
TEKNISKA HÖGSKOLAN I LINKÖPING
Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

Exam TANA15 Numerical Linear Algebra, Y4, Mat4

Datum: 23:e Mars, 2021.

Hjälpmedel:

1. Föreläsningsanteckningar utskrivna från kurshemsidan utan egna anteck-
ningar.

2. Räknedosa i fickformat, med nollställt minne och utan instruktionsbok.

Examinator: Fredrik Berntsson

Maximalt antal poäng: 25 poäng. För godkänt krävs 10 poäng.

Jourhavandelärare Fredrik Berntsson - (telefon 013 28 28 60)

Good luck!
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(5p) 1: Do the following:

a) Let ‖ · ‖ be a vector norm. Clearly state the definition of the matrix norm
induced by the vector norm. Also show that for all matrix norms induced by a
vector norm we have ‖I‖ = 1, where I is the identity.

b) Show that for all induced matrix norms the submultiplicative property, ‖AB‖ ≤
‖A‖‖B‖, holds. Also show that ‖A−1‖‖A‖ ≥ 1.

c) Prove the inequality ‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞.

d) Let (·, ·) be a scalar product and ‖ · ‖ the corresponding vector norm. Show
that if P is an orthogonal projection, with respect to (·, ·), then ‖Px‖ ≤ ‖x‖.

(3p) 2: Consider the matrix

A =





2.3 −0.2 0.3
0.7 −5.3 0.5
1.1 −0.4 1.7





with eigenvalues λ1 = 2.6095, λ2 = 1.3466, and λ3 = −5.2561. We want to use
power-iteration to compute an approximate eigenvalue of A. The rate of convergence
is defined as,

γk =
|λ(k+1) − λ|
|λ(k) − λ|

where λ is the exact eigenvalue. The asymptotic rate of convergence is γ = limk→∞ γk.

a) If we apply power iteration to the matrix A. To which eigenvalue will the
iterations converge? Also give a good theoretical estimate of the asymptotic
rate of convergence.

b) Let s = 0.8 and apply power iteration to the matrix (A − sI)−1. To which
eigenvalue of A will we have convergence now? Also estimate the asymptotic
rate of convergence for this case.

c) Let s = 4 and apply power iteration to A+ sI. To which eigenvalue of A will
we have convergence now? Also estimate the asymptotic rate of convergence
for this case.

(4p) 3: Let A be an m× n matrix, where m >> n. Do the following

a) A Householder reflection can be written as

H = I − 2uuT ,

where ‖u‖2 = 1. Demonstrate how the product of HA can be computed as
efficiently as possible and estimate the amount of arithmetic work needed.

b) Use the result from a) to estimate the total amount of arithmetic work required
for computing both the R and the Q matrices in the full QR decomposition
of the matrix A.

Hint Use m >> n to simplify the expression for the amount of work required.
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(4p) 4: a) Suppose A is an n × n matrix and let (λ1, x1) be one eigenpair. Clearly de-
monstrate how an orthogonal matrix Q such that

QTAQ =

(

λ1 wT

0 B

)

,

where B is an (n−1)× (n−1) matrix, can be found. Also clearly demonstrate
that your proposed matrix solves the problem, i.e. QTAQ has the correct
structure. It is required to present a detailed proof and not just make a reference
to a lemma.

b) The Hessenberg decomposition A = QHQT , where Q is orthogonal and H
is a Hessenberg matrix, can be computed using a sequence of Householder
reflections. Clearly show how Housedolder reflections can be used to reduce a
matrix into Hessenberg form by a sequence of similarity transformations. It is
enough to consider the 4× 4 case.

(4p) 5: Consider the system of equations

(x1 − 1)2 + 3x2 − 3 = 0,
cos(x1) + (x3 − 1)2 − 1 = 0,
x1 + x2

2 + (x3 + 1)2 − 2 = 0.

a) Describe how the Newton method can be used for solving the above problem.
What is the function f(x) and the Jacobian Jf(x)?

b) If the Jacobian is difficult to compute we can use updating methods. Suppose
Bk is the approximation of the Jacobian that is used at step k. In Broydens
method we find the next approximation by a rank one update Bk+1 = Bk+uvT

so that the formula

Bk+1s
(k) = f(x(k+1))− f(x(k)),

is satisfied. Clearly show how to find the update uvT , with the smallest norm
‖uvT‖2, that satisfies the above relation. You need to present a proof that your
suggested update has the required properties.

