Examiner: Xiangfeng Yang (013-285788). Things allowed: a calculator, a self-written/printed A4 paper (two sides). Scores rating (Betygsgränser): 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5.

Notation: 'A random variable X is distributed as...' is written as ' $X \in ...$ or $X \sim ...$ '

Remark: Write down all necessary steps in your solutions in order to receive as many points as possible.

1 (3 points)

Let $X \sim Exp(1)$ and $Y \sim Exp(1)$ be independent exponential random variables.

(1.1) (1p) Find the probability density function $f_{X+Y}(u)$ of X+Y.

(1.2) (2p) Find the probability density function $f_{X-Y}(v)$ of X-Y.

Solution. Set U = X - Y and V = X + Y. Then it follows that

$$X = \frac{U+V}{2}, \quad Y = \frac{V-U}{2}, \quad J = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{vmatrix} = \frac{1}{2}, \quad v > 0, -v < u < v.$$

Since $f_{X,Y}(x,y) = e^{-x-y}$ for x > 0 and y > 0, it follows that

$$f_{U,V}(u,v) = e^{-\frac{u+v}{2} - \frac{v-u}{2}} \cdot |J| = e^{-v} \cdot \frac{1}{2}, \quad v > 0, -v < u < v.$$

(1.1)

$$f_V(v) = \int_{-v}^{v} f_{U,V}(u,v) du = \int_{-v}^{v} e^{-v} \cdot \frac{1}{2} du = e^{-v} \cdot v, \quad v > 0.$$

(1.2) It is clear that -v < u < v is equivalent to |u| < v, therefore,

$$f_U(u) = \int_{|u|}^{\infty} f_{U,V}(u,v) dv = \int_{|u|}^{\infty} e^{-v} \cdot \frac{1}{2} dv = e^{-|u|} \cdot \frac{1}{2}, \quad -\infty < u < \infty.$$

2 (3 points)

A stick of length 1 is cut off at a random point uniformly on (0,1), so the length X of the remaining piece is a uniform random variable $X \sim U(0,1)$. This remaining piece is cut off again at a random point uniformly on (0,X), then the length Y of the second remaining piece is a random variable $Y \sim U(0,X)$ (equivalently, it can be written as $Y|X = x \sim U(0,x)$ for 0 < x < 1).

(2.1) (1p) Find the expectation E(Y) of Y.

(2.2) (1p) Find the variance V(Y) of Y.

(2.3) (1p) Find the probability $P(Y \leq y)$.

Solution. (2.1)

$$E(Y) = E(E(Y|X)) = E\left(\frac{X}{2}\right) = \frac{1}{2}E(X) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

(2.2)

$$V(Y) = E\left(V(Y|X)\right) + V\left(E(Y|X)\right) = E\left(\frac{X^2}{12}\right) + V\left(\frac{X}{2}\right) = \frac{1}{36} + \frac{1}{48} = \frac{7}{144} = 0.0486.$$

(2.3) For 0 < y < 1 and set $g(u) = 1_{\{u \le y\}}$,

$$\begin{split} P(Y \leq y) &= E(g(Y)) = E(E(g(Y)|X)) = \int_0^1 E(g(Y)|X = x) \cdot f_X(x) dx \\ &= \int_0^1 \left[\int_0^x g(u) f_{Y|X = x}(u) du \right] \cdot f_X(x) dx = \int_0^1 \left[\int_0^x 1_{\{u \leq y\}} f_{Y|X = x}(u) du \right] \cdot f_X(x) dx \\ &= \int_0^1 \left[\int_0^{\min(x,y)} \frac{1}{x} du \right] \cdot 1 dx = \int_0^1 \frac{1}{x} \cdot \min(x,y) dx \\ &= \int_0^y \frac{1}{x} \cdot x dx + \int_y^1 \frac{1}{x} \cdot y dx = y - y \ln y. \end{split}$$

$3 \quad (3 \text{ points})$

Let (X,Y)' be two dimensional random vector whose joint probability density function f(x,y) is give as

$$f(x,y) = \frac{2}{5} \cdot (2x + 3y),$$
 if $0 < x < 1$ and $0 < y < 1$.

Find the conditional expectations E(Y|X=x) and E(X|Y=y).

Solution. The marginal density functions can be found as follows:

$$f_X(x) = \int_0^1 f(x,y)dy = \frac{4}{5}x + \frac{3}{5}$$
, for $0 < x < 1$, $f_Y(y) = \int_0^1 f(x,y)dx = \frac{6}{5}y + \frac{2}{5}$, for $0 < y < 1$.

