
TAMS46: Probability Theory (Second Course)
∣∣∣ Provkod: TEN1 ∣∣∣ 31 October 2024, 14:00-18:00

Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, a self-written A4 paper (two sides).
Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5.
Notation: ‘A random variable X is distributed as...’ is written as ‘X ∈ ... or X ∼ ... ’

1 (3 points)

Let X ∼ U(0, 1) and Y ∼ U(0, 2) be two independent uniform random variables. Find the density function of
U = X + Y. (Hint: You can use either convolution formula or transformation theorem. Be really really careful with the
bounds of each variable!!! It might help to draw a graph for the bounds)

Solution. Let U = X + Y and V = X. Then it is important to notice that 0 < V < 1 and 0 < V < U < 2 + V < 3 (these
can be seen by noticing that X = V ∈ (0, 1) and Y = U − V ∈ (0, 2)). Furthermore,

X = V, Y = U − V, J = |∂(x y)

∂(u v)
| = −1.

Therefore the joint probability density function of (U, V )′ is

fU,V (u, v) = f(x−1(u, v), y−1(u, v))|J | = fX(v)fY (u− v)|J |

= 1 · 1
2
· 1 =

1

2
, for 0 < v < 1 and 0 < v < u < 2 + v < 3.

In order to obtain the density function of U, we need to integrate with respect to v. Theretofore, it is important to know
the bounds of v in terms of u. If we rewrite the non-trivial domain: 0 < v < 1 and 0 < v < u < 2 + v < 3 as follows

0 < u < 3, max{0, u− 2} < v < min{u, 1},

Then it is clear that

fU (u) =

∫ ∞

−∞
fU,V (u, v)dv =

∫ min{u,1}

max{0,u−2}

1

2
dv =

1

2
(min{u, 1} −max{0, u− 2}) , for 0 < u < 3

=


1
2u, if 0 < u < 1,
1
2 , if 1 ≤ u < 2,
1
2 (3− u), if 2 ≤ u < 3.

2 (3 points)

Let us throw a fair die twice independently. Set U = the outcome of the first throw and V = the outcome of the second
throw. Define

X = U and Y = U + V.

Find the conditional expectation E(Y |X = x).
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Solution. The conditional probability mass function is

pY |X=x(y) = P (Y = y|X = x) =
pX,Y (x, y)

pX(x)
=

1
6 · 1

6
1
6

=
1

6

for any x = 1, 2, 3, 4, 5, 6 and y = x+ 1, x+ 2, x+ 3, x+ 4, x+ 5, x+ 6. Therefore the conditional expectation is

E(Y |X = x) =
∑
y

pY |X=x(y) · y =

6∑
k=1

pY |X=x(x+ k) · (x+ k) =

6∑
k=1

1

6
· (x+ k) = x+ 3.5

for x = 1, 2, 3, 4, 5, 6.

3 (3 points)

Consider the following situation: Hanna has a coin with P (head) = p1 and Livia has a coin with P (head) = p2. Hanna
tosses her coin m times. Each time Hanna obtains “head”, Livia tosses her coin (otherwise not). Let X be the total
number of heads obtained by Livia. Then X can be modeled as follows:

X|N = n ∼ Bin(n, p2), with N ∼ Bin(m, p1), 0 < p1, p2 < 1,

where N denotes the total number of heads obtained by Hanna. Find the probability generating function (PGF) of X.
Do you recognize the distribution of X?
(Hint: probability generating function of a Binomial random variable is gBin(n,p)(t) = (q + pt)n with q = 1− p)

Solution. The PGF of X can be computed as

gX(t) = E(tX) = E(E(tX |N)) = E((q2 + p2t)
N )

= [q1 + p1(q2 + p2t)]
m
, (where q1 = 1− p1 and q2 = 1− p2)

= [(q1 + p1q2) + p1p2t]
m

= [(1− p1p2) + p1p2t]
m

= gBin(m, p1p2)(t).

Therefore X ∼ Bin(m, p1p2).

4 (3 points)

Let X1, X2, . . . , Xn be i.i.d. Exp(1) random variables, and X(1) ≤ X(2) ≤ . . . ≤ X(n) be the order statistic. Define

Y1 = X(1), Yk = X(k) −X(k−1), for k = 2, 3, . . . , n.

(4.1) (1p) Find the joint density function fX(1),X(2),...,X(n)
(x1, x2, . . . , xn) of (X(1), X(2), . . . , X(n)).

(4.2) (1p) Find the joint density function fY1,Y2,...,Yn
(y1, y2, . . . , yn) of (Y1, Y2, . . . , Yn).

(4.3) (1p) find the density function fYn(yn) of Yn.

Solution. (4.1) It is directly from Theorem 4.3.1 (book) that the joint density is

fX(1),X(2),...,X(n)
(x1, x2, . . . , xn) = n!f(x1)f(x2) . . . f(xn) = n!e−(x1+x2+...+xn), for 0 < x1 < x2 < . . . < xn.

