
TEKNISKA HÖGSKOLAN I LINKÖPING
Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

Exam TANA15 Numerical Linear Algebra, Y4, Mat4

Datum: 23:e Mars, 2022.

Hjälpmedel:

1. Föreläsningsanteckningar utskrivna från kurshemsidan utan egna anteck-
ningar.

2. Räknedosa i fickformat, med nollställt minne och utan instruktionsbok.

Examinator: Fredrik Berntsson

Maximalt antal poäng: 25 poäng. För godkänt krävs 10 poäng.

Jourhavandelärare Andrew Winters (telefon 013 28 17 97)

Good luck!
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(4p) 1: Let A and B be matrices. Do the following:

a) Prove that (AB)T = BTAT .

b) Is it true that ‖A−1‖2 = ‖A‖−1
2 ? Either prove or give a counter example.

c) Prove that (A−1)T = (AT )−1. Thus the notation A−T makes sense.

(4p) 2: Let,

r(x) =





x1 + x2
2 − 2

2x1 + x1x2 − 2
x1 +

√
x1x2 − 3



 .

a) Compute the Jacobian matrix Jr(x) of the residual function r(x).

b) Perform one Gauss-Newton step for minimizing ‖r(x)‖22, using the starting
value x(0) = (1, 0)T .

(4p) 3: Let A be an m× n matrix, where m >> n. Do the following

a) A Householder reflection can be written as

H = I − 2uuT ,

where ‖u‖2 = 1. Demonstrate how the product of HA can be computed as
efficiently as possible and estimate the amount of arithmetic work needed.

b) Use the result from a) to estimate the total amount of arithmetic work required
for computing both the R and the Q matrices in the reduced QR decomposition
of the matrix A.

Hint Use m >> n to simplify the expression for the amount of work required.

(4p) 4: Let

A =





7.2 0.5 −0.2
−0.2 4.8 −0.3
−0.6 0.4 −2.2



 .

Do the following

a) Use the Gershgorin theorem to show that the matrix A is non-singular and
has real eigenvalues. Clearly motivate your answer.

b) Will the power method converge if it is used to find one of the eigenvalues of
the matrix A? Motivate your answer by making use the Gershgorin theorem.

c) Suppose we pick a shift s = 6.1 and use inverse iteration, i.e. apply power
iteration to (A−sI)−1. Can the Gershgorin theorem be used to prove that the
inverse iteration with shift s will converge? Again motivate your answer.
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(4p) 5: Let A be an n×n matrix. If A has a high condition number an approximate solution
to Ax = b can be found by selecting a parameter λ > 0 and solving the least squares
problem

min
x∈Rn

‖Ax− b‖22 + λ2‖x‖22.

Do the following:

a) Show that the normal equations of the above least squares problem are (ATA+
λ2I)x = AT b.

b) Derive a formula for the singular values of the matrix (ATA + λ2I) and use
the result to show that the normal equations are not ill-conditioned (provided
λ is selected appropriately).

c) Consider the case n= 3. If the QR decomposition of A is known we need to
solve a least squares problem with a matrix that has the structure

















x x x
0 x x
0 0 x
x 0 0
0 x 0
0 0 x

















for each λ. Show that the above matrix can be transformed into an upper
triangular matrix using exactly 6 Givens rotations.

(5p) 6: A general projection method is defined by solving: Find x(m) ∈ x(0) +Km such that
r(m) is orthogonal to Lm, where Km and Lm are two m dimensional subspaces.

a) Introduce basis sets for the two subspaces and derive an explicit formula for
the approximate solution x(m).

b) Consider the case when A is non-singular and we make the choice Lm =
AKm. Show that the general projection method is always well-defined for this
particular case.

c) Show that the general projection method, with the choice Lm = AKm, finds
the approximate solution that solves the least squares problem

min
x∈x(0)+Km

‖b−Ax‖2.

