Examiner: Xiangfeng Yang (013-285788). **Things allowed**: a calculator, a self-written A4 paper (two sides). **Scores rating (Betygsgränser)**: 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5. **Notation**: 'A random variable X is distributed as...' is written as ' $X \in ...$ or $X \sim ...$ '

1 (3 points)

Let $X \sim U(0,1)$ and $Y \sim U(0,2)$ be two independent uniform random variables. Find the density function of U = X + Y. (Hint: You can use either convolution formula or transformation theorem. Be really really careful with the bounds of each variable!!! It might help to draw a graph for the bounds)

Solution. Let U = X + Y and V = X. Then it is important to notice that 0 < V < 1 and 0 < V < U < 2 + V < 3 (these can be seen by noticing that $X = V \in (0, 1)$ and $Y = U - V \in (0, 2)$). Furthermore,

$$X = V, \quad Y = U - V, \qquad J = \left|\frac{\partial(x \ y)}{\partial(u \ v)}\right| = -1.$$

Therefore the joint probability density function of (U, V)' is

$$f_{U,V}(u,v) = f(x^{-1}(u,v), y^{-1}(u,v))|J| = f_X(v)f_Y(u-v)|J|$$

= $1 \cdot \frac{1}{2} \cdot 1 = \frac{1}{2}$, for $0 < v < 1$ and $0 < v < u < 2 + v < 3$.

In order to obtain the density function of U, we need to integrate with respect to v. Theretofore, it is important to know the bounds of v in terms of u. If we rewrite the non-trivial domain: 0 < v < 1 and 0 < v < u < 2 + v < 3 as follows

Then it is clear that

$$f_U(u) = \int_{-\infty}^{\infty} f_{U,V}(u, v) dv = \int_{\max\{0, u-2\}}^{\min\{u, 1\}} \frac{1}{2} dv = \frac{1}{2} \left(\min\{u, 1\} - \max\{0, u-2\} \right), \quad \text{for } 0 < u < 3$$
$$= \begin{cases} \frac{1}{2}u, & \text{if } 0 < u < 1, \\ \frac{1}{2}, & \text{if } 1 \le u < 2, \\ \frac{1}{2}(3-u), & \text{if } 2 \le u < 3. \end{cases}$$

2 (3 points)

Let us throw a fair die twice independently. Set U = the outcome of the first throw and V = the outcome of the second throw. Define

$$X = U$$
 and $Y = U + V$.

Find the conditional expectation E(Y|X = x).

Solution. The conditional probability mass function is

$$p_{Y|X=x}(y) = P(Y=y|X=x) = \frac{p_{X,Y}(x,y)}{p_X(x)} = \frac{\frac{1}{6} \cdot \frac{1}{6}}{\frac{1}{6}} = \frac{1}{6}$$

for any x = 1, 2, 3, 4, 5, 6 and y = x + 1, x + 2, x + 3, x + 4, x + 5, x + 6. Therefore the conditional expectation is

$$E(Y|X=x) = \sum_{y} p_{Y|X=x}(y) \cdot y = \sum_{k=1}^{6} p_{Y|X=x}(x+k) \cdot (x+k) = \sum_{k=1}^{6} \frac{1}{6} \cdot (x+k) = x+3.5$$
4.5.6.

for x = 1, 2, 3, 4, 5,

(3 points) 3

Consider the following situation: Hanna has a coin with $P(\text{head}) = p_1$ and Livia has a coin with $P(\text{head}) = p_2$. Hanna tosses her coin m times. Each time Hanna obtains "head", Livia tosses her coin (otherwise not). Let X be the total number of heads obtained by Livia. Then X can be modeled as follows:

$$X|N = n \sim Bin(n, p_2), \text{ with } N \sim Bin(m, p_1), 0 < p_1, p_2 < 1,$$

where N denotes the total number of heads obtained by Hanna. Find the probability generating function (PGF) of X. Do you recognize the distribution of X?

