Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, a self-written A4 paper (two sides). Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5. Notation: 'A random variable X is distributed as...' is written as ' $X \in ...$ or $X \sim ...$ '

1 (3 points)

Let X be a continuous random variable with a probability density function $f_X(x) = \frac{1}{2}e^{-|x|}$ for $-\infty < x < \infty$. Define $Y = X^2$. Find the density function $f_Y(y)$ of Y.

Solution. Method-1: It is from many-to-one transformation theorem that

$$f_Y(y) = f_X(\sqrt{y}) \frac{1}{2\sqrt{y}} + f_X(-\sqrt{y}) \frac{1}{2\sqrt{y}} = \frac{1}{2} e^{-\sqrt{y}} \frac{1}{\sqrt{y}}, \qquad y \ge 0.$$

Method-2: Direct computations yield: for $y \ge 0$,

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(X \le \sqrt{y}) + P(X \ge -\sqrt{y}) = F_X(\sqrt{y}) + (1 - F_X(-\sqrt{y}))$$

Taking derivative gives

$$f_Y(y) = F_Y'(y) = f_X(\sqrt{y}) \frac{1}{2\sqrt{y}} + f_X(-\sqrt{y}) \frac{1}{2\sqrt{y}} = \frac{1}{2} e^{-\sqrt{y}} \frac{1}{\sqrt{y}}, \quad y \ge 0.$$

2 (3 points)

Let $Y = Z \cdot X$ where $Z \sim N(\mu, \sigma^2)$ (normal) and $X \sim Be(p)$ (Bernoulli) are two independent random variables.

(2.1) (1p) Find the expectation E(Y).

(2.2) (1p) Find the expectation $E(X \cdot Y \cdot Z)$.

(2.3) (1p) Find the conditional expectation E(Y|X).

Solution. (2.1)

$$E(Y) = E(Z \cdot X) = \text{(independence of } Z \text{ and } X) = E(Z) \cdot E(X) = \mu \cdot p.$$

(2.2)
$$E(X \cdot Y \cdot Z) = E(X \cdot Z \cdot X \cdot Z) = E(X^2 \cdot Z^2) = E(X^2) \cdot E(Z^2) = p \cdot (\mu^2 + \sigma^2).$$

(2.3)

 $E(Y|X) = E(Z \cdot X|X) = \text{(property of conditional expectation)} = X \cdot E(Z|X) = \text{(independence of } Z \text{ and } X) = X \cdot E(Z) = X \cdot \mu.$

3 (3 points)

Are there two independent and identically distributed random variables X and Y such that $X - Y \sim U(-1, 1)$? Here U(-1, 1) stands for uniform random variable on the interval (-1, 1). If there are, construct X and Y explicitly and explain why $X - Y \sim U(-1, 1)$. If there are no such random variables, proof it. (Hint: Since this question is about all possible random variables, the concept of characteristic function might help.)

Solution. No, there are no such random variables! Here is a proof based on characteristic function. If there were such X and Y such that $X - Y \sim U(-1,1)$, let $\varphi(t) = a + b \cdot i$ denote their characteristic function (for some real a and b), then characteristic function of X - Y reads

$$\varphi_{X-Y}(t) = Ee^{it(X-Y)} = Ee^{itX} \cdot Ee^{-itY} = \varphi(t) \cdot \varphi(-t) = (a+b \cdot i) \cdot (a-b \cdot i) = a^2 + b^2 \ge 0.$$

On the other hand, the characteristic function of U(-1,1) is (from Appendix B):

$$\varphi_{U(-1,1)}(t) = \frac{\sin t}{t}.$$

Since $\varphi_{U(-1,1)}(t) = \frac{\sin t}{t}$ can be negative and positive, there is no way that $\varphi_{X-Y}(t) = \varphi_{U(-1,1)}(t)$ for all t.

4 (3 points)

Let $X_1 \sim Exp(1)$ and $X_2 \sim Exp(1)$ be independent exponential random variables, and $X_{(1)} \leq X_{(2)}$ be their order statistic. Show that $X_{(2)}$ and $X_1 + \frac{1}{2}X_2$ have the same distribution.

