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1 Basic Matrix Computations

Exercise 1.1 Let A and B be two n× n matrices. Prove that (AB)T = BTAT . Also prove that if
both A and B are non-singular then (AB)−1 = B−1A−1.

Exercise 1.2 Prove that if A ∈ R
n×n is non-singular then (A−1)T = (AT )−1. Hence the notation

A−T makes sense.

Exercise 1.3 Prove that dim(Null(A)) + dim(Range(A)) = n.

Hint Pick a basis for Null(A) and complete to a basis for all of Rn.

Exercise 1.4 Suppose A ∈ R
m×m and B ∈ R

m×n, m > n. How many operations are required to
evaluate the formula z = (A+ I)Bx+ y, where x and y are vectors.

Exercise 1.5 An n× n matrix is said to be elementary if it can be written as A = I − uvT , where
u and v are vectors. What condition on u and v ensures that A is non-singular? Also prove that
A−1 is also elementary (by showing A−1 = I − αuvT ).

Exercise 1.6 Prove the Sherman-Morrison formula

(A− uvT )−1 = A−1 +A−1u(1− vTA−1u)−1vTA−1.

Exercise 1.7 Prove the inequality ‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞.

Exercise 1.8 Let u ∈ R
m and v ∈ R

n. Show that

‖uvT ‖2 = ‖u‖2‖v‖2.

Exercise 1.9 Prove that ‖I‖ = 1 and ‖A‖‖A−1‖ ≥ 1 for all matrix norms induced by a vector
norm.

Exercise 1.10 Suppose we implement matrix-vector multiplication by a loop:

y=zeros(n,1);

for i=1:n

for j=1:n

y(i)=y(i)+A(i,j)*x(j);

end

end

on a machine where matrices are stored by column in main memory.

a) Suppose one memory block corresponds exactly to the size of one column A(:,j) or the vectors
x and y. Further assume that only a couple of memory blocks fit in Cache memory. Clearly
explain why the above code is inefficient. Also check the ratio between the number of memory
blocks loaded into Cache memory and the number of floating point operations needed.

b) Propose an alternative implementation of matrix-vector multiply and clearly explain why it
is better.
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2 Linear Systems of Equations

Exercise 2.1 Suppose we have a linear system Ax = b where

A =




2 1 −2
−1 0 3
1 2 −1


 and b =




6
1
−3


 .

During the first step of Gaussian elimination we multiply the system with a matrix L1 such that
the new system L1Ax = L1b is




2 1 −2
0 0.5 2
0 1.5 0


x =




6
4
−6


 .

Give the Gausstransformation L1.

Exercise 2.2 Let r = b − Ax̂ be the residual for an approximate solution to the linear system
Ax = b. Prove the formula:

‖x− x̂‖ ≤ ‖A−1‖‖r‖.

Exercise 2.3 Suppose A, B, and C are matrices and b is a vector. How would you implement the
formula

x = B−1(2A+ I)(C−1 +A)b.

without computing any matrix inverse? Aim for as few arithmetic operations as possible.

Exercise 2.4 Suppose A has a Cholesky decomposition A = RTR. Prove that A is symmetric and
positive definite.

Exercise 2.5 Let PA = LU be the LU decomposition. Prove the formula

det(A) = (−1)kΠn
i=1uii.

What is k here?

Exercise 2.6 Suppose we want to solve the upper triangular system Rx = y by backwards substi-
tution. Clearly show how many floating point operations are needed.

Exercise 2.7 How would you solve a partitioned linear system

(
L1 0
B L2

)(
x1
x2

)
=

(
b1
b2

)
.

where L1 and L2 are lower triangular. Show the steps in terms of the given submatrices and vectors.
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3 Least Squares Problems

Exercise 3.1 Suppose Q is an orthogonal matrix. Show that ‖Qx‖2 = ‖x‖2, for all vectors x, and
thus ‖Q‖2 = 1.

Exercise 3.2 If A is both an ortgohonal matrix and an orthogonal projection. What can you
conclude about A?

Exercise 3.3 Let v 6= 0. The Householder reflection can be written as,

H = I − 2
vvT

vT v
.

Prove the following properties of Householder reflections

a) H is symmetric and orthogonal.

b) Suppose that x = (1, 2, 3)T and Hx = (α, 0, 0)T . What is the value |α|? �

Exercise 3.4 Suppose A ∈ R
m×n, m > n, and that we have the QR decomposition

A = Q

(
R
0

)
= Q1R

a) Show that if Range(A) = Span(Q1) then the least squares system has a unique solution. Show
that in this case R is non-singular.

b) Show that the linear system Ax = b has an exact solution if b = Q1Q
T
1 b.

Exercise 3.5 Consider the vector a as an n×1 matrix. Write out its QR decomposition explicitly.
Also write down a formula for the solution of the least squares problem ax ≈ b, where b is a given
n× 1 vector.

Exercise 3.6 Let a be any non-zero vector. If v = a− αe1, α = ±‖a‖2, and

H = I − 2
vvT

vT v
,

show that Ha = αe1.

Exercise 3.7 Prove that the product of two lower triangular matrices is also lower triangular and
that the inverse of a lower triangular matrix is also lower triangular.

Hint This is important since it leads to a uniqueness result for the QR decomposition.

Exercise 3.8 Suppose B is an n×n matrix and assume B is both orthogonal and triangular. Prove
that B is a diagonal matrix and that the diagonal entries are ±1. Use the result to prove that the
decomposition A = QR is "essentially unique", i.e. only the sign of the diagonal entries in R may
differ.
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Exercise 3.9 We are intressted in the least squares problem min ‖Ax− b‖2. Suppose A = Q1R is
the reduced QR decomposition. Use Q1 to give a formula for a orthogonal projection P , such that
Pb = r = b−Ax, where x is the least squares solution.

Exercise 3.10 Compute the QR factorization of the matrix

A =




0
√
2

−1 1
1 1


 .

Let b = (1, 2, 3)T . Find the vector x that minimize ‖Ax− b‖.

Exercise 3.11 Consider the least squares problem min ‖Ax− b‖2. We compute the QR decompo-
sition of the augumented matrix

QR = [A, b] ∈ R
m×(n+1).

Clearly show how the least squares problem can be solved using only the R matrix. That is we
don’t need to save the Q matrix when computing the factorization.

Exercise 3.12 Let W ∈ R
n×n be real, symmetric, positive definite, and let ‖ · ‖W be defined by,

‖x‖2W = xTWx.

a) Verify that ‖x‖W = 0 if and only if x = 0.

Hint Use the Cholesky factorization W = RTR.

b) Derive an expression for the normal equations of the minimization problem,

min
x

‖Ax− b‖W .

Exercise 3.13 Suppose A is an m× n matrix and m > n. Clearly demonstrate how Householder
reflections can be used to compute the decomposition A = QR. It is sufficient to consider the 5× 4
case.

Exercise 3.14 Let A be an m × n matrix, m > n. How many Givens rotations would be needed
to transform A into upper triangular shape?

Exercise 3.15 Suppose A is an m× n matrix, m > n, and that we have the QR decomposition of
A and also the least squares solution x. We add a new row to the previously solved least squares
problem and need to transform a matrix of the form,

Ã =




x x x x
0 x x x
0 0 x x
x x x x


 ,

into upper triangular form. Clearly demonstrate how this can be accomplished using Givens rota-
tions.

6



4 Eigenvalues

Exercise 4.1 What are the eigenvectors and eigenvalues of the following matrix?



1 2 −4
0 2 1
0 0 3




Exercise 4.2 Suppose that all of the row sums of an n × n matrix have the same value, e.g. α.
Prove that α is an eigenvalue. What is the corresponding eigenvector?

Exercise 4.3 Show that a matrix is singular if and only if zero is one of its eigenvalues.

Exercise 4.4 Let A be an n × n matrix. Prove that A and AT have the same eigenvalues. Do A
and AT also have the same eigenvectors? Prove or give a counter example.

Hint Use Matlab for the second part to avoid tedius calculations.

Exercise 4.5 Prove that all the eigenvalues of a Hermitean matrix A are real. Use the result to
prove that the eigenvalues of a real symmetric matrix are real.

Exercise 4.6 Prove that for any matrix norm induced by a vector norm the spectral radius satisfies
ρ(A) ≤ ‖A‖.

Exercise 4.7 A matrix A is said to be nilpotent if Ak = 0 for some positive integer k. Show that
all eigenvalues of a nilpotent matrix are zero. Can you conclude that A is the zero matrix?

Exercise 4.8 Suppose A,B ∈ R
n×n and in addition A is non-singular. Show that AB and BA

have the same eigenvalues.

