square, and taking
the expectation of each term in the expansion:

E((X —a"Y = b)) = E((X — B(X) - a" (Y - py) + B(X) — "y —b)?)
= B((X ~ B(X)P +d"(Y = i)Y — i)
FEX) — "y —0)° — 2a"(Y — ) (X — E(X)
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“207(Y = ) E(X) = oy =) + (X = BEONB(X) =’y = 1)
E((X - BE(X))*) +a" E((Y = py)(Y — py)")a
( (X) —a"py = 0)* = 2a" E((Y — py)(X — E(X)))
~2a” B(Y — iy )(B(X) — "y —b) + E(X — B(X))(E(X) — a"py — b))
=V(X)+a'Cya+ (B(X)—a’uy —b)* —2a"Cxy —0+0.
In this expression, the third term is the only one that depends on b, and

it is greater than or equal to 0. If a is chosen so that the sum of the other
terms is minimized, then the third term can be set to 0 by choosing

b=0b=E(X)—a" py.

It now remains to choose a so that the function f(a) = a’Cya — 2a"Cxy

is minimized. This function is a polynomial in aq,...,a, of degree 2. A
necessary condition for a = (ay,...,a,)’ to be a minimum is that
of _

) (Cya) —Z(Cx’y)izo Vizl,...,n,
a;

or, in vector and matrix notation, Cya = Cx y. The solution to this system
of linear equations is @ = @ = C}'Cxy. Furthermore, since
0 f

aaiﬁaj
the matrix of second derivatives is 2C'y, which is positive definite by as-
sumption (since det Cy > 0). Hence, the function f(a) = a’Cya —2a"Cxy
is strictly convex, which implies that @ is in fact the global minimum of the
function f (see a basic course in multivariate analysis). .

= 2(Cy)i’j VZ,] = 1, oo, n,

Theorem 1.2 Let X be a random variable, and Y = (Y1,...,Y,)T be an
n-dimensional random variable with mean (column) vector py and covari-
ance matriz Cy, where det Cy > 0. Then, the mean square prediction error
corresponding to the minimal mean square estimator (LMMSE) of X based
onY is:

E(X -ad"Y —b)%) =V(X)—a"Cxy.
Proof: From the proof of Theorem 1.1,
E(X —aTY =b)%) = V(X)) +aTCya+ (BE(X) —a"puy — b)*> — 20" Cx.y
=V(X)+a"CyCy'Cxy +0—2a"Cxy = V(X) —a" Cxy.



2 Examples

Example 2.1 Let both X and Y be (one-dimensional) random variables.
Then, the LMMSE X =aY + b of X based on Y is given by:

C(X,Y) C(X,Y)

V(YY) b=E(X) - V(Y)

a=

E(Y).

The corresponding variance of the prediction error is:

~ C(X,Y)

E(X —aY —b)%) = V(X) — %% C(X,Y)
v(x)(1— %) —V(X)(1— p(X. Y,

where p(X,Y’) as usual denotes the correlation coefficient.

Example 2.2 Let (X,Y) have a two-dimensional normal distribution. Then,
we know that the conditional distribution of X given Y = y is the normal
distribution

ag
N (ux + pﬁ(y — py), 0% (1 = p2)> :

where jix = E(X), py = E(Y), 0% = V(X), 6% = V(Y) and p = p(X.Y).
In this case, we see that for the conditional expectation of X given Y,
0x
B(X[Y) = BXY =),y = ix + 025V = )

B n C(X,Y)

= Hx VY)
In words, E(X|Y) equals the LMMSE of X based on Y. This is rather
unusual; in most situations it does not hold. Furthermore, the conditio-

nal variance of X given Y is 0% (1 — p?), which equals the variance of the
prediction error for the LMMSE. This is also quite unusual.

(Y — py) = @Y +b.

