
TAMS46: Probability Theory (Second Course)
∣∣∣ Provkod: TEN1 ∣∣∣ 30 October 2025, 14:00-18:00

Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, a self-written/printed A4 paper (two sides).
Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5.
Notation: ‘A random variable X is distributed as...’ is written as ‘X ∈ ... or X ∼ ... ’
Remark: Write down all necessary steps in your solutions in order to receive as many points as possible.

1 (3 points)

Let X ∼ Exp(1) and Y ∼ Exp(1) be independent exponential random variables.
(1.1) (1p) Find the probability density function fX+Y (u) of X + Y.
(1.2) (2p) Find the probability density function fX−Y (v) of X − Y.

Solution. Set U = X − Y and V = X + Y. Then it follows that

X =
U + V

2
, Y =

V − U

2
, J =

∣∣∣∣ 1
2

1
2

− 1
2

1
2

∣∣∣∣ = 1

2
, v > 0,−v < u < v.

Since fX,Y (x, y) = e−x−y for x > 0 and y > 0, it follows that

fU,V (u, v) = e−
u+v
2 − v−u

2 · |J | = e−v · 1
2
, v > 0,−v < u < v.

(1.1)

fV (v) =

∫ v

−v

fU,V (u, v)du =

∫ v

−v

e−v · 1
2
du = e−v · v, v > 0.

(1.2) It is clear that −v < u < v is equivalent to |u| < v, therefore,

fU (u) =

∫ ∞

|u|
fU,V (u, v)dv =

∫ ∞

|u|
e−v · 1

2
dv = e−|u| · 1

2
, −∞ < u < ∞.

2 (3 points)

A stick of length 1 is cut off at a random point uniformly on (0, 1), so the length X of the remaining piece is a uniform
random variable X ∼ U(0, 1). This remaining piece is cut off again at a random point uniformly on (0, X), then the
length Y of the second remaining piece is a random variable Y ∼ U(0, X) (equivalently, it can be written as
Y |X = x ∼ U(0, x) for 0 < x < 1).
(2.1) (1p) Find the expectation E(Y ) of Y.
(2.2) (1p) Find the variance V (Y ) of Y.
(2.3) (1p) Find the probability P (Y ≤ y).

Solution. (2.1)

E(Y ) = E(E(Y |X)) = E

(
X

2

)
=

1

2
E(X) =

1

2
· 1
2
=

1

4
.

(2.2)

V (Y ) = E (V (Y |X)) + V (E(Y |X)) = E

(
X2

12

)
+ V

(
X

2

)
=

1

36
+

1

48
=

7

144
= 0.0486.

(2.3) For 0 < y < 1 and set g(u) = 1{u≤y},

P (Y ≤ y) = E(g(Y )) = E(E(g(Y )|X)) =

∫ 1

0

E(g(Y )|X = x) · fX(x)dx

=

∫ 1

0

[∫ x

0

g(u)fY |X=x(u)du

]
· fX(x)dx =

∫ 1

0

[∫ x

0

1{u≤y}fY |X=x(u)du

]
· fX(x)dx

=

∫ 1

0

[∫ min(x,y)

0

1

x
du

]
· 1dx =

∫ 1

0

1

x
·min(x, y)dx

=

∫ y

0

1

x
· xdx+

∫ 1

y

1

x
· ydx = y − y ln y.
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3 (3 points)

Let (X,Y )′ be two dimensional random vector whose joint probability density function f(x, y) is give as

f(x, y) =
2

5
· (2x+ 3y), if 0 < x < 1 and 0 < y < 1.

Find the conditional expectations E(Y |X = x) and E(X|Y = y).

Solution. The marginal density functions can be found as follows:

fX(x) =

∫ 1

0

f(x, y)dy =
4

5
x+

3

5
, for 0 < x < 1, fY (y) =

∫ 1

0

f(x, y)dx =
6

5
y +

2

5
, for 0 < y < 1.

Therefore,

E(Y |X = x) =

∫ 1

0

yfY |X=x(y)dy =

∫ 1

0

y
f(x, y)

fX(x)
dy =

2x+ 2

4x+ 3
, 0 < x < 1.

E(X|Y = y) =

∫ 1

0

xfX|Y=y(x)dx =

∫ 1

0

x
f(x, y)

fY (y)
dx =

9y + 4

18y + 6
, 0 < y < 1.

4 (3 points)

Let X1 ∼ Exp(1) and X2 ∼ Exp(1) be independent exponential random variables, and X(1) ≤ X(2) be their order
statistic.
(4.1) (1p) Show that X(1) and X(2) −X(1) are independent, and determine their distributions.
(4.2) (2p) Find the conditional expectations E(X(2)|X(1) = x) and E(X(1)|X(2) = y).