Thus the residual is minimized.
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Lösningsförslag till tentan 23:e Mars 2022.

1: For a) we look at an element of (AB)T . We have

(AB)Tij = (AB)ji =
n

∑

k=1

AjkBki =
n

∑

k=1

AT
kjB

T
ik =

n
∑

k=1

BT
ikA

T
kj = (BTAT )ij.

For b) a counter example is given by the diagonal matrix
(

1 0
0 2

)

.

For c) we demonstrate that (AT )−1 = (A−1)T by

AT (A−1)T = (A−1A)T = IT = I.

2: For a) we recall that (Jr)ij(x) = (∂xj
ri(x)). Thus

Jr(x) =





1 2x2

2 + x2 x1

1 + 1
2
x1

−1/2x2
√
x1



 ,

where x = (x1, x2)
T . For b) we evaluate r(x(0)) = r((1, 0)T ) = (−1, 0,−2)T , and

Jr((1, 0)
T ) =





1 0
2 1
1 1



 .

In the Gauss-Newton step we first solve the least squares problem JT
r Jrs

(0) = −JT
r r,

or
(

6 3
3 2

)

s(0) =

(

3
2

)

,

which gives s(0 = (0, 1). Thus x(1) = x(0) + s(0) = (1, 1)T .

3: For a) we need to compute

HA = (I − 2uuT )A = A− 2u(uTA).

First y = uTA is a matrix-vector multiply that requires 2mn floating point opera-
tions. Second we have to compute the outer product B = uyT . This again requires
mn multiplications (we ignore the 2 as that could be included in the y matrix using
n operations). Finally A− B is computed using mn subtractions. The total is this
4mn floating point operations.
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For b) we just need to recall that in step k of the Householder algorithm we need
to apply a reflection Hk to the block A(k : m, k : n), of size (m−k+1)×(n−k+1),
and will get R after n steps. This means that the total amount of work is

n
∑

k=1

4(m− k + 1)(n− k + 1) ≈ 4m

n
∑

k=1

(n− k + 1) ≈ 4mn(n/2).

where we used the asumption m >> n to obtain m−k+1 ≈ m. Otherwise we need
to look up the sum in a table.

Similarily, to get the first n columns of the full Q we need to start with the cor-
responding columns of the identity matrix I, i.e. with the In = I(:, 1 : n) of size
m× n, and apply Hk to the block Q(k : m, 1 : n), which is of size (m− k + 1)× n.
The work is thus

n
∑

k=1

4(m− k + 1)n ≈ 4mn2,

where again m >> n was used. To conclude 2mn2 operations needed for R and
4mn2 needed for the reduced Q matrix.

4: For a) we compute the Gershgorin circles as

|λ− 7.2| ≤ 0.7, |λ− 4.8| ≤ 0.5 and |λ− (−2.2)| ≤ 1.0.

First 0 is not inside any of the discs. Thus λ = 0 is not an eigenvalue of A. This
means A is non-singular. Next since the discs don’t overlap there is exactly one
eigenvalue in each disc. Any complex eigenvalues has to occur in complex conjugate
pairs since the matrix has real elements. Thus there can only be real eigenvalues.

For b) the power method converges if one of the eigenvalues is strictly larger than
the others in magnitude. The eigenvalue from the first disc {|λ − 7.2| ≤ 0.7} can
be as small as λ1 = 7.2 − 0.7 = 6.5. This is larger than the possible eigenvalues
from the second disc. From the third disc the eigenvalues can be as small as λ3 =
−2.2 − 1.0 = −3.3 which is also strictly smaller in magnitude. Thus the power
method will converge.

For c) s = 6.1 is located in between the eigenvalues λ1 and λ2. It is not possible to
exclude the case when s = 6.1 is exactly in between λ1 and λ2. This would mean
B = (A−sI)−1 has two eigenvalues of equal magnitude and the power method does
not nessecarily converge.