(5p) 6: Let A be symmetric and positive definite. Consider a projection method, for solving
a linear system Ax = b, where at each step K = L = span(r, Ar), and r = b − Ax
is the current residual. Do the following:

a) As basis for K we use r and a vector p obtained by orthogonalizing Ar against
r with respect to the A-inner product. Derive a formula for computing p.

b) Write down the algorithm for performing the projection step using the subspa-
ce K. What is the minimum number of multiplications by the A matrix in each
step?
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Lösningsförslag till tentan 23:e Mars 2021.

1: For a) the matrix norm is defined by

‖A‖ = max
x 6=0

‖Ax‖
‖x‖ .

From the definition we obtain ‖I‖ = maxx 6=0 ‖Ix‖/‖x‖ = maxx 6=0 ‖x‖/‖x‖ = 1.

For b) we use the definition to obtain

‖AB‖ = max
x 6=0

‖ABx‖
‖x‖ = max

x 6=0

‖ABx‖
‖Bx‖

‖Bx‖
‖x‖ ≤ max

x 6=0

‖ABx‖
‖Bx‖ ‖B‖ ≤ max

y 6=0

‖Ay‖
‖y‖ ‖B‖ ≤ ‖A‖‖B‖.

Now we can use the submultiplicative property to show 1 = ‖I‖ = ‖AA−1‖ ≤
‖A‖‖A−1‖.
For c) we recall that ‖x‖∞ = max |xi|. Thus, if |xk| is the largest element of x,

‖x‖∞ = |xk| =
(

|xk|2
)1/2 ≤

(

|x1|2 + . . .+ |xn|2
)1/2

= ‖x‖2.

Also

‖x‖2 =
(

|x1|2 + . . .+ |xn|2
)1/2 ≤

(

|xk|2 + . . .+ |xk|2
)1/2

=
(

n|xk|2
)1/2

=
√
n‖x‖∞.

Finally, for d) we observe that x = (I − P )x+ Px = x1 + x2, where x1 is orthonal
to x2. Thus ‖x‖2 = (x, x) = (x1 + x2, x1 + x2) = (x1, x1) + 2(x1, x2) + (x2, x2) =
‖x1‖2+0+‖x2‖2. This is really the Phytagorean theorem. Thus ‖x‖ ≥ ‖x2‖ = ‖Px‖.

2: For a we note that |λ3| is the largest eigenvalue and |λ1 is the second largest. Thus
γ = |λ1/λ3| = 2.6095/5.2561 = 0.4965.

For b we introduce B = (A − sI)−1 and note that if λ is an eigenvalue of A then
µ = 1/(λ − s) is an eigenvalue of B. This means that the eigenvalues of B are
µ1 = 0.5526, µ2 = 1.8295 and µ3 = −0.1651. Thus γ = |µ1/µ2| = 0.5526/1.8295 =
0.3020. We have convergence to the eigenvalue µ2, or to λ2 = 1.3466.

For c) we similarily observe that if B = A + sI, where s = 4, then the eigenvalues
of B are µ1 = 6.6095, µ2 = 5.3466 and µ3 = −1.2561. Thus we have convergence
towards λ1 = 2.6095 and the rate of convergence is γ = |µ2/µ1| = 5.3466/6.6095 =
0.8089.

3: For a) we need to compute

HA = (I − 2uuT )A = A− 2u(uTA).

First y = uTA is a matrix-vector multiply that requires 2mn floating point opera-
tions. Second we have to compute the outer product B = uyT . This again requires
mn multiplications (we ignore the 2 as that could be included in the y matrix using
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n operations). Finally A− B is computed using mn subtractions. The total is this
4mn floating point operations.

For b) we just need to recall that in step k of the Householder algorithm we need
to apply a reflection Hk to the block A(k : m, k : n), of size (m−k+1)×(n−k+1),
and will get R after n steps. This means that the total amount of work is

n
∑

k=1

4(m− k + 1)(n− k + 1) ≈ 4m
n

∑

k=1

(n− k + 1) ≈ 4mn(n/2).

where we used the asumption m >> n to obtain m−k+1 ≈ m. Otherwise we need
to look up the sum in a table.

Similarily, to get the full Q we need to start with the identity matrix I, of size
m×m, and apply Hk to the block Q(k : m, 1 : m), which is of size (m−k+1)×m.
The work is thus

n
∑

k=1

4(m− k + 1)m ≈ 4m2n,

where again m >> n was used. To conclude 2mn2 operations needed for R and
4m2n needed for the full Q.