Example 2.3 Let the process {X,;n € Z} be wide sense stationary with
mean F(X,) = 0 and autocovariance (autocorrelation) function

Cx (1) = VT € Z, (2.1)

where |¢| < 1. We wish to use the current value of the process to predict
(estimate) future values. We formulate this in terms of the LMMSE theory
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above. We set X = X, and Y = X,,. The LMMSE of X based on Y is
given by

v C(XnJrka Xn) CX<k) k
Xppn=——"—""T- X, =—=X, =c"X,,
* V(X,) Cx(0)

and the variance of the prediction error for the LMMSE is

C(XnJrkvXn)Q — 1 — 2k

E((Xn-i-k’ - )?n-l-k)Z) = V(XTH-/C) - V(Xn>

From these expressions we see that if k is large, the predictor c*X,, should
often be small, close to E(X,x) = 0 and the error variance close to its
maximum value. This expresses the reasonable idea that the reliability of
the prediction should decrease for prediction large steps ahead. If ¢ is close
to zero, then again the prediction is close to F(X, ;%) = 0, the a priori
prediction. If |¢| is close to 1, then the predictor is highly correlated with
the predicted variable.

Example 2.4 Let the process {X,;n € Z} be wide sense stationary with
mean F(X,) = 0 and autocovariance (autocorrelation) function

Cx (1) = VT € Z, (2.2)
where |¢| < 1. Define the process {Y,;n € Z} by
Y, =X, +Z, Vnez,

where {Z,;n € Z} is L.I.D. white noise with E(Z,) =0 and V(Z,) = 0% <
oo, and {Z,;n € Z} is independent of {X,,;n € Z}. We can think of Y,, as
a noisy measurement of X,,, and we wish to predict (estimate) X,, based on
Y,,. This is known as filtering. The LMMSE formulation is to let X = X,
and Y =Y,,. The LMMSE of X based on Y is given by

s C(X,, Y,

X, =Tty —
V(Ya)

V(X,) 1
Yn = —Yn7
V(Xyn) +V(Z,) 1+o0%

and the variance of the prediction error for the LMMSE is

B(X, = R0 = V(x,) - el 1



Example 2.5 Let {Z,;n € Z} be L.L.D. white noise, with E(Z,) = 0 and
V(Z,) =1, and define the MA(1) process {X,,;;n € Z} by

1

The process {X,,;n € Z} has the autocovariance (autocorrelation) function

%, if 7=0;
Cx(r) = Rx(r) =13, iflr|=1;
0, otherwise.

(Either check this yourself, or see Kompletteringshiifte 3.) The LMMSE of
X, based on Y = (X,_1, X, )" can be obtained using Theorem 1.1. We

first note that
er=(1 1)

1
cor-(1)

The LMMSE is given by X,, = a’Y = a1 X,_1 + @2X,_2, where

N [ =i Ot
N[ NI

and

o /09524 —03810 \ [ 1\ _
a = CY CXn,Y_ < —0.3810 0.9524 0 -

0.4762
- ( ~0.1905 ) ' (2:3)

3 One-step prediction of a wide sense statio-
nary process

Let {X,;n € Z} be a wide sense stationary random sequence with mean
function equal to zero and with autocorrelation function Rx (7). We consider
the problem of predicting (estimating) X,, based on the p most recent values
of the process, or (equivalently) on the p-dimensional random variable Y =



(Xpn-1,...,X,_p). The covariance (correlation) matrix of Y is

Rx(O) Rx(l) Rx(p—Q) Rx(p— 1)
Rx(1)  Rx(0) Rx(1) ... Rx(p—2)
Rx<2) Rx(l) Rx(()) Rx<p— 3)
Cy = .
Rx(p—2) Rx(p—?)) T, RX(l)
Rx(p— 1) Rx(p—Q) Rx(1> Rx(O)

(3.1)
Using Theorem 1.1, we see that the LMMSE of X,, based on Y exists if
det Cy > 0 (that is, if Cy has full rank). In this case, the LMMSE is

X =aTY b= Xp 1+ ...+ 0 Xn_p, (3.2)

where @ satisfies the system of linear equations
Cya =Cyx,y, (3.3)

known as the Yule-Walker equations, where

CXn,Y = (Rx(l), cey Rx(p))T .

It should be noted that neither Cy nor Cly, y depend on n, so by (3.2),
the process of one-step predictors (estimators) {)?n,n € Z} is the
output of a linear time-invariant filter (a LTT), with finite impulse response
{@p41;k = 0,...,p— 1} (a FIR filter). This kind of FIR filter is called a
prediction filter.

We also note that C'y has the property that the elements along eve-
ry diagonal are identical. Matrices with this property are known as Toeplitz
matrices. There are a number of algorithms for inverting Cy that take
advantage of the Toeplitz property, e.g. Levinson - Durbin or Berlekamp-
Massey algorithms.



