The Singular Value Decomposition

- Definition. Computing the SVD.
- Fundamental subspaces. Linear Systems and Least Squares. Low rank approximation.

Applications

- Classification of handwritten digits.
- Total Least Squares.

Proposition Every matrix $A \in \mathbb{R}^{m \times n}$ has a decomposition

$$
A = U \Sigma V^T,
$$

where *U* and *V* are orthogonal and $\Sigma \in \mathbb{R}^{m \times n}$ is *diagonal* with diagonal elements $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(n,m)} \geq 0$

Remark The equivalent formula

$$
A = \sum_{i=1}^{n} \sigma_i u_i v_i^T
$$

writes *A* as ^a sum of rank one matrices.

February 21, 2018 Sida 2/29

February 21, 2018 Sida 1 / 29

Computing the SVD

Lemma Let $\overline{A} = U\Sigma V^T \in \mathbb{R}^{m \times n}$. Then $A^T A = V(\Sigma^T \Sigma) V^T$, and $A A^T = U(\Sigma \Sigma^T) U^T$.

So (σ_i^2, v_i) and (σ_i^2, u_i) are eigen pairs of $A^T A$ and $A A^T$.

Remark Suggests we can compute the SVD by solving either of two symmetric eigenvalue problems.

Question How to organize the computations efficiently?

Definition A matrix *B* is *upper bidiagonal* if $b_{ii} = 0$ unless $j = i$ or $j = i + 1$.

Lemma If *B* is bidiagonal then BB^T and B^TB are tridiagonal.

Proposition Any matrix $A \in \mathbb{R}^{m \times n}$ can be reduced to bidiagonal form by $A = Q_1 B Q_2^T$, where Q_1 and Q_2 are orthogonal.

Reduction to bidiagonal form

Example Suppose *A* is a 5×4 matrix. First select a reflection such that $H_1A(1:5,1) = \alpha e_1$. Then

$$
\tilde{H}_1 A = \tilde{H}_1 \begin{pmatrix} x & x & x & x \\ x & x & x & x \end{pmatrix} = \begin{pmatrix} + & + & + & + \\ 0 & + & + & + \\ 0 & + & + & + \\ 0 & + & + & + \\ 0 & + & + & + \end{pmatrix} = A_2.
$$

Next select a reflection such that $H_2A_2(1, 2:4)^T = \alpha e_1$. Then

$$
A_2\tilde{H}_2^T = \left(\begin{array}{cccc} x & x & x & x \\ 0 & x & x & x \end{array}\right) \tilde{H}_2^T = \left(\begin{array}{cccc} x & + & 0 & 0 \\ 0 & + & + & + \\ 0 & + & + & + \\ 0 & + & + & + \end{array}\right) = A_3.
$$

February 21, 2018 Sida 5 / 29

The SVD Algorithm

The singular value decomposition is computed by

- Reduction to bidiagonal form $A = \overline{U}B\overline{V}^T$, \overline{U} and \overline{V} orthogonal.
- Apply the symmetric *QR* algorithm to $B^T B$ or BB^T .

Golub and Kahan, 1965.

- Don't need to form $T = B^T B$ explicitly. The *OR* step (with shift) can be carried out by applying ^a sequence of Givens rotations to *B* directly.
- Many different algorithms for computing the SVD exists. Matlab has svd for dense matrices and svds for sparse matrices.

Proceed and find reflections $H_3A_3(2:5, 2) = \alpha e_1$ and $H_4A_4(2,3:4)^T = \alpha e_1$,

$$
\tilde{H}_3 \left(\begin{array}{cccc} x & x & 0 & 0 \\ 0 & x & x & x \end{array} \right) \tilde{H}_4^T = \left(\begin{array}{cccc} x & x & 0 & 0 \\ 0 & + & + & + \\ 0 & 0 & + & + \\ 0 & 0 & + & + \\ 0 & 0 & + & + \end{array} \right) \tilde{H}_4^T = \left(\begin{array}{cccc} x & x & 0 & 0 \\ 0 & x & + & 0 \\ 0 & 0 & + & + \\ 0 & 0 & + & + \\ 0 & 0 & + & + \end{array} \right)
$$

Finally apply reflections H_5 and H_6 to obtain

Have reached *bidiagonal form* after $2n - 2$ Householder reflections.

February 21, 2018 Sida 6 / 29

The Fundamental Subspaces

Lemma If $\sigma_k > 0$ and $\sigma_{k+1} = 0$ then Rank $(A) = k$.