Therefore,

$$\begin{split} E(Y|X=x) &= \int_0^1 y f_{Y|X=x}(y) dy = \int_0^1 y \frac{f(x,y)}{f_X(x)} dy = \frac{2x+2}{4x+3}, \quad 0 < x < 1. \\ E(X|Y=y) &= \int_0^1 x f_{X|Y=y}(x) dx = \int_0^1 x \frac{f(x,y)}{f_Y(y)} dx = \frac{9y+4}{18y+6}, \quad 0 < y < 1. \end{split}$$

4 (3 points)

Let $X_1 \sim Exp(1)$ and $X_2 \sim Exp(1)$ be independent exponential random variables, and $X_{(1)} \leq X_{(2)}$ be their order statistic.

(4.1) (1p) Show that $X_{(1)}$ and $X_{(2)} - X_{(1)}$ are independent, and determine their distributions.

(4.2) (2p) Find the conditional expectations $E(X_{(2)}|X_{(1)}=x)$ and $E(X_{(1)}|X_{(2)}=y)$.

Solution. It is from Book (p.110. Theorem 3.1) that the joint density function of $(X_{(1)}, X_{(2)})$ is

$$f_{X_{(1)},X_{(2)}}(x,y) = 2f(x)f(y) = 2e^{-x-y}, \quad 0 < x < y.$$

(4.1) Let $U=X_{(1)}$ and $V=X_{(2)}-X_{(1)}.$ It follows that

$$X_{(1)} = U$$
, $X_{(2)} = U + V$, $J = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1$, $u > 0, v > 0$.

Therefore, the joint density function of (U, V) is

$$f_{U,V}(u,v) = 2e^{-u-(u+v)} \cdot |J| = 2e^{-2u} \cdot e^{-v}, \quad u > 0, v > 0,$$

= $f_U(u) \cdot f_V(v).$

Now it follows that U and V are independent. Furthermore, $U \sim Exp(1/2)$ and $V \sim Exp(1)$. (4.2)

$$E(X_{(2)}|X_{(1)} = x) = E(X_{(2)} - X_{(1)} + X_{(1)}|X_{(1)} = x) = E(X_{(2)} - X_{(1)}|X_{(1)} = x) + E(X_{(1)}|X_{(1)} = x)$$

$$= (\text{independence of } U \text{ and } V) \quad E(X_{(2)} - X_{(1)}) + x = 1 + x.$$

With (see Book (p.102)) $f_{X_{(2)}}(y) = 2(1 - e^{-y})e^{-y}$,

$$E(X_{(1)}|X_{(2)}=y) = \int_0^y x \cdot f_{X_{(1)}|X_{(2)}=y}(x) dx = \int_0^y x \cdot \frac{f_{X_{(1)},X_{(2)}}(x,y)}{f_{X_{(2)}}(y)} dx = 1 + \frac{y}{1 - e^y}.$$

Page 2/3

5 (3 points)

Let X_1, X_2, \ldots be independent and identically distributed (i.i.d.) random variables with a common characteristic function $\varphi_X(t) = \frac{1}{2} + \frac{1}{4}(e^{-it} + e^{it})$ for $t \in \mathbb{R}$. Let $N \sim Po(\lambda)$ be a Poisson random variable which is independent of X_1, X_2, \ldots Set

$$Z = X_1 + X_2 + \ldots + X_N.$$

(5.1) (1p) Find the expectation E(X) of X.

(5.2) (1p) Find the expectation E(Z) of Z.

(5.3) (1p) Find the variance V(Z) of Z.

Solution. (5.1) It is from Book (p.74, Theorem 4.7) that $\varphi^{(k)}(0) = i^k E(X^k)$, therefore

$$E(X) = \varphi'(0)/i = \frac{1}{4}(-ie^{-i0} + ie^{i0})/i = 0.$$

(5.2) It is from Book (p.81, Theorem 6.2) that

$$E(Z) = E(X) \cdot E(N) = 0 \cdot \lambda = 0.$$

(5.3) It is from Book (p.81, Theorem 6.2) that

$$V(Z) = E(N) \cdot V(X) + (E(X))^{2} \cdot V(N) = \lambda \cdot \frac{1}{2} + 0 \cdot \lambda = \frac{\lambda}{2},$$

where V(X) is computed as follows

$$V(X) = E(X^2) - (E(X))^2 = E(X^2) = -\varphi''(0) = \frac{1}{2}$$

6 (3 points)

Let X_1, X_2, \ldots and X be one dimensional normal random variables.

(6.1) (1p) If $\lim_{n\to\infty} E(X_n) = E(X)$ and $\lim_{n\to\infty} V(X_n) = V(X)$, is it true $X_n \xrightarrow{d} X$ as $n\to\infty$? where \xrightarrow{d} means convergence in distribution. If it is true, then prove it. If it is not true, then construct a counterexample.

