
TANA09 Datatekniska beräkningar

Laboration 1. Error analysis and equations

Name:

LiU-Id:

Email:

Name:

Liu-Id:

Email:

Approved: Sign:

Corrections:

1 Introduction

If we want to use a computer to perform mathematical calculations we have to approximate the
set of real numbers a finite floating point number system. This means that the basic arithmetic
operations can only be performed at a fixed level of precision. In this exercise we will investigare
how these errors influence the results of numerical calculations performed using a computer.

Most often the errors introduced by the floating point system are small compared to other errors
that appear in scientific computations. This is not always the case for instance if cancellation of
significant digits occur.

One of the points of the exercise is to demonstrate that mathematically equivalent formulations of
a problem may lead to different results when implemented on a computer. An analysis of the errors
in numerical calculations is important since it allows the researcher to pick the specific formulation
of a problem that leads to the smallest error in the result.

Note that many of the questions are of theoretical nature and can be answered after the scheduled
time for the exercise.

2 Representation of Real Numbers

A floating point system is characterized by (β, t, L, U), where β is the base, t is number of digits in
the fractional part, L and U are the smallest and largest allowed exponents.

In this exercise we will investigate some basic properties of the IEEE Double Precision floating point
system commonly used by modern computers.

Exercise 2.1 The unit roundoff µ for a floating point number system represents an upper limit for
the relative error when storing a real number x in the number system. Give the expression for the
unit roundoff µ in terms of the parameters (β, t, L, U).

µ =

Exercise 2.2 The base is β = 2. Experiment with different values of n in the expression 1 + 2−n.
For instance you can write

>> n=50 , 1+2^-n

What is µ and t?

µ = t =

Hint Matlab displays the result as 1.0000 unless the result is exactly 1.

1

Exercise 2.3 Give an upper limit for the absolute error when storing the number y =
√
2 on the

computer. How many correct decimal digits does the approximation of
√
2, which is stored in the

computer memory, have?

Absolute error: Correct decimal digits:

Hint The definition of the unit roundoff gives you an upper limit for the relative error.

Exercise 2.4 Approximately how many significant digits do we have when storing real numbers in
Matlabs floating point system?

Answer:

It is possible to study in detail how a specific number is stored in computer memory by writing

>>format hex, 3

The 64 bits that are used to represent the double precision number is then displayed on screen in
hexadecimal form. Use the following table to translate the hexadecimal representation into binary
digits.

HEX 0 1 2 3 4 5 6 7

BIN 0000 0001 0010 0011 0100 0101 0110 0111

HEX 8 9 a b c d e f

BIN 1000 1001 1010 1011 1100 1101 1110 1111

Exercise 2.5 How is the number 3 stored in memory? Also check how the number −3 is stored.
Which bit is used to represent the sign of the number? Which bits are used to represent the exponent
and the fractional part of the number?

Answer:

Hint: The number is (3)10 = (11)2 = (1.1)2 · 21. Reset to regular display format by writing format

short.

Exercise 2.6 What is the largest possible number x that can be stored in the IEEE Double Pre-
cision floating point system? Write an expression for x as a binary number and also evaluate it to
get the corresponding value of x in the decimal number system.

Answer:

2

3 Numerical Computation of Limits

In this section we wills study the limit of a function. It is known that

lim
x→0

f1(x) = 1, where f1(x) =
ex − 1

x
.

Investigate how accurate it is possible to calculate the limit in Matlab by plotting the error (in
log-scale) for a wide range of x-values.

The following Matlab code will create a vector x, that contains values between 1 and 10−16, and
compute the a vector f1 that contains the corresponding function values. The error |f1(x) − 1| is
also displayed

>> x=10.^-(0:0.1:16);

>> f1=(exp(x)-1)./x;

>> loglog(x,abs(f1-1)), xlabel(’x’), ylabel(’|f_1(x)-1|’)

Note the dot in front of the division on the second line. What is its purpose?

Exercise 3.1 Which value x gives the smallest error? What happens for very small values of x?

Answer:

Exercise 3.2 Investigate the accuracy when using the mathematically equivalent formula,

f2(x) =
ex − 1

ln(ex)
.

Compute a vector f2 containing the function values obtained using the new formula using the
Matlab command

>> f2=(exp(x)-1)./log(exp(x));

What happens now?

Answer:

Obviously the two equivalent mathematical experessions behave differently. In the following few
exercises we will calculate the dominating terms of the errors |f1(x)− 1| and |f2(x)− 1|. There are
two contributing sources of error. The truncation error and the computational error.

Exercise 3.3 Use Taylor series expansion to estimate the truncation error,

RT = |f1(x)− 1| ≤

The truncation error is the same for both expressions f1(x) and f2(x). Why is that?

Answer:

3

Exercise 3.4 Assume that all the numerical operations (-,/,exp, etc) are performed with a relative

error less than, or equal to, the unit roundoff µ. Perform an analysis of the computational errors
for both expressions f1(x) and f2(x). Find an estimates

RX ≤ |fl[f1(x)]− f1(x)|.

Answer:

Exercise 3.5 Illustrate the results by plotting |f1(x)−1| and RT +RX , for x-values between 1 and
10−16, in a log-log scale. Do the same for the expression f2(x). How does the error analysis compare
with the actual errors?

Answer:

Print and hand-in the graph together with your report.

4

4 Solution of Non-Linear Equations

In this section we will solve equations using a standard solver from Matlab. We will also use Newtons
method to implement division.