(4.2) The following transform (with Yi > 0)

Y1 = X(1), Yk = X(k) −X(k−1), for k = 2, 3, . . . , n,

gives that
X(1) = Y1, X(2) = Y1 + Y2, . . . X(n) = Y1 + Y2 + . . .+ Yn.
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Therefore the Jacobian is J = 1. This implies that the joint density is: for yi > 0,

fY1,Y2,...,Yn(y1, y2, . . . , yn) = fX(1),X(2),...,X(n)
(y1, y1 + y2, . . . , y1 + y2 + . . .+ yn) · |J |

= n!e−[(y1)+(y1+y2)+...+(y1+y2+...+yn)]

= n!e−[ny1+(n−1)y2+...+yn]

=

n∏
i=1

ie−iyi , yi > 0.

(4.3) It is from the solution to (4.2) that Y1, Y2, . . . , Yn are independent random variables (since the joint density
function can be rewritten as a product of individual density functions), and one can read the density function of Yn as
follows:

fYn
(yn) = ne−nyn , for yn > 0.

5 (3 points)

Let (X1, X2)
′ be two dimensional random vector whose characteristic function is given as follows:

φX1,X2
(t1, t2) = eit1−2t21−t22−t1t2 ,

where i is the imaginary unit.
(5.1) (2p) Is (X1, X2)

′ a two dimensional normal random vector? If yes, specify the mean vector µ and the covariance
matrix Λ. If no, specify the reason(s).
(5.2) (1p) Find the distribution of X1 +X2. (Namely, specify which distribution with which parameters)

Solution. (5.1) Let us first pretend that (X1, X2)
′ is a two dimensional normal random vector, then we need to find the

mean vector µ and the covariance matrix Λ so that the characteristic function is

φX1,X2
(t1, t2) = ei(t1,t2)µ−

1
2 (t1,t2)Λ(t1,t2)

′
.

By comparing this with eit1−2t21−t22−t1t2 , we can easily obtain µ = (1, 0)′. Now we try to find Λ so that

1

2
(t1, t2)Λ(t1, t2)

′ = 2t21 + t22 + t1t2.

To this end, let Λ = (aij)1≤i,j≤2. Then it holds that

1

2
a11t

2
1 + a12t1t2 +

1

2
a22t

2
2 = 2t21 + t22 + t1t2 =⇒ a11 = 4, a12 = 1, a22 = 2.

Therefore, such µ = (1, 0)′ and Λ =

(
4 1
1 2

)
DO exist, implying that (X1, X2)

′ is indeed a two dimensional normal

random vector (
X1

X2

)
∼ N(µ,Λ).

(5.2) Method 1: One can obtain the characteristic function of X1 +X2 as follows

φX1+X2(t) = E(eit(X1+X2)) = E(eitX1+tX2) = φX1,X2(t, t) = eit−2t2−t2−t2 = eit−4t2 = φN(1,8)(t).

Therefore X1 +X2 ∼ N(1, 8).

Method 2: Since

(
X1

X2

)
∼ N(µ,Λ), and X1 +X2 = A

(
X1

X2

)
with A = (1, 1), it follows that X1 +X2 is also normal with

mean vector = Aµ = 1, covariance matrix = AΛA′ = 8 (which is variance in this case).

So X1 +X2 ∼ N(1, 8).
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6 (3 points)

Let {Xn}n≥1 be a sequence of i.i.d. random variables with a common distribution function F (x) (which is
F (x) = P (Xi ≤ x)). Let Fn(x) be the empirical distribution function defined as

Fn(x) =
# observations among X1, X2, . . . , Xn ≤ x

n
.

For example, if we have observed {2, 3, 5, 4} for {X1, X2, X3, X4} then F4(2.5) =
1
4 and F4(3.2) =

2
4 .

(6.1) (1p) For each fixed x, prove that Fn(x) converge to F (x) in probability as n → ∞.
(6.2) (2p) For each fixed x, determine a(x) and b(x), and show the following convergence in distribution

Fn(x)− a(x)

b(x)/
√
n

d−−→ N(0, 1), as n → ∞.

Solution. (6.1) It is important to rewrite Fn(x) as Fn(x) =
1
n (Y1 + Y2 + . . .+ Yn) where Yi, 1 ≤ i ≤ n are i.i.d. with

Yi 0 1
p(y) 1− F (x) F (x)

That is, if Xi ≤ x, then Yi = 1 and the corresponding probability is P (Xi ≤ x) = F (X). For Yi,

µY = F (x), σ2
Y = F (x)− F (x)2.

Weak law of large numbers (Theorem 6.5.1) implies that Fn(x) converge to µY = F (x) in probability.
(6.2) The central limit theorem (Theorem 6.5.2) implies that

Fn(x)− µY

σY /
√
n

d−−→ N(0, 1).

Therefore a(x) = µY = F (x) and b(x) = σY =
√
F (x)− F (x)2.
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