Projection Methods

- Definition. Optimality Results. The Minimal Residual Method.
- Krylov Subspaces. GMRES and CG.

Applications

- Image Deblurring.
- Sparse Least Squares and Eigenvalues.

Definition Let \mathcal{K}_m and \mathcal{L}_m be two *m*-dimensional subspaces. The *projection method* computes an approximate solution to Ax = b by finding

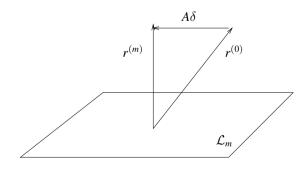
$$x^{(m)} \in x^{(0)} + \mathcal{K}_m$$
 such that $r^{(m)} = b - Ax^{(m)} \perp \mathcal{L}_m$.

Questions Existance and Uniqueness?

How to compute $x^{(m+1)}$ from $x^{(m)}$? Convergence properties?

March 1, 2018 Sida 1/29

Illustration



Find a $\delta \in \mathcal{K}_m$ so that $x^{(0)} + \delta$ has a residual orthogonal to \mathcal{L}_m .

Solution Let $V = (v_1, ..., v_m)$ be a basis for \mathcal{K}_m and $W = (w_1, ..., w_m)$ be a basis for \mathcal{L}_m . The solution can be written,

$$x^{(m)} = x^{(0)} + Vy.$$

The orthogonality relation $r^{(m)} \perp \mathcal{L}_m$ leads to

$$W^{T}AVy = W^{T}r^{(0)} \iff x^{(m)} = x^{(0)} + V(W^{T}AV)^{-1}W^{T}r^{(0)}.$$

Remark The matrix $W^T A V$ is of size $m \times m$ and the projection step is well defined for $W^T A V$ non-singular.

March 1, 2018 Sida 2/29

Lemma Let *A* be symmetric and positive definite and chose $\mathcal{L}_m = \mathcal{K}_m$. Then the projection method is well-defined.

Lemma Let *A* be non-singular and chose $\mathcal{L}_m = A\mathcal{K}_m$. Then the projection method is well-defined.

Remark In both cases $W^T A V$ is non-singular.

Two classes of methods. For matrices that are either symmetric and positive definite, or for general non-singular matrices.

March 1, 2018 Sida 5/29

Optimality results

Let $x^{(m)}$ be given by the *projection method* with \mathcal{L}_m , \mathcal{K}_m and $x^{(0)}$.

Definition If *A* is symmetric and positive definite the *energy norm* is $||x||_A^2 = x^T A x$.

Proposition If *A* symmetric, positive definite and $\mathcal{L}_m = \mathcal{K}_m$. Then $\|x^{(m)} - x^*\|_A = \min_{x \in x^{(0)} + \mathcal{K}_m} \|x - x^*\|_A.$

Remark The error in the *energy norm* is minimized.

Example Let $\mathcal{K}_1 = \mathcal{L}_1 = \text{span}(r^{(k)})$ and suppose *A* is symmetric and positive definite. Derive the projection method, and write down the algorithm, for this case.

What about convergence?

March 1, 2018 Sida 6/29

Let $x^{(m)}$ be given by the *projection method* with \mathcal{L}_m , \mathcal{K}_m and $x^{(0)}$.

Proposition If *A* is non-singular and $\mathcal{L}_m = A\mathcal{K}_m$. Then $\|b - Ax^{(m)}\|_2 = \min_{x \in x^{(0)} + \mathcal{K}_m} \|b - Ax\|_2.$

Remark The *residual* is minimized methods.

Observation If $A \in \mathbb{R}^{n \times n}$ and m = n then the projection method produces the exact solution.

Example Let *A* non-singular. In the *Minimal Residual Iteration* we use $V = (r^{(k)})$ and $W = AV = (Ar^{(k)})$.