Solution. It is clear that the density function of $X_{(2)}$ is given as (see Book, Section 4.1)

$$f_{X_{(2)}}(x) = 2(1 - e^{-x})e^{-x}.$$

Method-1: Note that the density of X_1 is $f_{X_1}(x_1) = e^{-x_1}$ for $x_1 \ge 0$, and the density of $\frac{1}{2}X_2$ is $f_{X_2}(x_2) = 2e^{-2x_1}$ for $x_2 \ge 0$. Then it is from convolution that

$$f_{X_1 + \frac{1}{2}X_2}(x) = \int_{-\infty}^{\infty} f_{X_1}(y) f_{X_2}(x - y) dy = \int_{0}^{x} e^{-y} 2e^{-2(x - y)} dy = 2(1 - e^{-x})e^{-x} = f_{X_{(2)}}(x).$$

Method-2: We compute characteristic functions.

$$\begin{split} \varphi_{X_{(2)}}(t) &= E(e^{itX_{(2)}}) = \int_0^\infty e^{itx} 2(1-e^{-x})e^{-x} = 2\int_0^\infty e^{(it-1)x} dx - 2\int_0^\infty e^{(it-2)x} dx = \frac{-2}{it-1} + \frac{2}{it-2}, \\ \varphi_{X_1 + \frac{1}{2}X_2}(t) &= E(e^{it(X_1 + \frac{1}{2}X_2)}) = E(e^{itX_1})E(e^{i\frac{t}{2}X_2}) = \frac{1}{1-it} \cdot \frac{1}{1-i\frac{t}{2}}. \end{split}$$

It is clear that $\varphi_{X_{(2)}}(t) = \varphi_{X_1 + \frac{1}{2}X_2}(t)$.

5 (3 points)

Let (X,Y)' be two dimensional random vector whose joint probability density function f(x,y) is give as

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{1}{2}(x^2 - 2xy + 2y^2)}, \quad -\infty < x < \infty, -\infty < y < \infty.$$

(5.1) (1p) Is (X,Y)' a two dimensional normal random vector? If not, explain why. If yes, find the mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Lambda}$. (Hint: n-dimensional normal has density $f(\mathbf{x}) = \left(\frac{1}{2\pi}\right)^{n/2} \frac{1}{\sqrt{\det \boldsymbol{\Lambda}}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\boldsymbol{\Lambda}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$ for $\mathbf{x} \in \mathbf{R}^n$.) (5.2) (1p) Find the marginal probability density function $f_X(x)$ of X.

(5.3) (1p) Find the conditional expectation E(X|Y=y).

Solution. (5.1) By comparing with n-dimensional density $f(\mathbf{x})$, we try to rewrite f(x,y) in the following form

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{1}{2}(x^2 - 2xy + 2y^2)} = \frac{1}{2\pi} e^{-\frac{1}{2}(x,y)} \begin{pmatrix} a & c \\ c & b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix},$$

where the matrix $\begin{pmatrix} a & c \\ c & b \end{pmatrix}$ is considered as $\mathbf{\Lambda}^{-1}$. It holds that

$$(x,y)$$
 $\begin{pmatrix} a & c \\ c & b \end{pmatrix}$ $\begin{pmatrix} x \\ y \end{pmatrix} = ax^2 + 2cxy + bY^2 =$ (should be) $= x^2 - 2xy + 2y^2$,

from which a=1,b=2 and c=-1, that is $\mathbf{\Lambda}^{-1}=\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix},$ which in turn implies $\mathbf{\Lambda}=\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$ Therefore,

$$(X,Y)' \sim N(\boldsymbol{\mu}, \boldsymbol{\Lambda}), \qquad \boldsymbol{\mu} = \boldsymbol{0}, \boldsymbol{\Lambda} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

(5.2). **Method-1:** It is directly from the solution of (5.1) that $X \sim N(0,2)$, therefore

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sqrt{2}}e^{-\frac{x^2}{4}}.$$

Method-2: A direct integration gives

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy = \int_{-\infty}^{\infty} \frac{1}{2\pi} e^{-\frac{1}{2}(x^2 - 2xy + 2y^2)} dy = \dots = \frac{1}{\sqrt{2\pi}\sqrt{2}} e^{-\frac{x^2}{4}}.$$