(Hint: probability generating function of a Binomial random variable is $g_{Bin(n,p)}(t) = (q + pt)^n$ with q = 1 - p)

Solution. The PGF of X can be computed as

$$g_X(t) = E(t^X) = E(E(t^X|N)) = E((q_2 + p_2 t)^N)$$

= $[q_1 + p_1(q_2 + p_2 t)]^m$, (where $q_1 = 1 - p_1$ and $q_2 = 1 - p_2$)
= $[(q_1 + p_1 q_2) + p_1 p_2 t]^m$
= $[(1 - p_1 p_2) + p_1 p_2 t]^m$
= $g_{Bin(m, p_1 p_2)}(t)$.

Therefore $X \sim Bin(m, p_1p_2)$.

(3 points) 4

Let X_1, X_2, \ldots, X_n be i.i.d. Exp(1) random variables, and $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ be the order statistic. Define

$$Y_1 = X_{(1)}, \quad Y_k = X_{(k)} - X_{(k-1)}, \text{ for } k = 2, 3, \dots, n.$$

- (4.1) (1p) Find the joint density function $f_{X_{(1)},X_{(2)},...,X_{(n)}}(x_1,x_2,...,x_n)$ of $(X_{(1)},X_{(2)},...,X_{(n)})$. (4.2) (1p) Find the joint density function $f_{Y_1,Y_2,...,Y_n}(y_1,y_2,...,y_n)$ of $(Y_1,Y_2,...,Y_n)$.
- (4.3) (1p) find the density function $f_{Y_n}(y_n)$ of Y_n .

Solution. (4.1) It is directly from Theorem 4.3.1 (book) that the joint density is

$$f_{X_{(1)},X_{(2)},\dots,X_{(n)}}(x_1,x_2,\dots,x_n) = n!f(x_1)f(x_2)\dots f(x_n) = n!e^{-(x_1+x_2+\dots+x_n)}, \quad \text{for } 0 < x_1 < x_2 < \dots < x_n.$$

(4.2) The following transform (with $Y_i > 0$)

$$Y_1 = X_{(1)}, \quad Y_k = X_{(k)} - X_{(k-1)}, \text{ for } k = 2, 3, \dots, n,$$

gives that

$$X_{(1)} = Y_1, \quad X_{(2)} = Y_1 + Y_2, \qquad \dots \qquad X_{(n)} = Y_1 + Y_2 + \dots + Y_n.$$

Therefore the Jacobian is J = 1. This implies that the joint density is: for $y_i > 0$,

$$\begin{split} f_{Y_1,Y_2,\ldots,Y_n}(y_1,y_2,\ldots,y_n) &= f_{X_{(1)},X_{(2)},\ldots,X_{(n)}}(y_1,y_1+y_2,\ldots,y_1+y_2+\ldots+y_n) \cdot |J| \\ &= n!e^{-[(y_1)+(y_1+y_2)+\ldots+(y_1+y_2+\ldots+y_n)]} \\ &= n!e^{-[ny_1+(n-1)y_2+\ldots+y_n]} \\ &= \prod_{i=1}^n ie^{-iy_i}, \qquad y_i > 0. \end{split}$$

(4.3) It is from the solution to (4.2) that Y_1, Y_2, \ldots, Y_n are independent random variables (since the joint density function can be rewritten as a product of individual density functions), and one can read the density function of Y_n as follows:

$$f_{Y_n}(y_n) = ne^{-ny_n}, \qquad \text{for } y_n > 0.$$

5 (3 points)

Let $(X_1, X_2)'$ be two dimensional random vector whose characteristic function is given as follows:

$$\varphi_{X_1,X_2}(t_1,t_2) = e^{it_1 - 2t_1^2 - t_2^2 - t_1t_2}$$

where i is the imaginary unit.

(5.1) (2p) Is $(X_1, X_2)'$ a two dimensional normal random vector? If yes, specify the mean vector μ and the covariance matrix Λ . If no, specify the reason(s).