4: For a) We have the eigenpair (λ1, x1). If we compute the full QR decomposition
of x1 ∈ R

n×1 we obtain an orthogonal matrix suxch that Q = (x1, Q2), where
QT

2 x1 = 0. This is assuming that ‖x1‖2 = 1. We find that

QTAQ = (x1, Q2)
TA(x1, Q2) = (x1, Q2)

T (Ax1, AQ2) = (x1, Q2)
T (λ1x1, AQ2) =

(

λ1x
T
1 x1 xT

1AQ2

λ1Q
T
2 x1 QT

2AQ2

)

=

(

λ1 wT

0 B

)

,

where we have the correct structure.

For b) we illustrate the algorithm as follows: First we use the same reflection H1

applied from the left and from the right. The reflection is selected so the elements
A(3 : 4, 1) are set to zero. We get

H1









x x x x

x x x x

x x x x

x x x x









HT
1 =









x x x x

+ + + +

0 + + +

0 + + +









HT
1 =









x + + +

x + + +

0 + + +

0 + + +









.

Second we find a reflection H2 that zeroes out the element A(4, 2). We get

H2









x x x x

x x x x

0 x x x

0 x x x









HT
2 =









x x x x

x x x x

0 + + +

0 0 + +









HT
2 =









x x + +

x x + +

0 x + +

0 0 + +









,

which is Hessenberg.
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5: For a) the function f(x) is obtained by putting the equations in a vector, i.e.

f(x) =





(x1 − 1)2 + 3x2 − 3
cos(x1) + (x3 − 1)2 − 1
x1 + x2

2 + (x3 + 1)2 − 2



 .

The equation to solve is then f(x) = 0, where x ∈ R
3. The Jacobian is obtained by

computing derivatives. We see that

Jf(x) = (∂fi/∂xj) =





2(x1 − 1) 3 0
− sin(x1) 0 2(x3 − 1)

1 2x2 2(x3 + 1)



 .

Given a starting guess x(0) the Newton iteration can be written

x(k+1) = x(k) + Jf (x
(k))−1f(x(k)).

For b) We note that the requirement on uvT is satisfied if

(Bk + uvT )s(k) = f(x(k+1))− f(x(k)) = y(k).

This is equivalent to

(vTs(k))u = f(x(k+1))− f(x(k)) = y(k) −Bks
(k) = z(k)

Thus u and z(k) has to be paralell. We can pick u = z(k)/‖s(k)‖22 and then chose v
so that ‖uvT‖2 is minimized, while the restriction vTs(k) = ‖s(k)‖22 holds. This leads
to the choice v = s(k).

6: For a) we let p = Ar − αr and chose α so that p is A-orthogonal to r. This means
that

0 = (p, r)A = rTAT (Ar − αr) = rTATAr − αrTAr =⇒ α =
‖Ar‖22
rTAr

.

We also note that α is always well defined unless r = 0 but in that case we already
have the exact solution to the linear system Ax = b.

For b) the algorithm for computing the next iterate x(k+1) from the current x(k) is
as follows. The next iterate will be of the form x(k+1) = x(k) + β1rk + β2pk. We get

rk+1 = b− Ax(k+1) = rk − β1Ark − β2Apk.

We need to select β1 and β2 so that rk+1 is orthogonal (not A-orthogonal) to both
rk and pk. We obtain,

0 = rTk (rk − β1Ark − β2Apk) = ‖rk‖22 − β1r
T
kArk − β2r

T
k Apk = ‖rk‖22 − β1r

T
k Ark,

since rk and pk are A-orthogonal, or

β1 =
‖rk‖22
rTk Ark

.
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The constant β2 is computed by

0 = pTk (rk − β1Ark − β2Apk) = pTk rk − β1p
T
kArk − β2p

T
kApk = pTk rk − β2p

T
kApk,

or

β2 =
pTk rk
pTkApk

.

Now we have everything needed to compute x(k+1).

The algorithm can be written in several ways. The only important things is to intro-
duce intermediate results zk = Ark and wk = Apk since both these factors appear
multiple times in the formulas. After x(k+1) is computed we avoid a multiplication
by A by updating the residual using the formula

rk+1 = b− Ax(k+1) = rk − β1zk − β2wk.

This means that the algorithm requires two multiplications by A in each step.
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