(5.3) Just as in (5.2), the marginal density $f_Y(y)$ of Y can be obtained (note that $Y \sim N(0,1)$) as $f_Y(y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}$.

$$\begin{split} E(X|Y=y) &= \int_{-\infty}^{\infty} x \cdot f_{X|Y=y}(x) dx = \int_{-\infty}^{\infty} x \cdot \frac{f(x,y)}{f_Y(y)} dx \\ &= \int_{-\infty}^{\infty} x \cdot \frac{\frac{1}{2\pi} e^{-\frac{1}{2}(x^2 - 2xy + 2y^2)}}{\frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}} dx = \int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-y)^2} dx = y. \end{split}$$

6 (3 points)

Let $X_n \sim Bin(n, \frac{\lambda}{n})$ be Binomial with a constant parameter $\lambda > 0$. Prove that $X_n \stackrel{d}{\longrightarrow} Po(\lambda)$ as $n \to \infty$, where $\stackrel{d}{\longrightarrow}$ means convergence in distribution, and $Po(\lambda)$ stands for a Poisson random variable with parameter λ . (Hint: Transforms (Probability Generating Function (PGF), Moment Generating Function (MGF), and Characteristic Function (CF)) might help.)

Solution. PGF of X_n (Book, page 61) and PGF of $Po(\lambda)$ (Book, page 63) are:

$$g_{X_n}(t) = \left(1 - \frac{\lambda}{n} + \frac{\lambda}{n}t\right)^n = \left(1 + \frac{\lambda(t-1)}{n}\right)^n \to e^{\lambda(t-1)} = g_{Po(\lambda)}(t).$$

Then it is directly from the continuity theorem (Book, page 159) that $X_n \stackrel{d}{\longrightarrow} Po(\lambda)$. Proof based on MGF or CF will be similar as above.

Discrete Distributions

is.

Distribution, notation	Probability function	E X	$\operatorname{Var} X$	$\varphi_X(t)$
One point $\delta(a)$	p(a) = 1	a	0	e^{ita}
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$t \cos t$
Bernoulli $\mathrm{Be}(p), 0 \le p \le 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	d	bd	$q + pe^{it}$
Binomial $Bin(n,p),\ n=1,2,\dots,\ 0\leq p\leq 1$	$p(k) = \binom{n}{k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	du	bdu	$(q + pe^{it})^n$
Geometric $\operatorname{Ge}(p),\ 0 \le p \le 1$	$p(k) = pq^k, \ k = 0, 1, 2, \dots; \ q = 1 - p$	$\frac{d}{d}$	$\frac{q}{p^2}$	$\frac{p}{1-qe^{it}}$
First success $\operatorname{Fs}(p), 0 \leq p \leq 1$	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	<u>1</u> _ <u>7</u>	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$
Negative binomial NBin (n, p) , $n = 1, 2, 3,$, $0 \le p \le 1$	$p(k) = {n+k-1 \choose k} p^n q^k, \ k = 0, 1, 2,;$ q = 1 - p	$\frac{d}{b}u$	$n\frac{q}{p^2}$	$(rac{p}{1-qe^{it}})^n$
Poisson $\mathrm{Po}(m),m>0$	$p(k) = e^{-m} \frac{m^k}{k!}, \ k = 0, 1, 2, \dots$	m	E	$e^{m(e^{it}-1)}$
Hypergeometric $H(N,n,p),\ n=0,1,\ldots,N,$ $N=1,2,\ldots,$ $p=0,\frac{1}{N},\frac{2}{N},\ldots,1$	$p(k) = \frac{\binom{Np}{k} \binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $q = 1 - p;$ $n - k = 0, \dots, Nq$	du	$npq \frac{N-n}{N-1}$	*