(5.2) (1p) Find the distribution of $X_1 + X_2$. (Namely, specify which distribution with which parameters)

Solution. (5.1) Let us first pretend that $(X_1, X_2)'$ is a two dimensional normal random vector, then we need to find the mean vector μ and the covariance matrix Λ so that the characteristic function is

$$\varphi_{X_1,X_2}(t_1,t_2) = e^{i(t_1,t_2)\mu - \frac{1}{2}(t_1,t_2)\Lambda(t_1,t_2)'}.$$

By comparing this with $e^{it_1-2t_1^2-t_2^2-t_1t_2}$, we can easily obtain $\mu = (1,0)'$. Now we try to find Λ so that

$$\frac{1}{2}(t_1, t_2)\Lambda(t_1, t_2)' = 2t_1^2 + t_2^2 + t_1t_2.$$

To this end, let $\Lambda = (a_{ij})_{1 \leq i,j \leq 2}$. Then it holds that

$$\frac{1}{2}a_{11}t_1^2 + a_{12}t_1t_2 + \frac{1}{2}a_{22}t_2^2 = 2t_1^2 + t_2^2 + t_1t_2 \Longrightarrow a_{11} = 4, \quad a_{12} = 1, \quad a_{22} = 2.$$

Therefore, such $\mu = (1,0)'$ and $\Lambda = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$ DO exist, implying that $(X_1, X_2)'$ is indeed a two dimensional normal random vector

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N(\mu, \Lambda).$$

(5.2) <u>Method 1</u>: One can obtain the characteristic function of $X_1 + X_2$ as follows

$$\varphi_{X_1+X_2}(t) = E(e^{it(X_1+X_2)}) = E(e^{itX_1+tX_2}) = \varphi_{X_1,X_2}(t,t) = e^{it-2t^2-t^2-t^2} = e^{it-4t^2} = \varphi_{N(1,8)}(t).$$

Therefore $X_1 + X_2 \sim N(1, 8)$.

<u>Method 2</u>: Since $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N(\mu, \Lambda)$, and $X_1 + X_2 = A \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ with A = (1, 1), it follows that $X_1 + X_2$ is also normal with

mean vector $= A\mu = 1$, covariance matrix $= A\Lambda A' = 8$ (which is variance in this case).

So $X_1 + X_2 \sim N(1, 8)$.

6 (3 points)

Let $\{X_n\}_{n\geq 1}$ be a sequence of i.i.d. random variables with a common distribution function F(x) (which is $F(x) = P(X_i \leq x)$). Let $F_n(x)$ be the empirical distribution function defined as

$$F_n(x) = \frac{\# \text{ observations among } X_1, X_2, \dots, X_n \le x}{n}$$

For example, if we have observed $\{2, 3, 5, 4\}$ for $\{X_1, X_2, X_3, X_4\}$ then $F_4(2.5) = \frac{1}{4}$ and $F_4(3.2) = \frac{2}{4}$. (6.1) (1p) For each fixed x, prove that $F_n(x)$ converge to F(x) in probability as $n \to \infty$. (6.2) (2p) For each fixed x, determine a(x) and b(x), and show the following convergence in distribution

$$\frac{F_n(x) - a(x)}{b(x)/\sqrt{n}} \stackrel{d}{\longrightarrow} N(0, 1), \quad \text{ as } n \to \infty.$$

Solution. (6.1) It is important to rewrite $F_n(x)$ as $F_n(x) = \frac{1}{n}(Y_1 + Y_2 + \ldots + Y_n)$ where $Y_i, 1 \le i \le n$ are i.i.d. with

$$\begin{array}{c|c|c} Y_i & 0 & 1 \\ \hline p(y) & 1 - F(x) & F(x) \end{array}$$

