
TANA09 Datatekniska beräkningar

Laboration 3. Interpolation

Name:

LiU-Id:

Email:

Name:

LiU-Id:

Email:

Approved: Sign:

Corrections:

1 Spline interpolation

In MATLAB the routine csape can be used to compute interpolating cubic splines. In order to
compute the cubic spline, with natural boundary conditions, that interpolates the table (tk, yk),
k=1, . . . , n, stored as two vectors t och y, we write

>> pn=csape(t,y,’variational’);

If we want to use correct boundary conditions we instead write

>> pr=csape(t,y,’complete’,[yprima,yprimb]);

where yprima and yprimb are numerical values for the derivatives y′(t1) and y′(tn) respectively.

In order to compute the function values we can use fnval or ppval. As an example we can plot the
spline on an interval [a, b] by typing

>> tt=a:0.01:b;

>> yy=fnval(pn,tt);

>> plot(tt,yy);

1.1 A mechanical Arm

If an industrial robot is used to move a tool often the path is specified as a cubic spline. In our case
the arm should follow a cubic spline s(t) that interpolates the values in the following table:

t 0 2 4 5 6

y 0 0 1 0 0

Exercise 1.1 Create two vectors t and y that contains the values from the table. Use csape to
generate the natural cubic spline s(t) that interpolates the given function values. Plot the spline
curve and and also mark the points (tk, yk) from the table with * in the graph.

Finally use fnval to compute the values of the spline function in a couple of additional points. Give
numeric values for s(1) and s(3)?

Answer:

Exercise 1.2 From the table we see that appropriate boundary conditions for the cubic spline are
s′(0)= 0 and s′(6)= 0. Again use csape and compute the cubic spline that interpolates the above
table, but with correct boundary conditions. Plot the new spline curve in the same graph as the
previous curve. Use hold on.

Again use fnval and evauate the spline curve for t=1 and t=3. Give numeric values for s(1) and
s(3)?

Answer:

1

The spline function changes as a result of changing the boundary conditions. Where is the changes
most visible? Near the end points or in the middle of the interval?

Answer:

Report the exercises 1.1 and 1.2 by printing the graph when you are done.

1.2 The Truncation Error

From the theory we know that the truncation error when using an interpolating cubic spline is

RT = f(x)− sh(x)≈c · hp,

where c is a constant, and p is an integer. In this exercise we will experimentally determine the
order of accuracy p, when using correct boundary conditions.

We will use csape to interpolate the function

f(x)=
4

3
x4 −

4

3
x3 +

1

2
x2.

with a cubic spline. Since the function is known we can compute the error as a function of the
step size h. By investigating how the error depends on the step size h we can compute the order of
accuracy, i.e. the parameter p above.

The MATLAB program SplineError.m computes the interpolating cubic spline and also plots both
the spline and the error curve |sh(x) − f(x)|, 0<x<1. Study the code. The values for a couple of
parameters are left out. You need to fill in the correct values or the program will not work properly.

Exercise 1.3 (Preparation) Calculate f ′(0) and f ′(1).

Answer:

Exercise 1.4 Make the nessecary changes in the program SplineError.m and enter the numerical
values for f ′(0) and f ′(1) respectively. Finally use the program to interpolate f(x) using a cubic
splines with different step sizes h. Use h1 = 1/4, h2 = 1/8. Write down the maximum error for
0<x<1 in the table below.

h 1/4 1/8

|RT (h)|

Exercise 1.5 (Preparation) We will now make use of the fact that RT (h)≈ c · hp and derive a
formula for the order of accuracy p. Insert the expression for the truncation error in the formula
below and simplify:

|RT (h1)|

|RT (h2)|
≈

2

Exercise 1.6 Compute the following

2p= Experimental value: p= (integer!)

Exercise 1.7 Write down the theoretical error estimate for cubic spline interpolation. For which
type of boundary conditions is the error estimate derived? Does the theoretical result agree with
the practical experiment?