Exercise 4.9 Let A have block-triangular form, i.e.
(

A11 A21

0 A22

)
,

where A11 and A22 are both quadratic but not nessecarily of the same size. Show that λ is an
eigenvalue of A if and only if it is an eigenvalue of either A11 or A22.

Remark This is often called the decoupling theorem.

Exercise 4.10 Let A ∈ R
n×n] have eigenvalues λ1, λ2, . . . , λn. Show that

det(A) = Πn
i=1λi.

Exercise 4.11 Suppose A ∈ R
n×n is real and of rank one. Show that A = uvT , for some vectors

u and v, and also that uT v is an eigenvalue of A. What are the other eigenvalues of A?

Exercise 4.12 Show that for any two real vectors u and v the formula

det(I + uvT ) = 1 + uT v

holds.
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Exercise 4.13 Let A ∈ R
n×n and ρ(A) < 1. Show that I −A is non-singular and

(I −A)−1 =

∞∑

k=0

Ak.

Exercise 4.14 Let A be real and symmetric with eigenvalues λmin ≤ λ(A) ≤ λmax. Show that for
x 6= 0,

λmin ≤ xTAx

xTx
≤ λmax.

Exercise 4.15 Clearly show how Housedolder reflections can be used to reduce a matrix into
Hessenberg form by a sequence of similarity transformations. It is enough to consider the 4×4 case.

Exercise 4.16 Suppose A ∈ R
n×n, rank(A) = n, and A = QR, where Q is orthogonal and R is

upper triangular.

a) Show that RQ is a Hessenberg matrix if A is a Hessenberg matrix.

b) Show that RQ is tridiagonal if A is symmetric and tridiagonal.

Hint: Write Q as a product of Givens rotations. It is enough to treat the 4× 4 case to clearly see
the pattern.

Exercise 4.17 The kth step of the shifted QR algorithm for computing eigenvalues is

Ak − skI = QkRk, Ak+1 = RkQk + skI.

Show that Ak+1 and Ak has the same eigenvalues.

Exercise 4.18 Given A ∈ Cn×n show that for every ε > 0 there exists a diagonalizable matrix B
such that ‖A−B‖2 ≤ ǫ. This shows that the set of diagonalizable matrices is dense in Cn×n.

Hint Use the Schur decomposition.

Exercise 4.19 Any matrix A ∈ R
n×n can be factorized as A = QTQH , where Q is unitary and T

upper triangular. This is called the Schur decomposition and is mainly of theoretical importance.
Prove that the diagonal elements of T are eigenvalues of A and also real symmetric matrix A has
orthogonal eigenvectors.

Exercise 4.20 Suppose (λ, x) is a known eigenpair for the matrix A. Give an algorithm for com-
puting an orthogonal matrix P such that

P TAP =

(
λ wT

0 Ã

)

Write P as a product of Givens rotations.
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Exercise 4.21 Let

A =




16 0 4
0 16 4
4 4 12


 .

The matrix has one eigenvalue λ1 = 20 with the corresponding eigenvector

v1 = (−0.5774,−0.5774,−0.5774)T .

a) Use Gershgorin’s theorem to prove that λ1 = 20 is the largest eigenvalue of A and that A is
non-singular.

b) If we attempt to use shifts to modify the convergence rate we replace A by B = (A − sI)−1.
Suppose (x, λ) is an eigenpair of A. What is the corresponding eigenpair of B?

c) Let s be a scalar. Show that the matrix B = A+sv1v
T
1 has the same eigenvectors as A. What

are the eigenvalues of B?

Exercise 4.22 Consider the matrix

A =




14 −2 −1
−2 9 0.5
−1 0.5 4




a) Use Gershgorin’s theorem to estimate the eigenvalues as accurately as possible. Can you
conclude that the matrix is non-singular?

b) Let s be a scalar and v1 an eigenvector. Show that the matrix B = A + sv1v
T
1 has the same

eigenvectors as A. What are the eigenvalues of B?

Exercise 4.23 Consider the matrix

A =




100 0 1
5 −10 1
−1 2 4




a) Use the Gershgorin theorem to estimate the eigenvalues of the matrix A as accurately as
possible.

b) Show that A is singular if and only if λ = 0 is an eigen value of A. Can you conclude that A
is non-singular?

c) Suppose we apply inverse iteration to the matrix, i.e.

w(k) = A−1x(k), x(k+1) = w(k)/‖w(k)‖2, k = 0, 1, 2, . . .

Does the results from a) imply that the iteration will converge?
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5 Non-linear Equations and Least Squares

Exercise 5.1 Determine if the following functions are coercive on R
2.

(a) f(x, y) = x+ y + 2.

(b) f(x, y) = x2 + y2 + 2.

(c) f(x, y) = x2 − 2xy + y2.

(d) f(x, y) = x4 − 2xy + y4.

Exercise 5.2 Formulate the Newton method for solving the system of equations

x21 + x1x
3
2 = 9, and 3x21x2 − x32 = 4.

Exercise 5.3 Let x(0) = (0 , 1)T . Perform one iteration in Newtons method applied to the system
of equations

x21 − x22 = 0, and 2x1x2 = 1.

Exercise 5.4 Prove that if x∗ is a fixed point of a smooth function g : R 7→ R and g′(x∗) = 0 then
the convergence rate of the fixed point iteration xk+1 = g(xk) is at least quadratic.

Exercise 5.5 Let,

f(x) =

(
x21 + sin(x2)

1 + cos(x22) + x2

)
.

Do the follwing: Compute the Jacobian matrix Jf (x) of the function f(x). Also perform one Newton
step for solving the non–linear equation f(x) = 0 using the starting value x(0) = (1, 0)T .

Exercise 5.6 Consider the over determined system of equations

(x+ 1)2 + y2 = 0.25,
x2 + (y − 1)2 = 0.25,
(x− 1)2 + y2 = 0.25.

a) Describe how the Gauss-Newton Method can be used for finding an approximate solution the
above problem. What is the residual vector r(x) and the Jacobian Jr(x)?

b) Perform one Gauss-Newton step using the starting vector x(0) = (0, 0)T .

Exercise 5.7 Let f(x) : Rn 7→ R be given by

f(x) =
1

2
xTAx− xT b+ c,

where A ∈ R
n×n is symmetric and b is a vector. Formulate Newtons method for finding the minimum

of f(x) and show that the method converges in one iteration.
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Exercise 5.8 In non-linear least squares we seek to a minimizer of

min
x∈Rn

1

2
‖r(x)‖22 = min

x∈Rn
f(x), f(x) =

1

2
r(x)T r(x),

where r(x) : Rn 7→ R
m, m > n. Using Newtons method we attempt to find a root x∗ of the equation

∇f(x) = 0. In each step we compute the next approximation x(k+1) by,

Hf (x
(k))s(k) = −∇f(x(k)), x(k+1) = x(k) + s(k).

where Hf is the Hessian matrix and ∇f is the gradient.

a) What are the dimensions of Hf and ∇f?

b) Typically the Hessian matrix is difficult to compute. The approximation,

Hf ≈ JT
r Jr,

where Jr is the Jacobian of the function r(x), leads to the Gauss-Newton method. Show that
using this approximation the above Newton step reduces to the least squares problem,

min ‖Jr(x(k))s(k) + r(x(k))‖2.

c) Suppose r(x) = b−Ax, where A ∈ R
m×n is a matrix. Show that the Gauss-Newton method

produces the exact solution after just one step.

Exercise 5.9 A river has been polluted by a large spill of a chemical substance that breaks down
slowly with time. A theoretical model suggests that the concentration of the pollutant in the river
decays with time according to a model

F (t) = c0 exp(−c1t) + c2 sin(ωt),

where the last term is due to smaller naturally occuring pollution by the same chemical compund.
In order to estimate the parameters of the model we measure the concetration F (ti), for times
t1 < t2 < . . . < tm, and want to use the Gauss-Newton method to fit the parameters c0, c1, and c2
to the measured data.

a) The Gauss-Newton method is based on writing down an appropriate residual vector r := r(c),
where c = (c0 , c1 , c2)

T are the coefficients of the model. Give the residual vector for the
above situation.

b) In each step of the Guass-Newton method we need to solve a least squares problem to minimize
‖Jr(c(k))sk + r(c(k))‖2, where c(k) is the approximate coefficient vector at step k. Derive an
expression for the Jacobian Jr for this case.
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6 The Singular Value Decomposition

Exercise 6.1 Let a = (a1, a2, . . . , an)
T be a column vector. What is the singular value decompo-

sition of a considered as a n × 1 matrix? Similarily what is the singular value decomposition of
aT ?

