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The singular value decomposition

Proposition Every matrix A ∈ R
m×n has a decomposition

A = UΣVT ,

where U and V are orthogonal and Σ ∈ R
m×n is diagonal

with diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σmin(n,m) ≥ 0

Remark The equivalent formula

A =

n
∑

i=1

σiuiv
T
i

writes A as a sum of rank one matrices.
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Computing the SVD

Lemma Let A = UΣVT ∈ R
m×n. Then

ATA = V(ΣTΣ)VT, and AAT = U(ΣΣT)UT .

So (σ2
i , vi) and (σ2

i , ui) are eigen pairs of ATA and AAT .

Remark Suggests we can compute the SVD by solving either of two

symmetric eigenvalue problems.

Question How to organize the computations efficiently?

February 21, 2018 Sida 3 / 29

Definition A matrix B is upper bidiagonal if bij = 0

unless j = i or j = i + 1.

Lemma If B is bidiagonal then BBT and BTB are

tridiagonal.

Proposition Any matrix A ∈ R
m×n can be reduced to

bidiagonal form by A = Q1BQT
2 , where Q1 and Q2 are

orthogonal.
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Reduction to bidiagonal form

Example Suppose A is a 5 × 4 matrix. First select a reflection such

that H1A(1 : 5, 1) = αe1. Then

H̃1A = H̃1













x x x x

x x x x

x x x x

x x x x

x x x x













=













+ + + +
0 + + +
0 + + +
0 + + +
0 + + +













= A2.

Next select a reflection such that H2A2(1, 2 : 4)T = αe1. Then

A2H̃T
2 =













x x x x

0 x x x

0 x x x

0 x x x

0 x x x













H̃T
2 =













x + 0 0

0 + + +
0 + + +
0 + + +
0 + + +













= A3.
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Proceed and find reflections H3A3(2 :5, 2) = αe1 and

H4A4(2, 3 :4)T =αe1,

H̃3













x x 0 0

0 x x x

0 x x x

0 x x x

0 x x x













H̃T
4 =













x x 0 0

0 + + +
0 0 + +
0 0 + +
0 0 + +













H̃T
4 =













x x 0 0

0 x + 0

0 0 + +
0 0 + +
0 0 + +













Finally apply reflections H5 and H6 to obtain

H̃6H̃5













x x 0 0

0 x x 0

0 0 x x

0 0 x x

0 0 x x













= H̃6













x x 0 0

0 x x 0

0 0 + +
0 0 0 +
0 0 0 +













=













x x 0 0

0 x x 0

0 0 x x

0 0 0 +
0 0 0 0













= B.

Have reached bidiagonal form after 2n − 2 Householder reflections.
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The SVD Algorithm

The singular value decomposition is computed by

• Reduction to bidiagonal form A = ŪBV̄T , Ū and V̄ orthogonal.

• Apply the symmetric QR algorithm to BTB or BBT .

Golub and Kahan, 1965.

• Don’t need to form T = BTB explicitly. The QR step (with shift)

can be carried out by applying a sequence of Givens rotations to

B directly.

• Many different algorithms for computing the SVD exists. Matlab

has svd for dense matrices and svds for sparse matrices.
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The Fundamental Subspaces

Lemma If σk>0 and σk+1=0 then Rank(A) = k.

Remark This means that

A =
k

∑

i=1

σiuiv
T
i .

Lemma If rank(A)=k then Range(A)=span{u1, . . . , uk}.

Question How to write a basis for null(A)?
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Lemma If rank(A)=k then null(A)=span{vk+1, . . . , vn}.

Example Let Ax = b. It is often useful to split x and b into

components, e.g.

x = x1 + x2, where x1 ∈ null(A)⊥ and x2 ∈ null(A).

Remark It holds that AT = VΣUT so range(A)⊥ = null(AT).
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Linear Systems of Equations

Lemma If A∈R
m×n then Ax=b has a solution if

b∈ range(A). The solution is unique if rank(A)=n.

Remark If rank(A) = k and b ∈ range(A) then the general solution of

Ax = b is

x =

k
∑

i=1

uT
i b

σi

vi +

n
∑

i=k+1

civi.

where ck+1, . . . , cn are undetermined parameters.

Question How to verify b ∈ range(A)?
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Example In an application we have an 500×100 matrix A and want to

solve a linear system Ax = b. Since b is obtained by measurements

and we know the model is valid b ∈ range(A).

In Matlab Compute the SVD and plot the singular values and also

the coefficients |uT
i b|.
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Remark We see that σ78 = 300.3492 and σ79 = 2.3 · 10−10 so the

rank is k = rank(A) = 78.
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Results Solutions using x=A\b and x=Vk*inv(Sk)*Uk’*b.

After eliminating the small singular values the solution is very good.
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The Pseudo Inverse and Least squares problems

Recall Let A ∈ R
m×n. Previously we defined A+ = (ATA)−1AT and

noted that x = A+b is the vector that minimize ‖Ax − b‖2.

Definition If A ∈ R
m×n and rank(A) = k then

A+ =

k
∑

i=1

viu
T
i

σi

.

Remark If rank(A) = n then (ATA)−1 exists and the new definition of

A+ coincides with the previous one.

February 21, 2018 Sida 13 / 29

Projections and the SVD

Lemma Suppose V ∈ R
n×k has orthonormal columns.