Svar:

2 Parametric Splines for Distance Calculations

Most mapping applications will tell you the distance you need to travel before you reach your
destination. In this exercise we will investigate one possible method for calculating the distance
between two points on the map. The method is practical in the sense that it requires very little
additional information stored on the map and is computationally efficient.

The basic outline of the method is to start by collecting a set of points (xk, yk) along the travel
path. The points are used to find an interpolating cubic spline such that

s(tk) = (sx(tk), sy(tk))
T = (xk, yk)

T ,

and s(0) is the point of origin and s(1) is the destination. The points need to be selected in such
a way that the resulting spline curve is a good approximation of the travel path. The distance we
need to travel is calculated by calculating the length of the resulting spline curve.

Exercise 2.1 The function DisplayMap() shows an image containing a map over Linköping. On
the map the locations of the church in Slaka and the Sibylla kiosk at T1 are marked. The goal of
the exercise is to measure the distance we need to travel to get from the church to the hamburger
kiosk.

The function AddPointsToMap lets you add more and more points to the map. First decide which
roads to travel and then add points on the map. Add points more closely together if the road turns
sharply. Initially just add a couple of points. If you already have a couple of points marked you can
add, e.g. 5 additional points by typing,

>> Points = [Points ; AddPointsToMap(5)];

Note that the points have to be added in order.

Exercise 2.2 Suppose two vectors x and y containing points (xk, yk) on the map are available.
Write a function that computes a parametric spline curve s(t) = (sx(t), sy(t))

T that interpolates
the points (xk, yk)

T . The function should be used as follows,

>> [sx , sy]=ParametricCurve(x , y);

3

Use the Matlab function csaps to create the two component functions sx and sy. The parameter
range should be 0 ≤ t ≤ 1.

Besides computing the spline curve it is a good idea to also plot the curve in a new, or existing,
graphics window. To do the plot assume that it is enogh to evaluate the spline curve for 10 points
between each coordinate marked on the map. This means you should create a vector with t-values,

>> n=10*length(x); tt=(0:n)/n;

and evaluate the spline functions sx and sy for the parameter values stored in the vector tt using
ppval.

Go back and add points along the path again until you have a spline curve that follows the road
accurately. How many points did you add?

Answer:

Exercise 2.3 Implement a function CalculateLength(sx,sy,N). Use the folllowing method: Pick
a number N and create a parameter vector

>> tt=(0:N)/N;

evaluate points (sx(tk), sy(tk)) on the curve. The length of the curve is approximated by

LN =
N
∑

k=1

‖

(

sx(tk)− sx(tk−1)
sy(tk)− sy(tk−1)

)

‖2.

The scale of the map is such that a length L = 96 ≈ 1 km. Use your function to calculate the
distance between Slaka and the Sibylla kiosk. Use N = 100. Print and handin the map with the
spline curve added.

Answer:

Exercise 2.4 This type of integration method is supposed to have an error C · (∆t)2. Verify this by
computing the curve length using N = 100, 200, and 400. Use N = 5000 to get a good approximation
of the exact distance.

N 100 200 400

|LN − Le|

Do the results confirm that the error is proportional to (∆t)2?

Answer:

4

Remark This method is realistic to use for a wide range of applications where it is important to
plot the path, and estimnate the distance, travelled. It is most efficient for cases where the roads
are mostly straight with low curvature. The points needed can be stored for each road segment.

Since the curve s(x) is a piecewise polynomial we can compute derivatives analytically. Hence we
can calculate the tangent vector s′(t) for each polynomial segment. The length of the tangent vector
‖s′(t)‖22 is also a polynomial. Hence, with a little analytical work, we can actually calculate the
length of the curve by integrating a polynomial function. The MATLAB function fnder computes
the needed derivatives. The needed products can be computed using convolutions, i.e. conv, and
finally the arc length integral using fnint. The details are beyond the scope of a 2 hour exercise
though.

3 Beziér Curves and Font Specification

In several applications one needs to specify the shape of an object. One such application is type
setting text for printing. The individual letters making up the text have standardized shapes. It
is desirable to have a font that is independent of the resolution used for the printing. Hence the
shapes are described in such a way that we can easily generate pixel images showing the letters
in any resolution. Designing a font package means having an artist draw the desired shape of each
letter. Each curve segment is then described mathematically in such a way that images can be easily
generated. The full procedure is best described in The Metafont book, by Donald E. Knuth (author
of the TeX typesetting language). In this exercise we will use the standard technique for specifying
curves in font packages and design the letter d.