Exercise 6.2 Let AT be an m×n matrix of rank k < min(m,n). Use the decomposition A = UΣV T

to give an orthogonal basis for null(AT ).

Exercise 6.3 Show that the eigenvalues of the symmetric matrix

(
0 AT

A 0

)

are precisely {±σi}. What are the corresponding eigenvectors?

Exercise 6.4 Show that if A ∈ R
m×n has rank n, then ‖A(ATA)−1AT ‖2 = 1.

Exercise 6.5 Suppose the matrix B ∈ R
m×n has full column rank. Use the decomposition B =

UΣV T to give a formula for the solution to the the problem

min
x

‖Bx‖2, subject to ‖x‖2 = 1.

Exercise 6.6 Suppose A ∈ R
m×n, m > n, rank(A) = n, and that we have a factorization A =

UΣV T . Clearly demonstrate how the matrices U and V provides basis vectors for the spaces
Range(A) and null(A). What are the dimension of the range and null space respectively.

Exercise 6.7 Let A ∈ R
m×n, m > n, and rank(A) = n. Demonstrate how the decomposition

A = UΣV T can be used for solving the least squares problem

min
x∈Rn

‖Ax− b‖2.

Give formulas for both the solution x and the redisual r = b−Ax.

Exercise 6.8 Let A ∈ R
m×n, m < n, and rank(A) = m. Let b ∈ R

m. Show that the formula

x =
m∑

i=1

uTi b

σi
vi

provides a solution to Ax = b. Is the solution unique? If not what is the property that characterize
the solution x provided by the above formula?

Exercise 6.9 Suppose we want to find the solution to a linear system Ax = b, where rank(A) =
k < n so that the solution x is not unique. Demonstrate how the solution x can be split into two
parts,

x = x1 + x2, x1 ∈ null(A)⊥, and, x2 ∈ null(A),

and how the SVD of A can be used to write expressions for the solution components x1 and x2.

12



Exercise 6.10 Consider the Least Squares problem with linear constraints,

min ‖Ax− b‖2, for all x ∈ R
n such that Bx = 0,

where A is m× n, m > n, and B is n× n.

a) Suppose rank(B) = n. What is the solution of the least squares problem?

b) Suppose rank(B) = k < n. Show how the SVD can be used to derive a formula for the solution
of the least squares problem.

Exercise 6.11 Let A ∈ R
m×n, where m >> n, have full column rank. Use the decomposition

A = UΣV T to develop a criteria that ensures that the linear system Ax = b has a solution. Try
and make the criteria as inexpensive as possible to check.

Exercise 6.12 Demonstrate how a 4× 4 matrix A can be reduced to upper bidiagonal form using
Householder reflections. That is UTAV = B, where U and V are products of Householder reflections
and B is upper bidiagonal.

Exercise 6.13 Tikhonov regularization means replacing an ill-conditioned linear system Ax = b
by the more stable problem,

min
x

‖Ax− b‖22 + λ2‖x‖22,

where λ is the regularization parameter. Show that the normal equations of the above least squares
problem are

(ATA+ λ2I)x = AT b.

Also derive a formula for the singular values of the matrix (ATA+ λ2I) and use the result to show
that the normal equations are not ill-conditioned (provided λ is selected appropriately). Finally
derive a formula for the solution xλ.

Exercise 6.14 Show that

σmax(A) = max
y∈Rm,x∈Rn

yTAx

‖y‖2‖x‖2
.
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7 Sparse Matrices and Iterative Methods

Exercise 7.1 Show that the Jacobi iteration can be written in the form x(k+1) = x(k) + Hr(k),
where r(k) is the residual.

Exercise 7.2 Show that the iterative method,

x(k+1) = Gx(k) + c,

is convergent if the spectral radius ρ(G) < 1.

Exercise 7.3 Show that if A = M −N is singular then we can never have ρ(M−1N) < 1 even if
M is non-singular.

Exercise 7.4 Let A ∈ R
n×n be symmetric and positive definite. Prove that the Conjugate Gradient

iteration converges to the exact solution of Ax = b within at most n steps.

Exercise 7.5 Let A be symmetric and positive definite. Write down the formulas for a general
projection method in the case K = L = span(ei).

Exercise 7.6 A general projection method is defined by solving: Find x(m) ∈ x(0) +Km such that
r(m) is orthogonal to Lm, where Km and Lm are two m dimensional subspaces. Introduce basis sets
for the two subspaces and derive an explicit formula for the approximate solution x(m).

Exercise 7.7 Let A be symmetric and positive definite, and suppose that V ∈ R
n×k is a basis for

a k dimensional subspace. Prove the following

a) The matrix A−1 exists.

b) The matrix V TAV is non-singular.

Exercise 7.8 Let A be symmetric and positive definite. Consider a projection method where at
each step K = L = span(r,Ar), and r = b−Ax is the current residual. Do the following:

a) As basis for K we use r and a vector p obtained by orthogonalizing Ar against r with respecy
to the A-inner product. Derive a formula for computing p.

b) Write down the algorithm for performing the projection step using the subspace K.

Exercise 7.9 Suppose the Arnoldi method is used to create an orthogonal basis for the Krylov
subspace Km(A, r(0)); and that break-down occurs after k steps. Show the following

a) The space Kk(A, r
(0)) is an invariant subspace, i.e. x ∈ Kk then Ax ∈ Kk.

b) The solution of the equation Ax = b belong to the space x(0)+Kk. Hence a projection method
should produce an exact solution.

c) Suppose Vk is the basis computed by the Arnoldi process and Hk = V T
k AVk. Show that

the eigenvalues of Hk are also eigenvalues of A in this case. What are the corresponding
eigenvectors?

14



1 Basic Matrix Computations

Exercise 1.1 First look at an element of (AB)T . We have

(AB)Tij = (AB)ji =

n∑

k=1

AjkBki =

n∑

k=1

AT
kjB

T
ik =

n∑

k=1

BT
ikA

T
kj = (BTAT )ij .

To prove that (AB)−1 = B−1A−1 we use

(AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = I.

Exercise 1.2 To demonstrate that (AT )−1 = (A−1)T we use

AT (A−1)T = (A−1A)T = IT = I.

Exercise 1.3 Suppose the dimension of the null space is k. Then there is a basis {x1, x2, . . . , xk}
for the nullspace. Add n−k linearly independent vectors {x̃k+1, . . . , x̃n} so that we have a basis for
R
n. Now take a vector y that belongs to the subspace Range(A), i.e. y = Ax for some x ∈ R

n. We
can express x using the above basis and since Axi = 0, for i = 1, . . . , k, we find that y is a linear
combination of the vectors {Ax̃k+1, . . . , Ax̃}. So the dimension is at most n− k. To show that the
dimension is exactly n− k we assume that there is a linear combination so that

0 =
n∑

i=k+1

ciAx̃i = A(
n∑

i=k+1

ciAx̃i) = Az,

so z belongs to the nullspace which contradicts the assumption that the set of vectors

{x1, x2, . . . , xk, x̃k+1, . . . , x̃n}

was a basis. So the dimension of the range is exactly n− k.

Exercise 1.4 We evaluate the expression using the following operations

z = (A+ I)Bx+ y = (A+ I)x1 + y = Ax1 + x1 + y = x2 + x1 + y = x3 + y = x4

Computing the matrix vector product x1 = Bx requires mn multiplications and additions so a
total of 2mn operations and the product x2 = Ax1 requires 2m2 mult/adds. The remaining two
vector additons require m additions (as y, x1 ∈ R

m). So the operation count is m(2m+ 2n+ 2) or
2(m2 +mn) if just the leading terms are kept.

Exercise 1.5 A = I − uvT is non-singular if Ax 6= 0 for each x 6= 0. We calculate

0 = Ax = x− uvTx = x− (vTx)u or x = αu and vTx = α 6= 0.

Thus it is sufficient to check that

Au = u− (vTu)u = (1− vTu)u 6= 0,

which is true if vTu 6= 1. Check that A−1 is elementary by

A−1A = (I − αuvT )(I − uvT ) = I + (−α− 1 + αvTu)uvT .

so we have an inverse if we select α so that −α− 1 + αvTu = 0 or if α = (vTu− 1)−1.
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Exercise 1.6 Define a scalar α = vTA−1u. Verify the formula by

(A− uvT )(A−1 +A−1 uvT

1− α
A−1) = AA−1 +AA−1 uvT

1− α
A−1 − uvTA−1 − uvTA−1 uvT

1− α
A−1 = (∗).