4.1 The fzero solver

In this exercise we will investigare the convergence speed for the built-in Matlab function fzero.
Again we will attempt to solve the equation

f(x) =
√
1 + xex/2 − 2 sin(2x)(x + x2).

We are intressted in the root x∗ ≈ 1.5.

Exercise 4.1 Plot the function f(x) on the interval [0, 3]. Also use fzero to find the root x∗. Type
the command you use and the result.

Answer:

Exercise 4.2 In order to see more clearly what fzero does we write a Matlab function

function[y]=fun(x)

y=sqrt(1+x).*exp(x/2)-2*sin(2*x).*(x+x.^2);

fprintf(’%18.15f %6.2e\n’,x,y);

end

This allows us to see exactly which x-values are used during the iterations. We also change the
stopping criteria and solve the equation again by typing

>> options = optimset(’TolFun’,1e-15);

>> x = fzero(@fun , 1.5 , options);

How many function evaluations are needed to find the root?

Answer:

Exercise 4.3 Copy the x values used during the iterations into a vector x. If we assume that
the final x-value is exact we can obtain a vector e containing the error in each step by typing
e=abs(x-x(end)). Plot the errors using semilogy. Also write down the errors during the last 5
iterations. Does this look like linear or quadratic convergence?

Answer:

Hint Since the function just prints the x-value and f(x) on each row you can type x=[in the Matlab
terminal. Then paste the numbers and end with];. To get the first column type x=x(:,1). To see
the errors more clearly use format short e.

5

Exercise 4.4 If the order of convergence is p we have a relation ek ≈ Cepk−1
. Since the errors are

known obtain a relation
ek

ek−1

= (
ek−1

ek−2

)p.

Taking logarithms we find an expression for p. Make use of the vector e containing the errors and
try to find a value for p. If you type

>> e,k=15,e(k),p=(log(e(k)/e(k-1))/log(e(k-1)/e(k-2)))

you can easily see which values are used to estimate p and its value. What is your experimentally
determined value of p? What iteration index k was used?

Answer:

Hint Typically for equation solvers the approximation xk has to be sufficiently close to x∗ for the
rapid convergence to occur. This means that normally no significant improvements take place during
the first iterations. Also once the approximation xk is close enough the convergence is so fast that
the unit round-off is reached within just two or three steps. This means that in practice it is difficult
to estimate the order of convergence from experimental data.

6

4.2 Implementation of Division

When designing a computer chip you have to decide what operations should be supported by
hardware and which ones that should be implemented as software. For instance the square root
operation is sometimes included as a basic instruction in the hardware. On the other hand if you
want to keep the instruction set small and the chip as simple as possible one might look into possible
instructions that might as well be left out and implemented through software.

A basic arithmetic operation sometimes left out from hardware is floating point division. In this
exercise we will look at how to do an efficient implementation of the division. The problem is really
simple but great care has to be taken to reduce the work needed, and also to make sure the result
is accurate.

Exercise 4.5 First compute z = 1/y. This can be formulated as a non-linear equaton,

f(z) = y − 1

z
= 0.

Apply Newtons method to the equation f(z) = 0 and derive the corresponding iteration formula.
Take care not to use any divisions in your expression.

Answer:

Remark One might try to solve for z = x/y directly but then its not possible to avoid divisions in
the Newton formulas.

Exercise 4.6 On the computer the floating point numbers are of the form

y = ±(1.f)22
e.

Since (2e)−1 = 2−e we only need to compute 1/y for 1 ≤ y < 2. This means that the root of the
equation f(z) = 0 satisfies 1

2
< z ≤ 1. Suppose we use the starting approximation z0 = 3

4
. What is

the maximum initial error e0 = |z − z0|?

Answer:

The Newton iteration can be written zk+1 = φ(zk), where φ(z) is the iteration function. What is
φ(z) here?

Answer:

Exercise 4.7 The error analysis for the Newton iteration leads to a formula,

ek+1 =
φ′′(η)

2
e2k,

where η belongs to the interval (zk, z). Use the available information to find the maximum value of
|φ′′(η)|. Also find the maximum number of iterations required until |ek| ≤ µ, where µ is the unit
roundoff. Present the calculations!

7

Answer:

Exercise 4.8 Use the above results and implement a function

>> z = Division(x , y);

The function should solve the problem in two steps. First compute 1/y and then multiply z =
x · (1/y). You can assume that 1 ≤ y < 2.

Use your function to compute z = 1.32/y, for y=1:0.01:2. Plot the relative error in the result. In
order to compute the errors you can assume that the Matlab division x/y is exact. Is the result
good? How many multiplications are needed to compute one division?

Answer:

Remark It is possible that the Newton method converges faster for certain values of y. However
by implementing the worst case scenario we avoid conditional stataments in the loop. This has the
advantage of ensuring that a division is equally fast regardless of the arguments x and y.

It is possible to improve the speed of the algorithm by picking a better starting value x0. For instance
divide the interval [1, 2) in 8 subintervals of equal length 1+[k/8, (k+1)/8), k = 0, 1, 2, . . . , 7. Then
pick a starting approximation z0,k depending on which interval y belongs to. This was the initial
error is at most e0 ≤ 1/16 and only N = 4 iterations is needed. Thus we can trade memory (i.e. a
table of starting approximations) for computational speed (i.e. number of multiplications). Though
this is not convinient to write in Matlab.

8