That is, if $X_i \leq x$, then $Y_i = 1$ and the corresponding probability is $P(X_i \leq x) = F(X)$. For Y_i ,

$$\mu_Y = F(x), \qquad \sigma_Y^2 = F(x) - F(x)^2.$$

Weak law of large numbers (Theorem 6.5.1) implies that $F_n(x)$ converge to $\mu_Y = F(x)$ in probability. (6.2) The central limit theorem (Theorem 6.5.2) implies that

$$\frac{F_n(x) - \mu_Y}{\sigma_Y / \sqrt{n}} \stackrel{d}{\longrightarrow} N(0, 1).$$

Therefore $a(x) = \mu_Y = F(x)$ and $b(x) = \sigma_Y = \sqrt{F(x) - F(x)^2}$.

Е		
L		
L		

Followingis a list of discrete distribu An asterisk (*) indicates that the e	ttions, abbreviations, their probability functions, i expression is too complicated to present here; in s	means, va some case	ariances, and es a closed fo	l characteristic functio ormula does not even	ons. exist.
Distribution, notation	Probability function	E X	$\operatorname{Var} X$	$\varphi_X(t)$	
One point $\delta(a)$	p(a) = 1	в	0	e^{ita}	
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$\cos t$	
Bernoulli $\operatorname{Be}(p), 0 \leq p \leq 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	d	bd	$q + pe^{it}$	
Binomial Bin $(n, p), n = 1, 2, \dots, 0 \le p \le 1$	$p(k) = {n \choose k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	du	bdu	$(q + pe^{it})^n$	
Geometric $\operatorname{Ge}(p), \ 0 \leq p \leq 1$	$p(k) = pq^k, \ k = 0, 1, 2, \dots; \ q = 1 - p$	$\frac{d}{d}$	$\frac{q}{p^2}$	$\frac{p}{1-qe^{it}}$	
First success $\operatorname{Fs}(p), 0 \leq p \leq 1$	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	$\frac{1}{p}$	$p^{\frac{q}{2}}$	$\frac{pe^{it}}{1-qe^{it}}$	
Negative binomial NBin $(n, p), n = 1, 2, 3, \dots, 0 \le p \le 1$	$p(k) = {n+k-1 \choose k} p^n q^k, \ k = 0, 1, 2, \dots;$ q = 1 - p	$\frac{d}{b}u$	$n \frac{q}{p^2}$	$\big(\frac{p}{1-q^{e^{it}}}\big)^n$	
Poisson $Po(m), m > 0$	$p(k) = e^{-m} \; rac{m^k}{k!}, \; k = 0, 1, 2, \ldots$	m	m	$e^{m(e^{it}-1)}$	
Hypergeometric $H(N, n, p), n = 0, 1, \dots, N,$ $N = 1, \frac{2}{N}, \dots, 1$ $p = 0, \frac{1}{N}, \frac{2}{N}, \dots, 1$	$p(k) = \frac{\binom{Np}{k}\binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $q = 1 - p;$ $n - k = 0, \dots, Nq$	du	$npq \frac{N-n}{N-1}$	*	

Discrete Distributions

282

An asterisk (*) indicate	s that the expression is too complicated to j	present here	; in some cases a close	d formula does not even
Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Uniform/Rectangular U(a, b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
U(0,1) U(-1,1)	$f(x) = 1, \ 0 < x < 1$ $f(x) = \frac{1}{2}, \ x < 1$	- <mark>1</mark> -	3 <mark>1- 12</mark>	$\frac{e^{it}-1}{it}$
Triangular Tri (a,b)	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$ a < x < b	$\frac{1}{2}(a+b)$	$\frac{1}{24}(b-a)^2$	$\left(\frac{e^{itb/2}-e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$
$\operatorname{Tri}(-1,1)$	$f(x) = 1 - x , \ x < 1$	0	- I 0	$\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$
Exponential $Exp(a), a > 0$	$f(x) = \frac{1}{a} e^{-x/a}, \ x > 0$	a	a^2	$\frac{1}{1-ait}$
Gamma $\Gamma(p,a), \ a > 0, \ p > 0$	$f(x) = rac{1}{\Gamma(p)} x^{p-1} rac{1}{a^p} e^{-x/a}, \; x > 0$	ра	pa^2	$\frac{1}{(1-ait)^p}$
Chi-square $\chi^2(n), n = 1, 2, 3, \dots$	$f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x > 0$	u	2n	$\frac{1}{(1-2it)^{n/2}}$
Laplace $L(a), a > 0$	$f(x)=rac{1}{2a}e^{- x /a}, \ -\infty < x < \infty$	0	$2a^2$	$\frac{1}{1+a^2t^2}$
Beta $\beta(r,s), r,s > 0$	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1},$	$\frac{r}{r+s}$	$\frac{rs}{(r+s)^2(r+s+1)}$	*
	0 < x < 1			