Now replace vTA−1u by α to obtain

(∗) = I + (
1

1− α
− 1− α

1− α
)uvTA−1 = I.

Exercise 1.7 Demonstrate the first inequality by

‖x‖2∞ = max
1≤i≤n

|xi|2 ≤
n∑

i=1

|xi|2 = ‖x‖22.

Also, since |xi| ≤ ‖x‖∞, we have

‖x‖22 =

n∑

i=1

|xi|2 ≤
n∑

i=1

‖x‖2∞ = n‖x‖∞.

Exercise 1.8 Recall the definition

‖uvT ‖2 = max
x∈Rn

‖uvTx‖2
‖x‖2

= max
x∈Rn

|vTx|‖u‖2
‖x‖2

.

The Cauchy-Schwarz inequality is |vTx| ≤ ‖v‖2‖x‖2 with equality for x = v. So

‖uvT ‖2 =
|vT v|‖u‖2

‖v‖2
= ‖v‖2‖u‖2.

Exercise 1.9 First from the definition of the matrix norm, and since Ix = x we have

‖I‖ = max
x 6=0

‖Ix‖
‖x‖ = max

x 6=0

‖x‖
‖x‖ = 1, so 1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖.

Exercise 1.10 a)First during the inner loop y(i) and x can be kept in Cache memory. But the
elements A(i, j), for j = 1, . . . , n, all belong to different blocks. Thus a new block needs to be
loaded for each multiply A(i,j)*x(j). So the ratio memory loads to multiplies is 1− 1.

b) To fix the issue is is enough to change the order of the loops. So the inner loop copmputes
y(i)=y(i)+A(i,j)*x(j), for i = 1, . . . , n. Now the column A(:, j) can be loaded into Cache and n
multiplications can be performed until the next vector load is needed.
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2 Linear Systems of Equations

Exercise 2.1 Use the matrix

L1 =




1 0 0
1
2 1 0

−1
2 0 1


 .

Exercise 2.2 We have that

x− x̂ = A−1(Ax−Ax̂) = A−1(b−Ax̂) = A−1r.

Thus ‖x− x̂‖ ≤ ‖A−1‖‖r‖.

Exercise 2.3 We aim to keep intermediate results small. Multiplication by an inverse is dealt with
by solving the corresponding linear system, i.e. compute z = A−1x by solving Az = x. The order
of computation is

z1 = Ab, Cz2 = b, z3 = z1 + z2, z4 = Az3, z5 = 2z4 + z3, and finally Bx = z5.

All intermediate results are vectors.

Exercise 2.4 That A is symmetric follows from AT = (RTR)T = RT (RT )T = RTR = A. For
x 6= 0 we have xTAx = xT (RTR)x = (Rx)T (Rx) = ‖Rx‖22 ≥ 0. If in addition A is non singular
then so is R and Rx 6= 0 so A is strictly positive definite.

Exercise 2.5 Use the LU decomposition of A to obtain

A = P TLU, so det(A) = det(P T )det(L)det(U).

Here both L and U are triangular so the determinant is the product of the diagonal elements. Also
P is a permutation matrix. If we exchange two rows in a matrix then the determinant changes sign.
So k is the number of row exchanges that actually occured during the Guassian elimination when
computing the LU decomposition.

Exercise 2.6 Simplest is to note that there are n2/2 − n subdiagonal elements in a triangular
matrix. Every element should appear in one multiply and one addition. The n diagonal elements
should appear in one division each. Thus the number of operations is approximately n2.

Exercise 2.7 First solve L1x1 = b1. Then compute b3 = b2 −Bx1. Finally solve L2x2 = b2.
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3 Least Squares Problems

Exercise 3.1 Since Q is orthogonal QTQ = I. So

‖Qx‖22 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖22.

Exercise 3.2 First Range(A) = R
n since A is orthogonal and thus has linearly independent

columns. So A is an orthogonal projection on the whole of R
n. So Ax = x for every x ∈ R

n

so A = I is the identity matrix.

Exercise 3.3 That H is symmetric follows from the observation that

HT = (I − 2
vvT

vT v
)T = IT − 2

(vvT )T

vT v
= I − 2

vvT

vT v
= H.

The orthogonality can be seen by computing

HTH = HH = (I − 2
vvT

vT v
)(I − 2

vvT

vT v
) = I − 2

vvT

vT v
− 2

vvT

vT v
+ 4

v(vT v)vT

(vT v)2
= I.

Since H is orthogonal ‖Hx‖2 = ‖x‖2 so |α| =
√
14.

Exercise 3.4 a) A Vector y ∈ Range(A) if y = Ax for some x ∈ R
n.

y = Ax = Q1Rx.

Since Q1 has orthogonal columns dim(span{Q1}) = n. So, if Range(A) = span{Q1} then Rank(A) =
n. This can only hold if Rank(R) = n so R is non-singular. The solution is unique since if
Rank(A) = n then A doesn’t have a non-trivial null space.
b) Since Q1 is an orthogonal basis for Range(A) then Q1Q

T
1 is an orthogonal projection onto

Range(A). The criteria b = Q1Q
T
1 b simply means that b belongs to the range which means that a

solution exists.

Exercise 3.5 The vector a can be seen as a matrix in R
n×1. This means that

a = (a/‖a‖2)‖a‖2 = QR

where Q ∈ R
n×1 and R ∈ R

1×1. Since in this case R is a scalar we can write the solutuion formula
as x = R−1QT b = (a/‖a‖2)T b/‖a‖2 = (aT b)/‖a‖22. The same formula is obtained by forming the
normal equations aTax = aT b.

Exercise 3.6 If v = a− αe1 and α2 = ±aTa . Then

vT v = (a− αe1)
T (a− αe1) = aTa− 2α(eT1 a) + α2 = 2aT a− 2α(eT1 a).

and
vTa = (a− αe1)

T a = aTa− α(eT1 a).

This means that

Ha = (I − 2
vvT

vT v
)a = a− 2

v(vT a)

vT v
= a− 2

aTa− α(eT1 a)

2aT a− 2α(eT1 a)
(a− αe1) = a− (1)(a − αe1) = αe1.
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Exercise 3.7 If both A and B are lower triangular then aik = 0 for i < k and bkj = 0 for k < j .
So if C = AB and i < j then

cij =

n∑

k=1

aikbkj =

i∑

k=j

aikbkj = 0.

For the second part we write AB = I and eliminate elements in B. Consider the 3× 3 case:

AB =




a11 0 0
a21 a22 0
a31 a32 a33







b11 b12 b13
b21 b22 b23
b31 b32 b33


 =




1 0 0
0 1 0
0 0 1


 = I.

First note thar a11b11 = 1 and a11 6= 0 since A−1 exists. This leads to b11 6= 0. Then a11b12 = 0
and a11b13 = 0 means b12 = b13 = 0. Second, use a21b12 + a22b22 = a210 + a22b22 = 1 to conclude
that b22 6= 0. Also a22 6= 0 and since a21b13 + a22b23 = a22b23 = 0 we find that b23 = 0 so B is lower
triangular. In both cases a similar proof works for the upper triangular case.

Exercise 3.8 Assume B is upper triangular and orthogonal. The 3× 3 case can then be written

BTB =




b11 0 0
b12 b22 0
b13 b23 b33







b11 b12 b13
0 b22 b23
0 0 b33


 =




1 0 0
0 1 0
0 0 1


 = I.

First look at the first column of BT . We obtain b211 = 1 which means b11 = ±1. Also b12b11 =
b13b11 = 0 which means b12 = b13 = 0. Now multiply second row of BT with second column of B
to obtain b222 = 1 and b22 = ±1. Second row of BT multiplied with third column of B now gives
b22b23 = 0 so b23 = 0. Finally b233 = 1 means b33 = ±1 so B is a diagonal matrix with entries ±1.

Now assume A = Q1R1 = Q2R2 are two different reduced QR decompositions. Then

B = QT
1 Q2 = R1R

−1
2

is both orthogonal and upper triangular. Thus B is a diagonal matrix. This means that R1 = BR2.
So we obtain R1 by changing signs on the rows of R2.

Exercise 3.9 Let x be the least squares solution. Since the orthogonal projection onto Range(A)
is Q1Q

T
1 we have Ax = Q1Q

T
1 b. So r = b−Ax = b−Q1Q

T
1 b = (I −Q1Q

T
1 )b = Pb.

Exercise 3.10 The matrix has orthogonal columns, i.e. if A = (a1, a1) then (a1, a2) = 0. Thus the
QR decomposition is

A = (a1/‖a1‖2 , ‖a2/‖a2‖2)
(

‖a1‖2 0
0 ‖a2‖2

)
= Q1R.