(6.2) (1p) If $\lim_{n\to\infty} E(X_n) = E(X)$ and $\lim_{n\to\infty} V(X_n) = V(X)$, is it true $X_n^k \xrightarrow{d} X^k$ as $n\to\infty$ for any fixed positive integer k? If it is true, then prove it. If it is not true, then construct a counterexample.

(6.3) (1p) If $X_n \stackrel{d}{\longrightarrow} X$ as $n \to \infty$, is it true that $\lim_{n \to \infty} E(X_n) = E(X)$ and $\lim_{n \to \infty} V(X_n) = V(X)$? If it is true, then prove it. If it is not true, then construct a counterexample.

Solution. Let $X_n \sim N(\mu_n, \sigma_n^2)$ and $X \sim N(\mu, \sigma^2)$. The characteristic functions are

$$\varphi_{X_n}(t) = e^{i\mu_n t - \frac{1}{2}t^2\sigma_n^2}, \qquad \varphi_X(t) = e^{i\mu t - \frac{1}{2}t^2\sigma^2}.$$

(6.1) If $\mu_n \to \mu$ and $\sigma_n \to \sigma$, then it is clear that $\varphi_{X_n}(t) \to \varphi_X(t)$. This implies that $X_n \xrightarrow{d} X$.

(6.2) The characteristic functions of X_n^k and X^k are

$$\begin{split} \varphi_{X_n^k}(t) &= E(e^{itX_n^k}) = \int_{-\infty}^{\infty} e^{itx} \frac{1}{\sqrt{2\pi}\sigma_n} e^{-(x-\mu_n)^2/(2\sigma_n^2)} dx \\ \varphi_{X^k}(t) &= E(e^{itX^k}) = \int_{-\infty}^{\infty} e^{itx} \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)} dx. \end{split}$$

If $\mu_n \to \mu$ and $\sigma_n \to \sigma$, then it is from the dominated convergence theorem that $\varphi_{X_n^k}(t) \to \varphi_{X_n^k}(t)$. This implies that $X_n^k \xrightarrow{d} X^k$.

(6.3) It is from Book (p.159, Remark 4.2) that if $X_n \xrightarrow{d} X$, then $\varphi_{X_n}(t) \to \varphi_X(t)$. That is

$$e^{i\mu_n t - \frac{1}{2}t^2\sigma_n^2} = e^{-\frac{1}{2}t^2\sigma_n^2}(\cos(\mu_n t) + i\sin(\mu_n t)) \to e^{-\frac{1}{2}t^2\sigma^2}(\cos(\mu t) + i\sin(\mu t))$$

for all $-\infty < t < \infty$. This implies that $\mu_n \to \mu$ and $\sigma_n \to \sigma$.

Discrete Distributions

is.

Distribution, notation	Probability function	E X	$\operatorname{Var} X$	$\varphi_X(t)$
One point $\delta(a)$	p(a) = 1	a	0	e^{ita}
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$t \cos t$
Bernoulli $\mathrm{Be}(p), 0 \le p \le 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	d	bd	$q + pe^{it}$
Binomial $Bin(n,p),\ n=1,2,\dots,\ 0\leq p\leq 1$	$p(k) = \binom{n}{k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	du	bdu	$(q + pe^{it})^n$
Geometric $\operatorname{Ge}(p),\ 0 \le p \le 1$	$p(k) = pq^k, \ k = 0, 1, 2, \dots; \ q = 1 - p$	$\frac{d}{d}$	$\frac{q}{p^2}$	$\frac{p}{1-qe^{it}}$
First success $\operatorname{Fs}(p), 0 \leq p \leq 1$	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	<u>1</u> _ <u>7</u>	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$
Negative binomial NBin (n, p) , $n = 1, 2, 3,$, $0 \le p \le 1$	$p(k) = {n+k-1 \choose k} p^n q^k, \ k = 0, 1, 2,;$ q = 1 - p	$\frac{d}{b}u$	$n\frac{q}{p^2}$	$(rac{p}{1-qe^{it}})^n$
Poisson $\mathrm{Po}(m),m>0$	$p(k) = e^{-m} \frac{m^k}{k!}, \ k = 0, 1, 2, \dots$	m	E	$e^{m(e^{it}-1)}$
Hypergeometric $H(N,n,p),\ n=0,1,\ldots,N,$ $N=1,2,\ldots,$ $p=0,\frac{1}{N},\frac{2}{N},\ldots,1$	$p(k) = \frac{\binom{Np}{k} \binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $q = 1 - p;$ $n - k = 0, \dots, Nq$	du	$npq \frac{N-n}{N-1}$	*