nces, and characteristic functions. abbreviations their densities "" distributions. list of s Following is a

Continuous Distributions

Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Weibull $W(lpha,eta), lpha,eta>0$	$f(x) = rac{1}{lpha eta} x^{(1/eta) - 1} e^{-x^{1/eta} / lpha}, \; x > 0$	$lpha^eta\Gamma(eta+1)$	$a^{2eta}ig(\Gamma(2eta+1)\ -\Gamma(eta+1)^2ig)$	*
Rayleigh Ra $(\alpha), \alpha > 0$	$f(x) = \frac{2}{\alpha} x e^{-x^2/\alpha}, \ x > 0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$lpha(1-rac{1}{4}\pi)$	*
Normal $\begin{split} & N(\mu,\sigma^2), \\ & -\infty < \mu < \infty, \sigma > 0 \end{split}$	$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(x-\mu)^2/\sigma^2},$	Ц	σ^2	$e^{i\mu t-rac{1}{2}t^2\sigma^2}$
	$-\infty < x < \infty$			
N(0,1)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < \infty$	0	Ι	$e^{-t^{2}/2}$
Log-normal $LN(\mu, \sigma^2), -\infty < \mu < \infty, \ \sigma > 0$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2 / \sigma^2}, \ x > 0$	$e^{\mu+rac{1}{2}\sigma^2}$	$e^{2\mu} \left(e^{2\sigma^2} - e^{\sigma^2} ight)$	*
(Student's) t $t(n), n = 1, 2, \dots$	$f(x) = rac{\Gamma(rac{n+1}{2})}{\sqrt{\pi n} \Gamma(rac{n}{2})} \cdot drac{1}{(1+rac{n-1}{2})^{(n+1)/2}}, \ -\infty < x < \infty$	0	$\frac{n}{n-2},n>2$	*
(Fisher's) F $F(m \ n) \ m \ n = 1$ 2	$f(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{m/2}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \cdot \frac{x^{m/2-1}}{(1+\frac{mx}{n})^{(m+n)/2}},$	$rac{n}{n-2},$	$rac{n^2(m+2)}{m(n-2)(n-4)} - \left(rac{n}{n-2} ight)^2,$	*
···· (= (+	x > 0	n > 2	n > 4	

284

Continuous Distributions (continued)

B Some Distributions and Their Characteristics

Distribution, notation	Density	E X	$\operatorname{Var} X$	$\varphi_X(t)$
Cauchy				
C(m,a)	$f(x) = \frac{1}{\pi} \cdot \frac{a}{a^2 + (x-m)^2}, \ -\infty < x < \infty$	Ŕ	Ā	$e^{imt-a t }$
C(0,1)	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, -\infty < x < \infty$	R	R	$e^{- t }$
Pareto	$f(x)=rac{lpha k^lpha}{x^{lpha+1}},\ x>k$	$\frac{\alpha k}{\alpha - 1}, \alpha > 1$	$\frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \alpha > 2,$	*
$\operatorname{Pa}(k,\alpha), k > 0, \alpha > 0$				

Continuous Distributions (continued)