The numbers are not very important.

Exercise 3.11 We want to minimize ‖Ax− b‖2. We rewrite the problem as

‖Ax− b‖2 = ‖[A, b]
(

x
−1

)
‖2 = ‖Q

(
R̃
0

)(
x
−1

)
‖2 = ‖

(
R̃
0

)(
x
−1

)
‖2 = (∗).
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where R̃ ∈ R
(n+1)×(n+1). We find the minimum by noting that

(∗)2 = ‖
(
R γ
0 α

)(
x
−1

)
‖22 = ‖

(
Rx− γ

α

)
‖22 = ‖Rx− γ‖22 + |α|2,

where R ∈ R
n×n and γ ∈ R

n, so the minimum is achived for x = R−1γ. Note that the last column

of R̃ is

(
γ
α

)
∈ R

n+1.

Exercise 3.12 a) Let W = RTR be the Cholesky decomposition ans rewrite

‖x‖2W = xTWx = xTRTRx = (Rx)T (Rx) = ‖Rx‖22.

Since R is non-singular Rx = 0 if and only if x = 0.
b) Use the same reformulation as above to obtain

‖Ax− b‖W = ‖R(Ax− b)‖2.

The normal equations are now (RA)T (RA)x = (RA)T (Rb) or ATWAx = ATWb.

Exercise 3.13 We start with a full matrix and eliminate columns using reflections H1, H2, H3 and
H4:



x x x x
x x x x
x x x x
x x x x
x x x x




∼




+ + + +
0 + + +
0 + + +
0 + + +
0 + + +




∼




x x x x
0 + + +
0 0 + +
0 0 + +
0 0 + +




∼




x x x x
0 x x x
0 0 + +
0 0 0 +
0 0 0 +




∼




x x x x
0 x x x
0 0 x x
0 0 0 +
0 0 0 0




.

We need one reflection to zero out each column.

Exercise 3.14 Each element below the diagonal requires one givens rotation to zero out. Thus the
number of rotations is mn− n2/2.

Exercise 3.15 We use rotations R14, R24 and R34 to obtain



x x x x
0 x x x
0 0 x x
x x x x


 ∼




+ + + +
0 x x x
0 0 x x
0 + + +


 ∼




x x x x
0 + + +
0 0 x x
0 0 + +


 ∼




x x x x
0 x x x
0 0 + +
0 0 0 +


 .
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4 Eigenvalues

Exercise 4.1 The eigenvalues are the diagonal elements so λk = 1, 2, 3. The eigenvectors are
obtaied by solving (A− λkI)xk = 0, or for λ = 2,






1 2 −4
0 2 1
0 0 3


− 2




1 0 0
0 1 0
0 0 1




xk =




−1 2 −4
0 0 1
0 0 1


xk = 0.

So for instance xTk = (2 , 1 , 0) is an eigenvector. Can find the other eigenvectors the same way.

Exercise 4.2 Let x = (1 , 1 , . . . , 1)T . Then Ax = (α , α , . . . , α)T = αx. So x is the correspond-
ing eigenvector.

Exercise 4.3 Singular means there is a non trivial null space. So there is an x 6= 0 such that
Ax = 0 = 0x which means that zero is an eigenvalue.

Exercise 4.4 This follows from det(A) = det(AT ). Thus the Characteristic polynomials are

pA(λ) = det(A− λI) = det((A− λI)T ) = det(AT − λI) = pAT (λ).

So both A and AT have the same characteristic polynomial. To see that the eigenvectors are different
just pick a random matrix and check in Matlab. Its rare that A and AT has the same eigenvectors.

Exercise 4.5 Pick an eigenpair (λ, x). Then xHAx = λxHx. So

λ̄xHx = (λxHx)H = (xHAx)H = xHAHx = {use A = AH} = xHAx = λxHx.

So λ̄ = λ. For a real matrix AT = AH so this is just a special case.

Exercise 4.6 The spectral radius is the largest eigenvalue. Thus

ρ(A) = max |λk| = {xk eigenvector } =
xTkAxk

xTk xk
≤ ‖xk‖‖Axk‖

‖xk‖2
≤ max

x 6=0

‖Axk‖
‖xk‖

= ‖A‖.

Exercise 4.7 If Ak = 0 and Ax = λx for x 6= 0 then Akx = λkx = 0 means λ = 0. The matrix
does not have to be zero. Easiest is to look at

A =

(
0 1
0 0

)
.

Exercise 4.8 Since A−1 exists we have

A(BA)A−1 = AB(AA−1) = AB.

So BA and AB are similar.
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Exercise 4.9 If x = (xx, x2)
T is an eigenvector and λ is an eigenvalue of A then we have
(

A11 A21

0 A22

)(
x1
x2

)
= λ

(
x1
x2

)
.

If we first assume that λ is an eigenvalue of A then there is an x = (x1, x2)
T such that the above

relation holds. If x2 6= 0 then the second row is A22x2 = λx2 so λ is an eigenvalue of A22. If
x2 = 0 then the first row is A11x1 = λx1 so in this case λ is an eigenvalue of A11. This means that
λ(A) ⊂ λ(A11) ∪ λ(A22). Secondly we assume that λ is either an eigenvalue of A11 or of A22 and
want to show that then λ is also an eigenbvalue of A. If λ is an eigenvalue of A11 then there is an
x1 6= 0 such that A11x1 = λx1. This means that x = (x1 , 0)

T is an eigenvector to A. So λ ∈ λ(A).
If, intead λ is an eigenvalue of A22 but not of A11, we find an x2 6= 0 such that A22x2 = λx2. Let
x = (x1 , x2)

T and chose x1 so that the first row is satisfied, i.e.

A11x1 +A21x2 = λx1 =⇒ x1 = −(A11 − λI)−1A21x2.

The inverse exists since λ is not an eigenvalue of A11 by the assumption. Thus we can construct an
eigenvector for A. So λ ∈ λ(A) again. The conclusion is that λ(A11) ∪ λ(A22) ⊂ λ(A).

Exercise 4.10 The eigenvalues are the roots of the characteristic polynomial. Thus

p(λ) = det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) =⇒ p(0) = λ1λ2 · · ·λn.

Exercise 4.11 Since A is rank one we have Range(A) = span(u), for a non-zero vector u. Every
column of A must be a multiple of u. So

A = (v1u , v2u , . . . , vnu) = uvT .

Also Au = u(vTu) = (vTu)u so vTu is an eigenvalue and the corresponding eigenvector is u. If y is
orthogonal to v then Ay = (vT y)u = 0 = 0y so zero is also an eigenvalue. The number of lineary
independent eigenvectors is the same as the dimension of the space span(v)⊥ which is n− 1.

Exercise 4.12 The determinant of A is the product of the eigenvalues. We have

λ(I + uvT ) = {1 + uT v, 1, 1, . . . , 1} =⇒ det(I + uvT ) = (1 + uT v).

Exercise 4.13 Since ρ(A) < 1 we have |λi| < 1 so zero is not an eigenvalue of I −A. To verify the
formula for the inverse we use

(I −A)−1(I −A) = (I +A+A2 +A3 + . . .)(I −A) =

I −A+A(I −A) +A2(I −A) +A3(I −A) = I + (−A+AI) + (−A2 +A2I) + . . . = I.

Strictly we need to show that we can change the order of summation. This holds since the series is
absolute convergent for ρ(A) < 1.

Exercise 4.14 If A is real and symmetric it has a full set of eigenpairs (λi, xi) such that X =
(x1, x2, . . . , xn) is an orthogonal matrix. Any x 6= 0 can be written using the basis {xi} so . We
obtain

x =
n∑

i=1

cixi, and
xTAx

xTx
=

∑n
i=1 c

2
i λi∑n

i=1 c
2
i

.

The lower bound follows from λmin(A) ≤ λi and the upper bound from λi ≤ λmax(A).
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Exercise 4.15 First we use the same reflection H1 applied from the left and from the right. The
reflection is selected so the elements A(3 : 4, 1) are set to zero. We get

H1




x x x x
x x x x
x x x x
x x x x


HT

1
=




x x x x
+ + + +
0 + + +
0 + + +


HT

1
=




x + + +
x + + +
0 + + +
0 + + +


 .

Second we find a reflection H2 that zeroes out the element A(4, 2). We get

H2




x x x x
x x x x
0 x x x
0 x x x


HT

2
=




x x x x
x x x x
0 + + +
0 0 + +


HT

2
=




x x + +
x x + +
0 x + +
0 0 + +


 ,

which is Hessenberg.