Continuous Distributions

Distribution, notation	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Uniform/Rectangular				
U(a,b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
U(0,1)	$f(x) = 1, \ 0 < x < 1$	□ Ω	$\frac{1}{12}$	$\frac{e^{it}-1}{it}$
U(-1,1)	$f(x) = \frac{1}{2}, x < 1$	0	Hβ	$\frac{\sin t}{t}$
Tri (a,b)	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$	$\frac{1}{2}(a+b)$	$\frac{1}{24}(b-a)^2$	$\left(\frac{e^{itb/2} - e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$
$\operatorname{Tri}(-1,1)$	a < x < 0 f(x) = 1 - x , x < 1	0	⊣ I⁄©	$\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$
Exponential $\operatorname{Exp}(a), \ a > 0$	$f(x) = \frac{1}{a} e^{-x/a}, \ x > 0$	a	a^2	$\frac{1}{1-ait}$
Gamma $\Gamma(p,a),a>0,p>0$	$f(x) = \frac{1}{\Gamma(p)} x^{p-1} \frac{1}{a^p} e^{-x/a}, \ x > 0$	pa	pa^2	$\frac{1}{(1-ait)^p}$
Chi-square $\chi^2(n), n = 1, 2, 3, \dots$	$f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} (\frac{1}{2})^{n/2} e^{-x/2}, \ x > 0$	u	2m	$\frac{1}{(1-2it)^{n/2}}$
Laplace $L(a), a > 0$	$f(x) = \frac{1}{2a} e^{- x /a}, -\infty < x < \infty$	0	$2a^2$	$\frac{1}{1+a^2t^2}$
Beta	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1},$	$rac{r}{r+s}$	$\frac{rs}{(r+s)^2(r+s+1)}$	*
$\beta(r,s),r,s>0$	1 < 3 < 1			

Continuous Distributions (continued)

Distribution, notation	Density	EX	Var X	$\varphi_X(t)$
Weibull $W(\alpha,\beta), \ \alpha,\beta > 0$	$f(x) = \frac{1}{\alpha \beta} x^{(1/\beta)-1} e^{-x^{1/\beta}/\alpha}, \ x > 0$	$\alpha^{eta} \Gamma(eta+1)$	$a^{2\beta} \left(\Gamma(2\beta + 1) - \Gamma(\beta + 1)^2 \right)$	*
Rayleigh $\operatorname{Ra}(\alpha), \ \alpha > 0$	$f(x) = \frac{2}{\alpha} x e^{-x^2/\alpha}, \ x > 0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$lpha(1-rac{1}{4}\pi)$	*
Normal $N(\mu,\sigma^2),$ $-\infty<\mu<\infty,\sigma>0$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2},$	π	σ^2	$e^{i\mu t - \frac{1}{2}t^2\sigma^2}$
N(0,1)	$f(x) = rac{1}{\sqrt{2\pi}} e^{-x^2/2}, \; -\infty < x < \infty$	0	1	$e^{-t^2/2}$
Log-normal $LN(\mu,\sigma^2),$ $-\infty<\mu<\infty,\ \sigma>0$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2/\sigma^2}, \ x > 0$	$e^{\mu + \frac{1}{2}\sigma^2}$	$e^{2\mu} \left(e^{2\sigma^2} - e^{\sigma^2} \right)$	*
(Student's) t $t(n), n = 1, 2, \dots$	$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} \cdot d_{\frac{1}{(1+\frac{x^2}{n})^{(n+1)/2}}},$ $-\infty < x < \infty$	0	$\frac{n}{n-2},n>2$	*
(Fisher's) F $F(m \ n) \ m \ n-1 \ 9$	$f(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{m/2}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \cdot \frac{x^{m/2-1}}{(1+\frac{mx}{n})^{(m+n)/2}},$	$rac{n}{n-2}$,	$\frac{n^2(m+2)}{m(n-2)(n-4)} - \left(\frac{n}{n-2}\right)^2,$	*
$T(nt, n), nt, n = 1, 2, \dots$	x > 0	n > 2	n > 4	

Continuous Distributions (continued)

Distribution, notation Density	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Cauchy				
C(m,a)	$f(x) = \frac{1}{\pi} \cdot \frac{a}{a^2 + (x - m)^2}, -\infty < x < \infty$	ΕŲ	Ħ	$e^{imt-a t }$
C(0,1)	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}, -\infty < x < \infty$	ΕĹ	E	$e^{-\frac{ t }{t}}$
Pareto	$f(x) = \frac{\alpha k^{\alpha}}{x^{\alpha+1}}, \ x > k$	$\frac{\alpha k}{\alpha - 1}, \ \alpha > 1$	$\frac{\alpha k}{\alpha-1}, \ \alpha>1 \frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \ \alpha>2,$	*