Solution. It is from Book (p.110. Theorem 3.1) that the joint density function of (X(1), X(2)) is

fX(1),X(2)
(x, y) = 2f(x)f(y) = 2e−x−y, 0 < x < y.

(4.1) Let U = X(1) and V = X(2) −X(1). It follows that

X(1) = U, X(2) = U + V, J =

∣∣∣∣1 0
1 1

∣∣∣∣ = 1, u > 0, v > 0.

Therefore, the joint density function of (U, V ) is

fU,V (u, v) = 2e−u−(u+v) · |J | = 2e−2u · e−v, u > 0, v > 0,

= fU (u) · fV (v).

Now it follows that U and V are independent. Furthermore, U ∼ Exp(1/2) and V ∼ Exp(1).
(4.2)

E(X(2)|X(1) = x) = E(X(2) −X(1) +X(1)|X(1) = x) = E(X(2) −X(1)|X(1) = x) + E(X(1)|X(1) = x)

= (independence of U and V ) E(X(2) −X(1)) + x = 1 + x.

With (see Book (p.102)) fX(2)
(y) = 2(1− e−y)e−y,

E(X(1)|X(2) = y) =

∫ y

0

x · fX(1)|X(2)=y(x)dx =

∫ y

0

x ·
fX(1),X(2)

(x, y)

fX(2)
(y)

dx = 1 +
y

1− ey
.
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5 (3 points)

Let X1, X2, . . . be independent and identically distributed (i.i.d.) random variables with a common characteristic
function φX(t) = 1

2 + 1
4 (e

−it + eit) for t ∈ R. Let N ∼ Po(λ) be a Poisson random variable which is independent of
X1, X2, . . . . Set

Z = X1 +X2 + . . .+XN .

(5.1) (1p) Find the expectation E(X) of X.
(5.2) (1p) Find the expectation E(Z) of Z.
(5.3) (1p) Find the variance V (Z) of Z.

Solution. (5.1) It is from Book (p.74, Theorem 4.7) that φ(k)(0) = ikE(Xk), therefore

E(X) = φ′(0)/i =
1

4
(−ie−i0 + iei0)/i = 0.

(5.2) It is from Book (p.81, Theorem 6.2) that

E(Z) = E(X) · E(N) = 0 · λ = 0.

(5.3) It is from Book (p.81, Theorem 6.2) that

V (Z) = E(N) · V (X) + (E(X))2 · V (N) = λ · 1
2
+ 0 · λ =

λ

2
,

where V (X) is computed as follows

V (X) = E(X2)− (E(X))2 = E(X2) = −φ′′(0) =
1

2
.

6 (3 points)

Let X1, X2, . . . and X be one dimensional normal random variables.

(6.1) (1p) If lim
n→∞

E(Xn) = E(X) and lim
n→∞

V (Xn) = V (X), is it true Xn
d−−→ X as n → ∞? where

d−−→ means

convergence in distribution. If it is true, then prove it. If it is not true, then construct a counterexample.

(6.2) (1p) If lim
n→∞

E(Xn) = E(X) and lim
n→∞

V (Xn) = V (X), is it true Xk
n

d−−→ Xk as n → ∞ for any fixed positive

integer k? If it is true, then prove it. If it is not true, then construct a counterexample.

(6.3) (1p) If Xn
d−−→ X as n → ∞, is it true that lim

n→∞
E(Xn) = E(X) and lim

n→∞
V (Xn) = V (X)? If it is true, then

prove it. If it is not true, then construct a counterexample.

Solution. Let Xn ∼ N(µn, σ
2
n) and X ∼ N(µ, σ2). The characteristic functions are

φXn
(t) = eiµnt− 1

2 t
2σ2

n , φX(t) = eiµt−
1
2 t

2σ2

.

(6.1) If µn → µ and σn → σ, then it is clear that φXn
(t) → φX(t). This implies that Xn

d−−→ X.

(6.2) The characteristic functions of Xk
n and Xk are

φXk
n
(t) = E(eitX

k
n) =

∫ ∞

−∞
eitx

1√
2πσn

e−(x−µn)
2/(2σ2

n)dx

φXk(t) = E(eitX
k

) =

∫ ∞

−∞
eitx

1√
2πσ

e−(x−µ)2/(2σ2)dx.

If µn → µ and σn → σ, then it is from the dominated convergence theorem that φXk
n
(t) → φXk(t). This implies that

Xk
n

d−−→ Xk.

(6.3) It is from Book (p.159, Remark 4.2) that if Xn
d−−→ X, then φXn

(t) → φX(t). That is

eiµnt− 1
2 t

2σ2
n = e−

1
2 t

2σ2
n(cos(µnt) + i sin(µnt)) → e−

1
2 t

2σ2

(cos(µt) + i sin(µt))

for all −∞ < t < ∞. This implies that µn → µ and σn → σ.

Page 3/3