Exercise 4.16 a) In the 4× 4 case we need 3 rotations G34G23G12 to compute the QR decompo-
sition of A. We have

G34G23G12




x x x x
x x x x
0 x x x
0 0 x x


= G34G23




+ + + +
0 + + +
0 x x x
0 0 x x


= G34




x x x x
0 + + +
0 0 + +
0 0 x x


=




x x x x
0 x x x
0 0 + +
0 0 0 +


.

Now compute RQ by multiplying the rotations in the same order from the left.



x x x x
0 x x x
0 0 x x
0 0 0 x


GT

12
GT

23
GT

34
=




+ + x x
+ + x x
0 0 x x
0 0 0 x


GT

23
GT

34
=




x + + x
x + + x
0 + + x
0 0 0 x


GT

34
=




x x + +
x x + +
0 x + +
0 0 + +


 .

Which is again Hessenberg. The part b) follows from the fact that if RQ is Hessenberg and
Symmetric then it is trigdiagonal. No new proof is needed.

Exercise 4.17 We show that Ak+1 is similar to Ak by

QT
kAkQk = QT

k (QkRk + sI)Qk = RkQk + sQT
kQk = RkQk + sI = Ak+1.

Exercise 4.18 If B have distinct eigenvalues then B is diagonalizable. Use the Schur decomposition
T = QAQT . The eigenvalues are the diagonal elements of T . Pick a diagonal matrix D, with
|dii| < ε, such that T +D has distinct diagonal elements. Then B = QT (T +D)Q is diagonalizable
and ‖A−B‖2 = ‖QTDQ‖2 = ‖D‖2 < ε.

Exercise 4.19 First T and A are similar and have the same eigenvalues. Since T is upper triangular
we have pT (λ) = (T11−λ) · · · (Tnn−λ). So the diagonal elements are the roots of the characteristic
polynomial. If A is symmetrix then A = QTQT and AT = (QTQT )T = QT TQT so T = T T . So T
is upper triangular and symmetric and thus T is actually a diagonal matrix. So A = QTQT is an
eigenvalue decomposition with the columns of Q as eigenvectors.
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Exercise 4.20 Compute a QR decomposition

x = Q




r11
0
...
0


 .

where Q is n× n orthogonal. This means that x = r11q1 where q1 is the first column of Q. So q1 is
also an eigenvector. We get

QTAQ = (q1, Q2)
TA(q1, Q2) =

(
qT1 Aq1 qT1 AQ2

QT
2 Aq1 QT

2 AQ2

)
=

(
λ wT

0 Ã

)

where QT
2 Aq1 = λQT

2 q1 = 0 since Q is orthogonal. We can thus obtain P = Q by using rotations
to compute the QR decomposition of x. Thus P = G12G13G14 · · ·G1n.

Exercise 4.21 a) The Gershgorin discs are

|λ− 16| ≤ 4, |λ− 16| ≤ 4, and |λ− 12| ≤ 8.

Since any eigenvalue λ has to belong to one of the discs we see that its not possible for an eigenvalue
to be larger than 20.
b) We have Ax = λx so (A − sI)x = (λ − s)x and finally Bx = (A − sI)−1x = (λ − s)−1x so
(x, (λ− s)−1) is the eigenpair of B.
c) The matrix A is symmetric so the eigenvectors v1, v2, and v3 are orthogonal. So

Bv1 = Av1 + sv1v
T
1 v1 = λ1v1 + sv1 = (λ1 + s)v1,

so (λ1 + s, v1) is an eigenpair. Since vT1 v2 = vT1 v3 = 0 we see that Bv2 = λ2v2 and Bv3 = λ3v3 so
the two eigenpairs remain the same.

Exercise 4.22 a The Gershgorin discs are

|λ− 14| ≤ 3, |λ− 9| ≤ 2.5, and |λ− 4| ≤ 1.5.

Since the matrix is symmetric there is no need to consider AT . Zero is not included in any of the
discs so zero cannot be an eigenvalue. Thus the matrix is non-singular.
b) The matrix is symmetric so the eigenvectors v1, v2 and v3 are orthogonal. We get

Bv1 = Av1 + sv1v
T
1 v1 = (λ1 + s)v1, and Bvk = Avk + sv1v

T
1 vk = λkvk, for k = 2, 3.

Thus the eigenvevtors remain the same and the eigenvalues are {λ1 + s, λ2, λ3}.

Exercise 4.23 a) The Gershgorin discs are

|λ− 100| ≤ 1, |λ+ 10| ≤ 6, and |λ− 4| ≤ 3.

We can also consider the discs obtained by looking at AT . We get

|λ− 100| ≤ 6, |λ+ 10| ≤ 2, and |λ− 4| ≤ 2.
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Since the discs are disjoint each disc has exactly one eigenvalue and we can pick the best disc
for each. Since the matrix is real and each disc contains one eigenvalue we cannot have complex
eigenvalues.
b) If A is non-singular then there is an x 6= 0 such that Ax = 0 = 0x so zero is en eigenbalue. None
of the above discs contain zero so the matrix is non-singular.
c) The iteration will converge since all the eigenvalues are different as the discs are disjoint. This
means that one eigenvalue will have a strictly smaller absolute value than the others. Which in turn
means one of the eigenvalues of A−1 will be strictly larger than the other two.
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5 Non-linear Equations and Least Squares

Exercise 5.1 Determine if the following functions are coercive on R
2.

(a) No, since x = −2− y gives f(x, y) = 0.

(b) Yes. We have f(x, y) ≥ ‖
(
x
y

)
‖2.

(c) No. Since f(x, y) = x2 − 2xy + y2 = (x− y)2. So x = y gives f(x, y) = 0.

(d) Yes. We see that f(x, y) = x4−2xy+ y4 = x2(x2−1)+ y2(y2−1)+(x+ y)2. If (x , y)T → ∞
then f(x, y) → ∞.

Exercise 5.2 Let f(x) = (x21 + x1x
3
2 − 9 , 3x21x2 − x32 − 4)T . Then the Jacobian is

Jf (x) =

(
2x1 + x32 3x1x

2
2

6x1x2 3x21 − 3x22

)
.

The Newton iteration is
x(k+1) = x(k) − J−1

f (x(k))f(x(k)).

There is no reason to write the iteration in more detail.

Exercise 5.3 We have

f(x) =

(
x21 − x22
2x1x2 − 1

)
and Jf (x) =

(
2x1 −2x2
2x2 2x1

)
.

In the first step we solve Jf (

(
0
1

)
)s(0) = −f(

(
0
1

)
) or

(
0 −2
2 0

)
s(0) = −

(
−1
−1

)
.

So we obtain

x(1) = x(0) + s(0) =

(
0
1

)
+

(
0.5
−0.5

)
=

(
0.5
0.5

)
.

Exercise 5.4 We use the Taylor series expansion of the iteraton function g(x), i.e.

g(x(k)) = g(x∗ + (x(k) − x∗)) = g(x∗) + g′(x∗)(x(k) − x∗) +
g′′(x∗)

2
(x(k) − x∗)2 +O(|x(k) − x∗|3).

Since g′(x∗) = 0 the error can be written

|x(k+1) − x∗| = |g(x(k))− g(x∗)| ≤ |g
′′(x∗)

2
|(x(k) − x∗)2 +O(|x(k) − x∗|3).

This is quadratic convergence.
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Exercise 5.5 We have

f(x) =

(
x21 + sin(x2)

1 + cos(x22) + x2

)
so Jf (x) =

(
2x1 cos(x2)
0 −2x2 sin(x

2
2) + 1

)
.

In the first step we solve Jf (

(
1
0

)
)s(0) = −f(

(
1
0

)
) or

(
2 1
0 1

)
s(0) = −

(
1
2

)
.

So we obtain

x(1) = x(0) + s(0) =

(
1
0

)
+

(
0.5
−2

)
=

(
1.5
−2

)
.

Exercise 5.6 a) Use Gauss-Newton to minimize rT r where

r((x , y)T ) =




(x+ 1)2 + y2 − 0.25
x2 + (y − 1)2 − 0.25
(x− 1)2 + y2 − 0.25


 and Jr((x , y)

T ) =




2(x+ 1) 2y
2x 2(y − 1)

2(x− 1) 2y


 .

b) In the first Gauss-Newton step we minimize ‖Jr(x(0))s(0) + r(x(0))‖2. If x(0) = (0, 0)T we obtain

r((0 , 0)T ) =




0.75
0.75
0.75


 and Jr((0 , 0)

T ) =




2 0
0 −2
−2 0


 .