5: The normal equations can be derived by the identity

min
x

‖Ax− b‖22 + λ2‖x‖22 = min
x

∥

∥

∥

∥

(

Ax− b
λx

)∥

∥

∥

∥

2

= min
x

∥

∥

∥

∥

(

A
λI

)

x−
(

b
0

)∥

∥

∥

∥

2

.

The last is a regular least squares problem with an extended matrix. The normal
equations are

(AT λI )

(

A
λI

)

x = (AT I )

(

b
0

)

or (ATA+ λ2I)x = AT b.
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In b) we derive the solution formula using the decomposition A = UΣV T . Since
ATA+λI = V ΣTΣV T +λ2V V T = V (ΣTΣ+λ2I)V T and AT b = V ΣUT b we obtain
the solution

xλ = V (ΣTΣ+ λI)−1ΣUT b =

n
∑

i=1

σi

σ2
i + λ2

(uT
i b)vi.

Too see that the normal equations are not ill-conditioned we look at ATA+λ2I which
has singular values σ2

i + λ2 ≥ λ2. So the addition of the regularization parameter
removes the small singular values and makes the condition number smaller.

In c we use rotations in the order

R25R36

















x x x

0 x x

0 0 x

x 0 0

0 x 0

0 0 x

















= R25

















x x x

0 x x

0 0 +

x 0 0

0 x 0

0 0 0

















=

















x x x

0 + +

0 0 x

x 0 0

0 0 +

0 0 0

















.

Now we need to use the element (3, 3) to eliminate the one at (5, 3) before we
continue. We get

R14R35

















x x x

0 x x

0 0 x

x 0 0

0 0 x

0 0 0

















= R14

















x x x

0 x x

0 0 +

x 0 0

0 0 0

0 0 0

















=

















+ + +

0 x x

0 0 x

0 + +

0 0 0

0 0 0

















.

Now we have two unwanted elements (4, 2) and (4, 3) which can be removed by
two rotations R24 and R34. Thats a total of 6 rotations.

6: For a) Let V = (v1, v2, . . . , vm) ∈ R
n×m be a basis for Km. Then then projection

step produces an x(m) = x(0) + V y, y ∈ R
m. The orthogonality condition r(m)⊥Lm

can be rewritten using a basis W = (w1, w2, . . . , wm) ∈ R
n×m for Lm. We obtain

0 = W T r(m) = W T (b−Ax(m)) = W T (b−A(x(0)+V y)) = W T (r(0)−AV y) = W Tr(0)−W TAV y.

So y = (W TAV )−1W T r(0) and x(m) = x(0) + V (W TAV )−1W T r(0).

For b) we note that the formula obtained in a) is well-defined if W TAV is non
singular, since for that case (W TAV )−1 and the formula gives a unique x(m). If
Lm = AKm then W = AV is a basis for Lm and we need to prove that V TATAV
is non-singular. Let x 6= 0 be a vector. Since V has orthogonal columns we have
y = V x 6= 0 if x 6= 0 and

xTV TATAV x = (AV x)T (AV x) = (Ay)T (Ay) = ‖Ay‖22 > 0,

since Ay 6= 0 is y 6= 0 due to non-singular. Thus V TATAV is positive definite and
hence non-singular.
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For c) we again let V = (v1, . . . , vm) be a basis for Km. Then AV isa basis for Lm.
The solution can be written in the form x(m) = x(0) + V y, where y ∈ R

m are the
unknown coordinates. We get that the residual r(m) = r(0) − AV y is orthogonal to
Lm if 0 = (AV )T (r(0) − AV y) or (AV )T (AV )y = (AV )T r(0). This is the normal
equations for

min
y∈Rm

‖AV y − r(0)‖2 = min
y∈Rm

‖A(x(0) + V y)− b‖2 = min
x=x(0)+V y

‖Ax− b‖2,

which is the correct minimization problem.
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