Remark This means that

$$
A = \sum_{i=1}^{k} \sigma_i u_i v_i^T.
$$

Lemma If $rank(A) = k$ then $Range(A) = span\{u_1, \ldots, u_k\}.$

Question How to write ^a basis for null(*A*)?

Lemma If rank $(A) = k$ then null $(A) =$ span $\{v_{k+1}, \ldots, v_n\}$.

Example Let $Ax = b$. It is often useful to split *x* and *b* into components, e.g.

 $x = x_1 + x_2$, where $x_1 \in \text{null}(A)^{\perp}$ and $x_2 \in \text{null}(A)$.

Remark It holds that $A^T = V\Sigma U^T$ so range $(A)^{\perp} = \text{null}(A^T)$.

Lemma If $A \in \mathbb{R}^{m \times n}$ then $Ax = b$ has a solution if *b*∈range(*A*). The solution is unique if rank(*A*)=*n*.

Remark If rank $(A) = k$ and $b \in \text{range}(A)$ then the general solution of $Ax = b$ is

$$
x = \sum_{i=1}^k \frac{u_i^T b}{\sigma_i} v_i + \sum_{i=k+1}^n c_i v_i.
$$

where c_{k+1}, \ldots, c_n are undetermined parameters.

Question How to verify $b \in \text{range}(A)$?

February 21, 2018 Sida 10 / 29

February 21, 2018 Sida 9/29

Example In an application we have an 500×100 matrix *A* and want to solve a linear system $Ax = b$. Since *b* is obtained by measurements and we know the model is valid $b \in \text{range}(A)$.

Remark We see that $\sigma_{78} = 300.3492$ and $\sigma_{79} = 2.3 \cdot 10^{-10}$ so the rank is $k = \text{rank}(A) = 78$.

Results Solutions using $x = A \bmod x = \forall k * \text{inv}(Sk) * \forall k' * b$.

After eliminating the small singular values the solution is very good.

Recall Let $A \in \mathbb{R}^{m \times n}$. Previously we defined $A^+ = (A^T A)^{-1} A^T$ and noted that $x = A^+b$ is the vector that minimize $||Ax - b||_2$.

Definition If
$$
A \in \mathbb{R}^{m \times n}
$$
 and rank $(A) = k$ then

$$
A^+ = \sum_{i=1}^k \frac{v_i u_i^T}{\sigma_i}.
$$

Remark If rank $(A) = n$ then $(A^T A)^{-1}$ exists and the new definition of *A* ⁺ coincides with the previous one.

February 21, 2018 Sida 13 / 29

Projections and the SVD

Lemma Suppose $V \in \mathbb{R}^{n \times k}$ has orthonormal columns. Then

 $P = VV^T$

is an *orthogonal projection* onto range (V) .

Example Suppose $A = U\Sigma V^T$ and rank $(A) = k$. Partition

$$
U = (U_k, U_{m-k}) \quad \text{and} \quad V = (V_k, V_{n-k}).
$$

where, e.g, $U_k = (u_1, \dots, u_k)$.

Question What is the orthogonal projection onto $(\text{null}(A))^{\perp}$?

February 21, 2018 Sida 14 / 29

Application: Low rank approximation

Example Suppose that the decomposition $A = U\Sigma V^T$ is available and we want to compute the distance from b to the subspace range (A) , i.e. find the minimum of $||Ax - b||_2$.

How should we organize the computations?

Theorem If
$$
A \in \mathbb{R}^{m \times n}
$$
 then
\n
$$
\min_{\text{rank}(B)=k} \|A - B\|_2 = \sigma_{k+1}, \quad B = \sum_{i=1}^k \sigma_i u_i v_i^T.
$$

Remark If the number σ_n is small then A is close to rank deficient.

Definition Let $\epsilon > 0$. The *numerical rank* of *A* is

$$
rank(A,\epsilon) = \max_{k} \{ \sigma_k > \epsilon \}.
$$

Remark Let μ be the machine precision. If *A* has full rank but rank (A, μ) < *n* its likely better to treat *A* as rank deficient.

Suppose we study *objects* of ^a certain type and that objects occur in different variants, or *classes*. Given ^a new object we want to determine which class it belongs to.

- We collect a large *Reference set* ${R_k}$. That is objects of known class.
- Let *S* be unknown and *R^k* belong to the reference set. The *distance* function $d(S, R_k)$ measures the similarity between the two objects.