Easiest is to solve using the normal equations which gives s(0) = (0 , 0.375)T . So x(1) = x(0)+s(0) =
(0 , 0.375)T .

Exercise 5.7 The problem is to prove that the Hessian and gradient are the expected ones. In
order to do this we write f(x) in component form, i.e.

f(x1, x2, . . . , xn) =
1

2

n∑

i=1

n∑

j=1

aijxixj −
n∑

i=1

bixi + c

In order to find the gradient ∇f . we differentiate with respect to a particular xk to obtain

∂xk
f(x) =

n∑

j=1

akjxj − bk.

This is one row of the residual vector Ax− b. Since the gradient is supposed to be a column vector
we find that ∇f = Ax− b. Differentiate again to obtain

∂xi
∂xj

f(x) = aij.

Thus Hf = A. One Newton step would then consist of solving Hfs
(0) = −∇f or As(0) = −(Ax(0)−

b). So x(1) = x(0) + s(0) will be a solution to Ax = b. For the next step ∇f(x(1)) = Ax(1) − b = 0
so the method terminates.
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Exercise 5.8 a) The vector r(x) is of length m and the number of variables in the vector x is n.
Thus f(x) is simply a function of n variables so its gradient is n× 1 and its Hessian, or the matrix
consisting of all second derivatives, Hf is n× n.
b) If Hf ≈ JT

r Jr and we use ∇f = JT
r r(x) then we get JT

r Jrs
(k) = −JT

r r which is the normal
equations for the least squares problem min ‖Jr(x(k))s(k) + r(x(k))‖2.
c) If r(0) = b − Ax(0) then Jr(x) = −A so Gauss-Newton minimize ‖ − As(0) + b − Ax(0)‖2 =
‖A(x(0) + s(0))− b‖2. So x(1) is the minimum to rT r = ‖b−Ax‖22.

Exercise 5.9 a) The residual vector would be

r(c) =
(
c0e

−c1t1 + c2 sin(ωt1)− F1, , . . . , c0e
−c1tm + c2 sin(ωtm)− Fm

)T
.

b) The Jacobian is obtained by differentiation with respect to the parameters c0, c1 and c2. A row
of the matrix is given by

(Jr)i,1:3 = (e−c1ti , −c0tie
−c1ti , sin(ωti)).

The whole matrix is m× 3.
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6 The Singular Value Decomposition

Exercise 6.1 Since a is n×1 the dimensions of the factors are U ∈ R
n×n, Σ ∈ R

n×1 and V ∈ R
1×1.

The decomposition is

a = UΣV T =

(
a

‖a‖2
A2

)(
‖a‖2
0

)
(1),

where A2 ∈ R
n×n−1 has columns that are orthogonal to a. To obtain the SVD of aT we simply use

AT = V ΣTUT .

Exercise 6.2 AT = V ΣTUT . If y ∈ span(uk+1, . . . , um) then uTi y = 0 for i = 1, . . . , k. This is the
null space of AT .

Exercise 6.3 Let A = UΣV T be an m× n matrix. First note that the whole matrix is (m+ n)×
(m+ n). We obtain

(
0 AT

A 0

)(
±vi
ui

)
=

(
ATui
±Avi

)
=

(
σivi
±σiui

)
= ±σi

(
±vi
ui

)
.

There is also the posibility of zero eigenvalues corresponding to eigenvevtors of the type (0, uTi )
T or

(vTi , 0)
T if A or AT has a null space (i.e. if m > n or m < n).

Exercise 6.4 First compute (ATA)−1 = (V ΣTUTUΣV T )−1 = V (ΣTΣ)−1V T . Here ΣTΣ =
diag(σ2

i ) ∈ R
n×n. Thus A(ATA)−1AT = UΣV TV (ΣTΣ)−1V TV ΣTUT = UΣ(ΣTΣ)−1ΣTUT . Since

U is orthogonal ‖A(ATA)−1A‖2 = ‖Σ(ΣTΣ)−1ΣT ‖2. Evaluate the product of the diagonal matrices
to obtain

Σ(ΣTΣ)−1ΣT =

(
I 0
0 0

)
∈ R

m×m, I ∈ R
n×n.

The norm is the largest diagonal entry, i.e. 1.

Exercise 6.5 Let B = UΣV T . Since V = (v1, . . . , vn) provides a basis for Rn any x can be written

x =
n∑

i=1

civi =⇒ Bx =
n∑

i=1

ciσiui.

If ‖x‖2 = 1 then
∑

c2i = 1. So

‖Bx‖22 =
n∑

i=1

σ2
i c

2
i ≥ σn

n∑

i=1

c2i = σ2
n,

with equality for c = en. So the minimum is σn and it is obtained for x = ±vn.

Exercise 6.6 The decomposition A = UΣV T can be written

A =

n∑

i=1

σiuiv
T
i ,
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where σn > 0 as rank(A) = n. This means that Avi = σiui 6= 0 for i = 1, . . . , n. So the null space
is only the trivial one null(A) = {0} with dimension 0. Similarily, if y belongs to the range then
there is an x such that y = Ax, or

y = Ax =
n∑

i=1

σi(v
T
i x)ui,

so the y is a linear combination of {u1, . . . , un}. Thus range(A) = span(u1, . . . , un) and the dimen-
sion of the range is n.

Exercise 6.7 Let A = UΣV T . Since U = (u1, . . . , um) is a basis for R
m we can write

b =
m∑

i=1

(uTi b)ui,

Similarily, V = (v1, . . . , vn) is a basis for R
n so

Ax = A(

n∑

i=1

(vTi x)vi) =

n∑

i=1

σi(v
T
i x)ui.

We obtain

‖Ax− b‖22 = ‖
n∑

i=1

(σi(v
T
i x)− (uTi b))ui −

m∑

i=n+1

(uTi b))ui‖22 =
n∑

i=1

|σi(vTi x)− (uTi b)|2 +
m∑

i=n+1

|uTi b|2.

The minimum is obtained for σi(v
T
i x)− uTi b for i = 1, . . . , n, so

x =

n∑

i=1

uTi b

σi
vi.

For this particular x we get

r = b−Ax =

m∑

i=n+1

(uTi b)ui.

Exercise 6.8 Compute Ax to obtain

Ax = A(

m∑

i=1

uTi b

σi
vi) =

m∑

i=1

uTi b

σi
Avi =

m∑

i=1

uTi b

σi
σiui =

m∑

i=1

(uTi b)ui = b,

where the last equality holds since U = (u1, . . . , um) provides an orthogonal basis for R
m which is

the space b belongs to.

Since m < n the matrix has a null space null(A) = span(vm+1, . . . , vn). If x2 belongs to the nullspace
then A(x + x2) = Ax = b so the solution is not unique. Since the above formula for x does not
include a component from the null space it can be characterized as

min ‖x‖2 such that Ax = b,

that is the minimum norm solution of the linear system Ax = b.
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Exercise 6.9 Since rank(A) = k we note that {vk+1, . . . , vn} is a basis for null(A) and {v1, . . . , vk}
is a basis for its orthogonal complement (null(A))⊥. Thus for evey x we can write

x = x1 + x2 = (
k∑

i=1

civi) + (
n∑

i=k+1

civi).

In order to determine x1 we compute

Ax = A(x1 + x2) = Ax1 + 0 =
k∑

i=1

ciσiui = b =
m∑

i=1

(uTi b)ui.

Where (uTi b) = 0, for i = k + 1, . . . ,m, or a solution doesn’t exist. Thus

x1 =
k∑

i=1

uTi b

σi
vi and x2 =

n∑

i=k+1

civi,

where ci, i = k + 1, . . . , n, are undetermined parameters.

Exercise 6.10 a) If B has full rank then Bx = 0 if and only if x = 0 so the unique, and only
feasible, solution is precisely x = 0.

b) If rank(B) = k < n then B has a non-trivial null space and write V = (Vk, Vn−k) so that the
null space is given by Vn−k then the feasible solutions are x = Vn−kc, c ∈ R

n−k. So in fact we have
a regular least squares problem

min
c∈Rn−k

‖(AVn−k)c− b‖2 and x = Vn−kc.

The above qualifies as a formula. Otherwise continmue and write the normal equations for the
above least squares problem.

Exercise 6.11 Let A = UΣV T and U = (u1, . . . , um). A solution exists if b ∈ range(A) =
span(u1, . . . , un). We can check this by, for instance, verifying that uTi b = 0, for i = n + 1, . . . ,m.
If m >> n it is cheaper to instead check if

b−
n∑

i=1

(uTi b)ui = 0.