Algorithm Let $x^{(0)}$ be the starting vector. for k = 1, 2, ... $r^{(k-1)} = b - Ax^{(k-1)}$. $z^{(k-1)} = Ar^{(k-1)}$. $\alpha_k = (z^{(k-1)}, r^{(k-1)}) / ||z^{(k-1)}||_2^2$. $x^{(k)} = x^{(k-1)} + \alpha_k r^{(k-1)}$. end

What about the convergence?

March 1, 2018 Sida 9/29

Definition The *Krylov subspace* $\mathcal{K}_m(A, r^{(0)})$ is

$$\mathcal{K}_m(A, r^{(0)}) = \operatorname{span}(r^{(0)}, Ar^{(0)}, \dots, A^{m-1}r^{(0)}).$$

Definition A *Krylov subspace* method computes an approximate solution of the form $x^{(m)} \in x^{(0)} + \mathcal{K}_m(A, r^{(0)}).$

Remark A basis for $K_m(A, r^{(0)})$ can be computed while only accessing the matrix through matrix-vector multiply.

March 1, 2018 Sida 10/29

The Arnoldi process

Observation The Krylov vectors $A^{j}r^{(0)}$ are close to linearly dependent for large *j*. How can this be a good subspace?

Remark Different choices for \mathcal{L}_m gives rise to different *Krylov* subspace methods.

If *A* is non-singular and $\mathcal{L}_m = A\mathcal{K}_m(A, r^{(0)})$ then we have The *Generalized Minimal Residual* method (GMRES).

If *A* is symmetric and positive definite and $\mathcal{L}_m = \mathcal{K}_m(A, r^{(0)})$ then we have the *Conjugate gradient* method (CG).

Algorithm Find an orthonormal basis for
$$\mathcal{K}_m(A, v_1)$$
 by
for $j = 1, 2, ..., m$ do
 $w_j = Av_j$
for $i = 1, 2, ..., j$ do
 $h_{ij} = (w_j, v_i)$.
 $w_j := w_j - h_{ij}v_j$.
end
 $h_{j+1,j} = ||w_j||_2$. if $h_{j+1,j} = 0$ then stop.
 $v_{j+1} = w_j/h_{j+1,j}$.
end

Remark Only matrix-vector multiply. The Gram-Schmidt process makes the new vector w_j orthogonal to the previous basis vectors v_1, v_2, \ldots, v_j .

Definition If $Ax \in \mathcal{K}$ for all $x \in \mathcal{K}$ then \mathcal{K} is an *invariant subspace*.

If the dimension of the Krylov subspace $\mathcal{K}_m(A, r^{(0)})$ is *n* for $m \ge n$. Then $\mathcal{K}_m(A, r^{(0)})$ is an invariant subspace.

Lemma If $\mathcal{K}_n(A, r^{(0)})$ is an invariant subspace then $A^{-1}b \in x^{(0)} + \mathcal{K}_n(A, r^{(0)}).$

Remark Break down in Arnoldi's method is good.

March 1, 2018 Sida 13/29

Proposition Let H_m be the Hessenberg matrix and V_m be the orthogonal basis computed by the Arnoldi method. Then

$$AV_m = V_m H_m + w_m e_m^T$$
, and, $V_m^T A V_m = H_m$.

Remark If the dimension *n* is large then storing the matrix V_m can require alot of memory. Often only a small dimension *m* for the Krylov subspace $\mathcal{K}_m(A, r^{(0)})$ is used.

March 1, 2018 Sida 14/29

The Generalized Minimal Redisual Method

Definition The *Generalized Minimal Redisual Method* (GMRES) is the *projection method* using the subspaces $\mathcal{K}_m = \mathcal{K}_m(A, r^{(0)})$ and $\mathcal{L}_m = A\mathcal{K}_m$.