Example Incomming email can either be ^a spam mail or not.

February 21, 2018 Sida 18 / 29

February 21, 2018 Sida 17 / 29

Nearest Neighbour Classification

Algorithm Let ${R_k}$ be the reference set and $d(\cdot, \cdot)$ be the distance function. Do

1. Find *k* such that $d(S, R_k) = \min_i d(S, R_i)$.

2. The object *S* is of the same class as *Rk*.

Remark This method is simple, but very accurate assuming the reference set is large enough. It is also too inefficient for practical use.

A good distance function is needed.

Classification of Handwritten Digits

Example A *reference set* consists of $n = 1707$ digits taken from letters (postal codes). The images are stored as 16×16 pixels.

In Matlab DisplayDigit(RefSet(:,1));

Measure distance using Euclidean norm $||S - R_i||_2$.

Example The digit S_1 and its two nearest neighbours R_{11} and R_{303} .

This is ^a successful classification. Of the 20 nearest there are 18 nines and 2 sevens.

Of ^a (very difficult) *Test Set* of size ²⁰⁰⁷ ^a total of ⁹².8% are classified correctly. Objects are vectors in \mathbb{R}^{256} so have vector space structure.

February 21, 2018 Sida 21 / 29

Classification using Low-Rank approximation

Observation The reference set contains many examples of digits that are very similar.

Let $R^{(k)}$ be a matrix of size 256 $\times n_k$ consisting of all reference digits of type $k, k = 0, 1, ..., 9$.

Approximation Compute $R^{(k)} = U^{(k)} \Sigma V^T$ and use

$$
\mathrm{span}(R_1^{(k)},\ldots,R_{n_k}^{(k)})\approx \mathrm{span}(u_1^{(k)},\ldots,u_m^{(k)})
$$

where *m* is the dimension of the subspace.

Remark A low dimension *^m* is sufficient to accurately describe the most common variations in writing style.

February 21, 2018 Sida 22 / 29

Example The first 3 basis vectors $u_k^{(5)}$. Created from a total of 88 5:s from the reference set.

Just 5-10 basis vectors very accurately describe the digit 5 and its variations.

For each type of digit we find ^a low rank approximating subspace $U_m^{(k)} = \{u_1^{(k)}, \ldots, u_m^{(k)}\}, k = 0, 1, \ldots, 9.$

Algorithm Classify an unknown object *^S* by 1. Find *k* such that $d(S, U_m^{(k)}) = \min_i d(S, U_m^{(j)})$. 2. The object *S* is of class *k*.

The distance $d(S, U^{(k)})$ is the distance from *S* to the subspace. This is a least squares problem. The matrices U_m^k has orthogonal columns.

Using subspaces of dimension $m = 10$ we classify 93.2% of the test set correctly. Bad reference digits are removed.

Example Suppose we have a set of points $\{x_i, y_i\}$ and want to find the best possible straight line $y = ax + b$ to this set of data.

Observation A least squares model $y_i = c_0 + c_1x_i$ would minimize the the distances $|y_i - y|$. Treats y_i and x_i differently.

Can we find a method that treats x_i and y_i the same way? How should we proceed?

In the second case the *orthogonal distance* from the points (x_i, y_i) to the line $y = c_0 + c_1x$ is minimized.

February 21, 2018 Sida 25 / 29

February 21, 2018 Sida 26 / 29

Definition The *Total least squares* solution *^x* satisfies $(A + E)x = b + r$, where $[E, r]$ is given by

min $\|[E, r]\|_2$ such that $(A + E)x = b + r$.

Remarks The solution always exists since $E = -A$ and $r = -b$ gives ^a trivial solution. It might not be unique.

Natural to assume errors in both *A* and *b*.

Have an over determined linear system $Ax = b$. How to compute the total least squares solution?

Algorithm Compute x_{TLS} by 1. Compute $[A, b] = U\Sigma V^T$. Set $v_{n+1} = V(:, n + 1)$. 2. if $v_{n+1}(n+1) \neq 0$ then $x_{TLS} = -v_{n+1}(1:n)/v_{n+1}(n+1).$ end

Remark This is sometimes called *orthogonal distance regression*.

What happens if $v_{n+1}(n+1) = 0$? Not well understood.

Example Fit a straight line to $n = 6$ data points. (x_i, y_i) .

In Matlab

Regular least squares (left) and Total least squares (right).

February 21, 2018 Sida 29 / 29