If we split the matrix U = (U1, U2) then the same criteria can be written as UT
2 b = 0 or b−U1U

T
1 b =

0.

Exercise 6.12 First we use a reflection H1 applied from the left. The reflection is selected so the
elements A(2 : 4, 1) are set to zero. Second we apply a reflection H2 from the right to zero out the

elements Ã(1, 3 : 4). We get

H1




x x x x
x x x x
x x x x
x x x x


 .




+ + + +
0 + + +
0 + + +
0 + + +


HT

2
=




x + 0 0
0 + + +
0 + + +
0 + + +


 .
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Now we continue with reflections H3 and H4 that zero out A(3 : 4, 2) and A(2, 4). We get

H3




x x 0 0
0 x x x
0 x x x
0 x x x


HT

4
=




x x 0 0
0 + + +
0 0 + +
0 0 + +


HT

4
=




x x 0 0
0 x + 0
0 0 + +
0 0 + +


 .

Finally we apply one reflection H5 from the left to zero out the element A(4, 3). We get

H5




x x 0 0
0 x x 0
0 0 x x
0 0 x x


 =




x x 0 0
0 x x 0
0 0 + +
0 0 0 +


 ,

which is bidiagonal.

Exercise 6.13 The normal equations can be derived by the identity

min
x

(
‖Ax− b‖22 + λ2‖x‖22

)
= min

x

∥∥∥∥
(
Ax− b
λx

)∥∥∥∥
2

2

= min
x

∥∥∥∥
(

A
λI

)
x−

(
b
0

)∥∥∥∥
2

2

.

The last is a regular least squares problem with an extended matrix. The normal equations are

(AT λI )

(
A
λI

)
x = (AT I )

(
b
0

)
or (ATA+ λ2I)x = AT b.

Now we can derive the solution formula using the decomposition A = UΣV T . Since ATA+ λ2I =
V ΣTΣV T + λ2V V T = V (ΣTΣ+ λ2I)V T and AT b = V ΣUT b we obtain the solution

xλ = V (ΣTΣ+ λ2I)−1ΣUT b =

n∑

i=1

σi
σ2
i + λ2

(uTi b)vi.

Too see that the normal equations are not ill-conditioned we look at ATA which has singular values
σ2
i + λ2 ≥ λ2. So the addition of the regularization parameter removes the small singular values

and makes the condition number smaller.

Exercise 6.14 Use A = UΣV T to obtain

yTAx

‖y‖2‖x‖2
=

(UT y)TΣ(V Tx)

‖y‖2‖x‖2
= ỹTΣx̃ =

n∑

i=1

σiỹix̃i ≤ σ1|(ỹ)T (x̃)| ≤ σ1‖ỹ‖2‖x̃‖2 = σ1

where ỹ = UT y/‖y‖2 and x̃ = V Tx/‖x‖2 both are normalized and equality is achived for x = V e1
and y = Ue1 (or x̃ = ỹ = e1).
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7 Sparse Matrices and Iterative Methods

Exercise 7.1 Start from Ax = b and use the splitting A = D + (A−D). The Jacobi method is

x(k+1) = D−1((D−A)x(k))+D−1b = x(k)−D−1Ax(k)+D−1b = x(k)+D−1(b−Ax(k)) = x(k)+D−1r(k).

Thus H = D−1.

Exercise 7.2 The error in step k can be written

x(k+1) − x∗ = G(x(k) − x∗) = Gk((x(0) − x∗).

Since Gk → 0 as k → ∞ if ρ(G) < 1 we have convergene in this case.

Exercise 7.3 If A is singular then zero is an eigenvalue so there is an x 6= 0 such that 0 = Ax =
(M − N)x and we obtain M−1Nx = x. So x is an eigenvector of M−1N corresponding to the
eigenvalue λ = 1. Thus ρ(M−1N) ≥ 1.

Exercise 7.4 The Conjugate gradient method minimizes the error over solutions of the type x =
x(0) + Km(A, r(0)). After n steps either the dimension of Kn(A, r

(0)) is exactly n and we minimize
the error in the whole space R

n and get the exact solution; or we had breakdown and found an
invariant subspace containing the exact solution earlier.

Exercise 7.5 Let x(k) be the current iterate. Since K = span(ei) the next iterate will be x(k+1) =
x(k) + αei. The requirement that r(k+1)⊥L leads to

0 = eTi (b−Ax(k+1)) = eTi (b−A(x(k) + αei)) = eTi r
(k) − αeTi Aei = eTi r

(k) − αaii.

So one formula would be x(k+1) = x(k) + (eTi r
(k)/aii)ei.

Exercise 7.6 Let V = (v1, v2, . . . , vm) ∈ R
n×m be a basis for Km. Then then projection step

produces an x(m) = x(0)+V y, y ∈ R
m. The orthogonality condition r(m)⊥L can be rewritten using

a basis W = (w1, w2, . . . , wm) ∈ R
n×m for Lm. We obtain

0 = W T r(m) = W T (b−Ax(m)) = W T (b−A(x(0) + V y)) = W T (r(0) −AV y) = W T r(0) −W TAV y.

So y = (W TAV )−1W T r(0) and x(m) = x(0) + V (W TAV )−1W T r(0).

Exercise 7.7 a) Positive definite means that xTAx > 0 for all x 6= 0. This means that zero cannot
be an eigenvalue so A−1 exists.

b) Let x 6= 0. Since V has orthogonal columns we have y = V x 6= 0 if x 6= 0 and

xTV TAV x = (V x)TA(V x) = yTAy > 0,

A is positive definite. V TAV is thus positive definite and therefore also non-singular.
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Exercise 7.8 a) We make Ar orthogonal to r by Gram-Schmidt orthogonalisation: Set p = Ar−αr
and select α so

0 = (p, r)A = pTAr = (Ar − αr)TAr = (Ar)T (Ar)− αrTAr,

and p = Ar−‖Ar‖22/(rTAr)r. Note that p is always well-defined unless r = 0 and we already have
an exact solution.

b) The next iterate will be of the form x(k+1) = x(k) + β1r
(k) + β2p. We get

r(k+1) = b−Ax(k+1) = r(k) − β1Ar
(k) − β2Ap.

We need to select β1 and β2 so that r(k+1) is orthogonal (not A-orthogonal) to both r(k) and p. We
obtain, with r = r(k),

0 = rT (r − β1Ar − β2Ap) = ‖r‖22 − β1r
TAr − β2r

TAp = ‖r‖22 − β1r
TAr =⇒ β1 = ‖r‖22/(rTAr).

and

0 = pT (r − β1Ar − β2Ap) = pT r − β1p
TAr − β2p

TAp = pT r − β2p
TAp =⇒ β2 = pT r/(pTAp).

Now we have everything needed to compute x(k+1).

Exercise 7.9 a) Suppose x ∈ Kk(A, r
(0)). Then

x = c1r
(0) + c2Ar

(0) + . . .+ ckA
k−1r(0),

Break-down means Akr(0) belongs to Kk(A, r
(0)) so

Ax = c1Ar
(0) + c2A

2r(0) + . . .+ ck−1A
k−1r(0) + ckA

kr(0),

also belongs to Kk(A, r
(0)) so it is invariant under multiplication by A.

b) Let x = x(0) + x̃, where x̃ ∈ Kk+1 = Kk. Then

r = b−Ax = b−A(x(0) + x̃) = r(0) −Ax̃.

Thus

r = r(0) +A(c0r
(0) + . . .+ ck−1A

k−1r(0)) = r(0) + c0Ar
(0) + . . .+ ck−1A

kr(0) ∈ Kk+1 = Kk.

Since the vectors r(0), . . . , Akr(0) are linearly dependent (due to break down having occured) it is
possible to pick c0, . . . , ck−1 so that r = 0. This means that the exact solution belongs to the
subspace x(0) +Kk.

c) Let Vk be the basis computed by the Arnoldi process. Find Vn−k so V = (Vk, Vn−k) is orthogonal.
Then AVk ∈ Range(Vk)⊥Vn−k due to the break down. Thus

H = V TAV = (Vk, Vn−k)
TA(Vk, Vn−k) =

(
V T
k AVk V T

k AVn−k

V T
n−kAVk V T

n−kAVn−k

)
=

(
Hk W
0 Hn−k

)
.

So the decoupling theorem says λ(Hk) ⊂ λ(A). The eigenvectors are obtained from

(V T
k AVk)y = λy =⇒ A(Vky) = λVky

so (Vky) are the eigenvectors of A.
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8 Sparse Matrices and Iterative Methods
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