A

BC P1

P2

P3

P4

Figur 1: The letter d generated from a vectorized font. The outline of the letter is made up from
Beziér curves and line segments. The interpolation points used to create the outer arc are displayed.

5

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Exercise 3.1 A cubic Beziér curve patch is defined using 4 control points P1, . . . , P4. In the local
coordinate t the definition is

p(t) = (1− t)3P1 + 3(1− t)2tP2 + 3(1 − t)t2p3 + t3P4, 0 ≤ t ≤ 1.

Write a MATLAB function DisplayBezierPatch, with the 4 control points and a parameter N
as input. The function should create a vector t=(0:N)’/N and evaluate the Beziér curve for those
values of the parameter t.

Finally the function should plot both the curve and the control points. For the following exercises
it is useful to make the result look like the above example. The shape of the curve can be changed
by moving the control points.

Exercise 3.2 The MATLAB program DrawFont plots the line segments in the letter. In the next
few exercises we will add the missing smooth curve segments. Open the function DrawFont in the
Matlab editor. First we will add code to draw the curve segment A. Denote by P1 and P2 the
starting and ending points for the curve segment. We need two additional control points to specify
the Beziér curve.

At start the curve tangent of the curve should be vertical. What condition on the control point
guarantee that this is the case?

Answer:

At the end point the tangent of the curve segment should be horizontal. Write down the coordinates
for the 4 points that define the Beziér curve segment. Add the code to plot the curve segment. Is
the result good?

Answer:

Exercise 3.3 (optional) Similarily find two control points to use, together with the two points P1

and P2, to draw the curve segment B as a Beziér curve. Write down the coordinates for the points
you use.

Answer:

6

Exercise 3.4 Now we will create the Beziér curves that make up the outer arc C in the letter. The
curve should start at a point P1 and end in a point P4. Since we want the curve to touch the line
y=0 we pick an interpolation point P2 = (x2, 0). Experiment a little to find a suitable value x2 and
write down the interpolation point. Also we want the curve to have a vertical tanget at some point.
This is the next interpolation point P3. Write down your choice for P3 as well.

Answer:

For each of the Beziér curves P1 7→ P2, P2 7→ P3, and P3 7→ P4 we need two additional control
points. Make sure to pick something that looks good, and also so that the tangent is horizontal at
P2 and vertical at P3. Add the code to draw the curve segments in the script. Does the result look
nice?

Answer:

Exercise 3.5 (optional) Finally we will add the curve segments that make up the inner arc in the
letter. It is enough to use two Beziér curves so specify an interpolation point P2 where the tangent
of the curve is vertical. The inner curve will be made up of Beziér curves P1 7→ P2, and P2 7→ P3.
Pick good control points and add the code to draw the curves. Write down the coordinates for the
interpolation points you use. Is the result good?

Answer:

Report by plotting the handing in the graph with the curves defining your letter. It may look
better if you use axis image before the plot.

Exercise 3.6 (optional) Alternate font styles, such as bold face or italic fonts, are generated by
mathematical transformations on the points used to describe the basic curve shapes. An italic style
font is tilted slightly. This is achived by a linear transformation (x, y) 7→ (x+αy, y). In Matlab the
interpolation points can be transformed by, e.g.,

>> Points = [1,0.07 ; 0 1]*Points;

which tilts the letter slightly. The code for doing this transformation is prepared into the script
DrawFont. You need to make the same transformation on all the additional interpolation and control
points you created during the exercise. The result should be a nice italic style letter d. Did it work?

Answer:

Remarks Beziér curves are the standard tool for designing smooth curves in many branches of
computer graphics. The methods are easily extended to making mathematical representations of
smooth surfaces. Most graphics systems, e.g. OpenGL or the Postscript language, has support for
drawing various types of splines.

7