Corollary The solution $x^{(m)} = x^{(0)} + V_m y$ minimize the residual, i.e.

$$\min_{x^{(m)}\in x^{(0)}+\mathcal{K}_m(A,r^{(0)})} \|b-Ax^{(m)}\|_2 = \min_{y\in\mathbb{R}^m} \|r^{(0)}-AV_my\|_2,$$

where V_m is an orthogonal basis for $\mathcal{K}_m(A, r^{(0)})$.

Remark As long as \mathcal{K}_m has full column rank $x^{(m)} \to x^*$ as $m \to n$. If *break down* occurs then we have an exact solution.

Implementation of GMRES

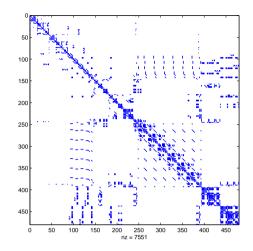
Algorithm Solve Ax = b by the steps Compute $r^{(0)} = b - Ax^{(0)}$, $\beta = ||r^{(0)}||_2$, and $v_1 = r^{(0)}/\beta$. Let $\bar{H} = (h_{ij}) \in \mathbb{R}^{(m+1) \times m}$ and set $\bar{H} = 0$. for j = 1, 2, ..., m do Compute $w_j := Av_j$. for i = 1, 2, ..., j do $h_{ij} := (w_j, v_i)$. $w_j := w_j - h_{ij}v_j$. end $h_{j+1,j} = ||w_j||_2$. if $h_{j+1,j} = 0$ then set m := j break. $v_{j+1} = w_j/h_{j+1,j}$. end Solve $||\beta e_1 - \bar{H}_m y||_2$ and set $x^{(m)} = x^{(0)} + V_m y$. **Remarks** Can modify the algorithm so that $\|\beta e_1 - \overline{H}_j y\|$ is solved in each step.

Expensive to store V_m for large *m*. Instead use a small *m* and *restart* using $x_{k+1}^{(0)} := x_k^{(m)}$.

Matlab Solve Ax = b in Matlab using

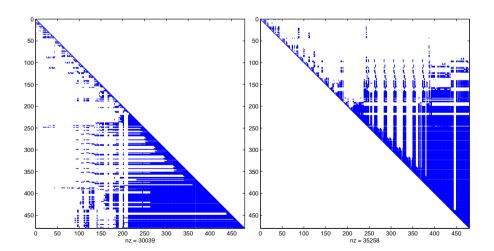
>> x = gmres(A,b, 10,
$$10^{-12}$$
);

The Arnoldi process stops after a Krylov space of dimension m = 10 is obtained and the algorithm restarts with a new residual.

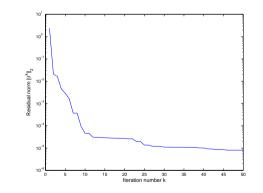


Example Test matrix West0479. Dimension N = 479. Symmetric and positive definite. 7551 non-zero elements.

March 1, 2018 Sida 18/29



The matrices L (left) and U (right) in the decomposition LU = PA. A total of 65297 non-zero elements to store.



Results Residual norm $||b - Ax^{(k)}||_2$ for the first 50 GMRES iterations. Restart after 8 steps in the inner loop. Around 10–15 iterations is enough for a good solution.

Remark The residual is monotonically decreasing.

March 1, 2018 Sida 17/29

Symmetric Matrices

Definition The *conjugate gradient method* is the projection method using $\mathcal{K}_m = \mathcal{L}_m = \mathcal{K}_m(A, r^{(0)})$.

Definition The vectors *x* and *y* are *conjugate*, or *A*-orthogonal, if they are orthogonal with respect to $(x, y)_A = x^T A y$.

Definition If *A* is symetric positive and definite the *A*–norm is

$$||x||_A = x^T A x = ||Rx||_2, \quad A = R^T R.$$

March 1, 2018 Sida 21/29

Proposition If *A* symmetric and positive definite the *conjugate gradient method* finds a solution $x^{(m)}$ that satisfies, $\|x^* - x^{(m)}\|_A = \min_{x \in x^{(0)} + \mathcal{K}_m} \|x^* - x\|_A.$

Remark The norm $\|\cdot\|_A$ is often called the *energy norm* and is natural to consider in applications, e.g. finite elements.