Continuous Distributions

Distribution, notation	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Uniform/Rectangular				
U(a,b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
U(0,1)	$f(x) = 1, \ 0 < x < 1$	□ Ω	$\frac{1}{12}$	$\frac{e^{it}-1}{it}$
U(-1,1)	$f(x) = \frac{1}{2}, x < 1$	0	Hβ	$\frac{\sin t}{t}$
Tri (a,b)	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$	$\frac{1}{2}(a+b)$	$\frac{1}{24}(b-a)^2$	$\left(\frac{e^{itb/2} - e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$
$\operatorname{Tri}(-1,1)$	a < x < 0 f(x) = 1 - x , x < 1	0	⊣ I⁄©	$\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$
Exponential $\operatorname{Exp}(a), \ a > 0$	$f(x) = \frac{1}{a} e^{-x/a}, \ x > 0$	a	a^2	$\frac{1}{1-ait}$
Gamma $\Gamma(p,a),a>0,p>0$	$f(x) = \frac{1}{\Gamma(p)} x^{p-1} \frac{1}{a^p} e^{-x/a}, \ x > 0$	pa	pa^2	$\frac{1}{(1-ait)^p}$
Chi-square $\chi^2(n), n = 1, 2, 3, \dots$	$f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} (\frac{1}{2})^{n/2} e^{-x/2}, \ x > 0$	u	2m	$\frac{1}{(1-2it)^{n/2}}$
Laplace $L(a), a > 0$	$f(x) = \frac{1}{2a} e^{- x /a}, -\infty < x < \infty$	0	$2a^2$	$\frac{1}{1+a^2t^2}$
Beta	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1},$	$rac{r}{r+s}$	$\frac{rs}{(r+s)^2(r+s+1)}$	*
$\beta(r,s),r,s>0$	1 < 3 < 1			

Continuous Distributions (continued)

Distribution, notation	Density	EX	Var X	$\varphi_X(t)$
Weibull $W(\alpha,\beta), \ \alpha,\beta > 0$	$f(x) = \frac{1}{\alpha \beta} x^{(1/\beta)-1} e^{-x^{1/\beta}/\alpha}, \ x > 0$	$\alpha^{eta} \Gamma(eta+1)$	$a^{2\beta} \left(\Gamma(2\beta + 1) - \Gamma(\beta + 1)^2 \right)$	*
Rayleigh $\operatorname{Ra}(\alpha), \ \alpha > 0$	$f(x) = \frac{2}{\alpha} x e^{-x^2/\alpha}, \ x > 0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$lpha(1-rac{1}{4}\pi)$	*
Normal $N(\mu,\sigma^2),$ $-\infty<\mu<\infty,\sigma>0$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2},$	π	σ^2	$e^{i\mu t - \frac{1}{2}t^2\sigma^2}$
N(0,1)	$f(x) = rac{1}{\sqrt{2\pi}} e^{-x^2/2}, \; -\infty < x < \infty$	0	1	$e^{-t^2/2}$
Log-normal $LN(\mu,\sigma^2),$ $-\infty<\mu<\infty,\ \sigma>0$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2/\sigma^2}, \ x > 0$	$e^{\mu + \frac{1}{2}\sigma^2}$	$e^{2\mu} \left(e^{2\sigma^2} - e^{\sigma^2} \right)$	*
(Student's) t $t(n), n = 1, 2, \dots$	$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} \cdot d_{\frac{1}{(1+\frac{x^2}{n})^{(n+1)/2}}},$ $-\infty < x < \infty$	0	$\frac{n}{n-2},n>2$	*
(Fisher's) F $F(m \ n) \ m \ n-1 \ 9$	$f(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{m/2}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \cdot \frac{x^{m/2-1}}{(1+\frac{mx}{n})^{(m+n)/2}},$	$rac{n}{n-2}$,	$\frac{n^2(m+2)}{m(n-2)(n-4)} - \left(\frac{n}{n-2}\right)^2,$	*
$T(nt, n), nt, n = 1, 2, \dots$	x > 0	n > 2	n > 4	

Continuous Distributions (continued)

Distribution, notation Density	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Cauchy				
C(m,a)	$f(x) = \frac{1}{\pi} \cdot \frac{a}{a^2 + (x - m)^2}, -\infty < x < \infty$	ΕŲ	Ħ	$e^{imt-a t }$
C(0,1)	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, -\infty < x < \infty$	ΕĹ	E	$e^{-\frac{ t }{t}}$
Pareto	$f(x) = \frac{\alpha k^{\alpha}}{x^{\alpha+1}}, \ x > k$	$\frac{\alpha k}{\alpha - 1}, \ \alpha > 1$	$\frac{\alpha k}{\alpha-1}, \ \alpha>1 \frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \ \alpha>2,$	*