Then

P = VVT ,

is an orthogonal projection onto range(V).

Example Suppose A = UΣVT and rank(A) = k. Partition

U = (Uk,Um−k) and V = (Vk,Vn−k) .

where, e.g, Uk = (u1, . . . , uk).

Question What is the orthogonal projection onto (null(A))⊥?
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Example Suppose that the decomposition A = UΣVT is available and

we want to compute the distance from b to the subspace range(A), i.e.

find the minimum of ‖Ax − b‖2.

How should we organize the computations?
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Application: Low rank approximation

Theorem If A ∈ R
m×n then

min
rank(B)=k

‖A − B‖2 = σk+1, B =
k

∑

i=1

σiuiv
T
i .

Remark If the number σn is small then A is close to rank deficient.
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Definition Let ε > 0. The numerical rank of A is

rank(A, ǫ) = max
k

{σk > ε}.

Remark Let µ be the machine precision. If A has full rank but

rank(A, µ) < n its likely better to treat A as rank deficient.
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The Classification Problem

Suppose we study objects of a certain type and that objects occur in

different variants, or classes. Given a new object we want to

determine which class it belongs to.

• We collect a large Reference set {Rk}. That is objects of known

class.

• Let S be unknown and Rk belong to the reference set. The

distance function d(S,Rk) measures the similarity between the

two objects.

Example Incomming email can either be a spam mail or not.
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Nearest Neighbour Classification

Algorithm Let {Rk} be the reference set and d(·, ·) be the

distance function. Do

1. Find k such that d(S,Rk) = minj d(S,Rj).

2. The object S is of the same class as Rk.

Remark This method is simple, but very accurate assuming the

reference set is large enough. It is also too inefficient for practical use.

A good distance function is needed.
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Classification of Handwritten Digits

Example A reference set consists of n=1707 digits taken from letters

(postal codes). The images are stored as 16 × 16 pixels.

In Matlab DisplayDigit( RefSet(:,1) );
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Measure distance using Euclidean norm ‖S − Rj‖2.
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Example The digit S1 and its two nearest neighbours R11 and R303.
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This is a successful classification. Of the 20 nearest there are 18 nines

and 2 sevens.

Of a (very difficult) Test Set of size 2007 a total of 92.8% are classified

correctly. Objects are vectors in R
256 so have vector space structure.
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Classification using Low-Rank approximation

Observation The reference set contains many examples of digits that

are very similar.

Let R(k) be a matrix of size 256 × nk consisting of all reference digits

of type k, k=0, 1, . . . , 9.

Approximation Compute R(k) = U(k)ΣVT and use

span(R
(k)
1 , . . . ,R

(k)
nk
) ≈ span(u

(k)
1 , . . . , u

(k)
m )

where m is the dimension of the subspace.

Remark A low dimension m is sufficient to accurately describe the

most common variations in writing style.
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Example The first 3 basis vectors u
(5)
k . Created from a total of 88 5:s

from the reference set.
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Just 5-10 basis vectors very accurately describe the digit 5 and its

variations.
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For each type of digit we find a low rank approximating subspace

U
(k)
m = {u

(k)
1 , . . . , u

(k)
m }, k=0, 1, . . . , 9.

Algorithm Classify an unknown object S by

1. Find k such that d(S,U
(k)
m ) = minj d(S,U

(j)
m ).

2. The object S is of class k.

The distance d(S,U(k)) is the distance from S to the subspace. This is

a least squares problem. The matrices Uk
m has orthogonal columns.

Using subspaces of dimension m = 10 we classify 93.2% of the test

set correctly. Bad reference digits are removed.
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Total least squares

Example Suppose we have a set of points {xi, yi} and want to find the

best possible straight line y = ax + b to this set of data.

Observation A least squares model yi = c0 + c1xi would minimize

the the distances |yi − y|. Treats yi and xi differently.

Can we find a method that treats xi and yi the same way? How should

we proceed?
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y1

y2

y3

x1 x2 x3

r1

r2

r3

x1 x2 x3

y1

y2

y3

d1

d2 d3

Total: min
∑

d2
i

Regular: min
∑

r2
i

In the second case the orthogonal distance from the points (xi, yi) to

the line y = c0 + c1x is minimized.
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Definition The Total least squares solution x satisfies

(A + E)x = b + r, where [E, r] is given by

min ‖[E, r]‖2 such that (A + E)x = b + r.

Remarks The solution always exists since E = −A and r = −b gives

a trivial solution. It might not be unique.

Natural to assume errors in both A and b.
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Have an over determined linear system Ax = b. How to compute the

total least squares solution?

Algorithm Compute xTLS by

1. Compute [A, b] = UΣVT . Set vn+1 = V(:, n + 1).

2. if vn+1(n+1) 6= 0 then

xTLS = −vn+1(1 :n)/vn+1(n+1).

end

Remark This is sometimes called orthogonal distance regression.

What happens if vn+1(n + 1) = 0? Not well understood.
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Example Fit a straight line to n = 6 data points. (xi, yi).

In Matlab

>> A=[x.^0 , x.^1]; [U,S,V]=svd( [A,y] );

>> x_LS=A\y;

>> x_TLS=-V(1:2,3)/V(3,3);
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Regular least squares (left) and Total least squares (right).
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