Question How to implement? The Arnoldi process computes a basis for \mathcal{K}_m but doesn't take advantage of symmetry.

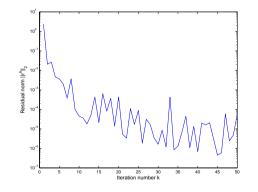
The alternative for symmetric matrices is called the Lanzcos process.

March 1, 2018 Sida 22/29

The Conjugate Gradient Method

Algorithm Suppose *A* is symmetric and Positive Definite. Solve Ax = b by the steps Let $r^{(0)} = b - Ax^{(0)}, p_0 := r^{(0)}$. for j = 1, 2, ... do $\alpha_j = (r^{(j)}, r^{(j)})/(Ap_j, p_j)$. $x^{(j+1)} := x^{(j)} + \alpha_j p_j$. $r^{(j+1)} := r^{(j)} - \alpha_j Ap_j$. $\beta_j := ||r^{(j+1)}||_2/||r^{(j)}||_2$. $p_{j+1} := r^{(j+1)} + \beta_j p_j$. end

Remark Need to store 4 vectors (x, p, Ap, and r). In Matlab pcg implements this.



Results Residual norm $||b - Ax^{(k)}||_2$ for the first 50 CG iterations. Around 10 iterations is enough for a good solution.

Remark The error $||x^{(k)} - x^*||_A$ is monotically decreasing but not nessecarily the residual.

Sparse Least Squares problems

Problem Want to minimize $||Ax - b||_2$ where A is large and sparse.

Lemma The solution of the least squares problem $\min ||Ax - b||_2$ is obtained by solving the normal equations

 $A^T A x = A^T b.$

Remark The matrix $A^T A$ is symmetric and positive definite. In Matlab

>> [x]=cgls(A,b);

The product $A^{T}A$ is not sparse. Compute $y = (A^{T}A)x = A^{T}(Ax)$.

March 1, 2018 Sida 25/29

Example An out-of-focus photo appears blurred.

Optics gives an explicit expression for the blurring operator A. We have $I_{obs} = A \cdot I_{exact}$. The image is 260×260 pixels.

March 1, 2018 Sida 26/29

Method The matrix is *ill-conditioned*. Compute the solution by solving

$$\min \|AI_{\lambda} - I_{obs}\|_{2}^{2} + \lambda^{2} \|I_{\lambda}\|_{2}^{2},$$

for a proper value of λ . This is called *Tikhonovs method*.

Lemma The Tikhonov solution I_{λ} can be computed by solving the *modified normal equations*

$$(A^T A + \lambda I)I_{\lambda} = A^T I_{obs}$$

Remark This is a symmetric linear system that can be solved using the CG method (i.e. pcg in Matlab). Avoid computing $C = A^T A$.

Results Use $\lambda = 10^{-5}$ and type

>> bfun = @(I) A'*(A*I)+lambda^2*I
>> Itik=pcg(bfun , A'*Ib , 10^-4 , 200);

The restored image is obtained after 29 CG iterations.

Proposition Suppose A is non-singular and V_m is the orthogonal basis computed by the Arnoldi method. Then

$$V_m^T A V_m = H_m \in \mathbb{R}^{m \times m}$$

Remark If m = n then the matrix V_m is orthogonal and this is an similarity transformation and $\lambda(A) = \lambda(H_m)$.

Run the Arnoldi process but keep only the vectors $v_j, v_{j-1}, \ldots, v_{j-k}$. Then $\lambda_{1,\ldots,k}(A) \approx \lambda_{1,\ldots,k}(H_m)$.

Matlab The function eigs implements this.

March 1, 2018 Sida 29/29