Lesson 2

- Ex. 2.1.1 a) F-test gives v = 7.75 > 5.95; significant difference..
- Ex. 2.1.2 a) $v_{14} = \frac{s_4^2}{s_1^2} = 3.14$. As $\frac{1}{7.15} < 3.14 < 7.15$ we cannot claim that $\sigma_4 \neq \sigma_1$, etc. The other comparisons also do not point out any significant difference between standard deviations. It seems reasonable to assume that $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_4 = \sigma$. The simultaneous confidence level $\leq 6 \cdot 0.05 = 0.30$.
 - b) Let $\theta = \mu_1 3\mu_3 + 2\mu_4$. We obtain $I_{\theta} = (-5.76, 0.63)$. Hence, it is possible that $\mu_1 - \mu_3 = 2(\mu_3 - \mu_4)$.
- Ex. 2.1.3 a) v = 51.33 > 6.93, where value 6.93 is given by F(2,12)-table. With high probability there is difference between batches with respect to their tensile strengths.
 - b) $I_{\mu} = (\bar{y} \cdot \pm t \cdot \frac{\tilde{s}}{\sqrt{3}}) = (7828, 8572)$, where t = 4.30 and \tilde{s} is calculated
- Ex. 2.1.4 a) Significant on level $\geq 2.5\%$.
- Ex. 2.1.5 a) $\hat{\mu} = \bar{y}_{\cdot \cdot} = 7004.6$; $\hat{\sigma}^2 = \frac{SS_E}{df_E} = 11.60$; $\hat{\sigma}_{\tau}^2 = 224.8$. b) $v = 59.13. > F_{0.01}(4,10)$, reject H_0 . With high probability there is variation between sensors.