
TEKNISKA HÖGSKOLAN I LINKÖPING
Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

Exam TANA15 Numerical Linear Algebra, Y4, Mat4

Datum: 22:e Mars, 2023.

Hjälpmedel:

1. Föreläsningsanteckningar utskrivna från kurshemsidan utan egna anteck-
ningar.

2. Räknedosa i fickformat, med nollställt minne och utan instruktionsbok.

Examinator: Fredrik Berntsson

Maximalt antal poäng: 25 poäng. För godkänt krävs 10 poäng.

Jourhavandelärare Andrew Ross Winters (telefon 013 28 17 97)

Good luck!
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(4p) 1: Do the following

a) What does it mean that a matrix Q is orthogonal? Give the precise definition.
Also show that ‖Qx‖2 = ‖x‖2, for all vectors x, if Q is orthogonal.

b) State the definition of the matrix norm which is induced from the vector norm
‖ · ‖2. Also show that ‖Q‖2 = 1 for this particular norm if Q is orthogonal.

c) Let A = Q1R be the reduced QR decomposition of a full rank matrix of
dimension m × n, where m > n. Show that P = I − Q1Q

T
1 is an orthogonal

projection such that Pb = r, where r = b − Ax is the residual and x is the
solution to the least squares problem min ‖b−Ax‖2.

(4p) 2: Let,

f(x) =

(

2x1 + x2 + (1 + x2)
2 − 1

(3x1 + 1)x2 − 1

)

.

a) Compute the Jacobian Jf and formulate the Newton method for finding a root
of the equation f(x) = 0.

b) Let x(0) = (0 , 0)T and perform one step of the Newton metod and compute
the next iterate x(1).

(4p) 3: Let

A =





4.3 0.7 −0.3
−1.2 7.8 −0.2
−0.7 0.4 −4.2



 .

Do the following

a) Use the Gershgorin theorem to find as good approximations of the eigenvalues
as possible.

b) Determine if the matrix A is non-singular. Also is the Gerschgorin theorem
sufficient to prove that the eigenvalues are real?

c) Let v1 be one of the eigenvectors of A and let B = A + sv1v
T
1 . Can you prove

that v1 is also an eigenvector of B? Also let v2 be another eigenvector of A. Is
v2 also an eigenvector of B? Motivate your answer.
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(4p) 4: Any matrix A ∈ R
m×n, m > n, has a singular value decomposition A = UΣV T . Do

the following:

a) Consider a linear system Ax = b, m > n, where rank(A) = k < n. Use the SVD
to a basis for the both the range Range(A) and its orthogonal complement.
Also give a criteria that guarantees that a solution to the linear system exists.
Your criteria should be expressen in terms of the basis vectors and the vector
b. Also the criteria should be efficient to check for the case when k ≈ n ≈ m.

b) Consider the linear system ATx = b, where as before rank(A) = k < n. Provide
a criteria for existance of a solution to the linear system expressed in terms of
b and the singular vectors. Also write down the formula for the solution x. Is
the solution unique? Motivate clearly.

(4p) 5: Do the following:

a) Clearly demonstrate how the Hessenberg decomposition H = QAQT can be
computed using Householder reflections. You have to specify which elements
of the matrix are used to create each reflection. It is enough to consider the
4× 4 case.

b) Let H = QAQT be a Hessenberg decomposition. Show that A and H have the
same eigenvalues.

(5p) 6: Any matrix A ∈ R
n×n can be factorized as A = QTQH , where Q is unitary and T

upper triangular. This is called the Schur decomposition and is mainly of theoretical
importance. Do the following:

a) Let (x, λ) be an eigenpair of A. The first step in the existence proof for the
Shur decomposition consists of finding an orthogonal matrix V1 such that

V T
1 AV1 =

(

λ wT

0 B

)

.

Clearly explain how to construct such a matrix V1 and show that it the product
V T
1 AV1 has the desired structure.

b) Use the Schur decomposition to prove that any real symmetric matrix A has
orthogonal eigenvectors.

c) A matrix B is called non-defective if it has a full set of eigenvectors, i.e. the
decomposition B = XDX−1 exists. Use the Shur decomposition to prove that
if A is defective then for any ε > 0 there is a non-defective matrix B such that
‖A−B‖2 ≤ ε.

Remark From c) we conclude that if a matrix is supposed to be defective and
we compute a numerical approximation it is likely that the matrix turns out to be
non-defective due to round-off errors.

4



Lösningsförslag till tentan 22:a Mars 2023.

1: For a) we state that a matrix Q is orthogonal if it is quadratic, i.e. the dimension
is n × n, and if QTQ = I, where I is the identity matrix. The second part follows
from V ertQx‖22 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖22.

For b) we state that the induced matrix norm is given by

‖A‖ = max
x 6=0

‖Ax‖

‖x‖
,

where ‖ · ‖, in the righthandside, is any vector norm. This means

‖Q‖2 = max
x 6=0

‖Qx‖2
‖x‖2

= max
x 6=0

‖x‖2
‖x‖2

= 1.

For c) we note that the solution of the least squares problem min ‖Ax−b‖2 is given
by x = R−1QT

1 b. This means that

r = b−Ax = b− (Q1R)(R−1QT
1 b) = b−Q1Q

T
1 b = (I −Q1Q

T
1 )b = Pb.

2: For a) we recall that (Jf)ij(x) = (∂xj
fi(x)). Thus

Jf(x) =

(

2 1 + 2(1 + x2)
3x2 3x1 + 1

)

,

where x = (x1, x2)
T . For b) we evaluate f(x(0)) = f((0, 0)T ) = (0,−1)T , and

Jf((0, 0)
T ) =

(

2 3
0 1

)

.

In the Newton step we first solve the linear system Jfs
(0) = −f(x(0), or

(

2 3
0 1

)

s(0) =

(

0
1

)

,

which gives s(0 = (−1.5, 1). Thus x(1) = x(0) + s(0) = (−1.5, 1)T .

3: For a) we need to find the Gershgorin discs

|λ1 − 4.3| ≤ 1, |λ2 − 7.8| ≤ 1.4 and |λ3 + 4.2| ≤ 1.1.

For b) we note that the discs are disjoint which means all eigenvalues are real
since if an eigenvalue λ were complex also its complex conjugate λ̄ would be an
eigenvalue. This holds for real matrices. This is not consistent with one eigenvalue
in each disc. Also 0 is not in any of the discs so is not an eigenvalue. Thus the
matrix is non-singular. For c) we have

Bv1 = (A+ sv1v
T
1 )v1 = Av1 + s(vT1 v1)v1 = λ1v1 + sv1 = (λ1 + s)v1.
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If we try another eigenvecvtor v2 this does not work since

Bv2 = (A + sv1v
T
1 )v2 = λ2v2 + s(vT1 v2)v1 = αv1,

only for the case vT1 v2 = 0. However since A is not symmetric there is no guarantee
that the eigenvectors are orthogonal.

4: For a) we remark that we can write A in the form

A =
k

∑

i=1

σiuiv
T
i .

Here we clearly see that Range(A) = span(u1, . . . , uk). The orthogonal complement
is Range(A)⊥ = span(uk+1, . . . , um). Existance of solution means that b ∈ Range(A)
which means b doesn’t have a component in Range(A)⊥. For large k the easiest way
to check this is uT

i b = 0, for i = k + 1, . . . , m.

For b) we simply apply the transpose to the above formula for A to obtain

AT =
k

∑

i=1

σiviu
T
i .

This means that now we have Range(AT ) = span(v1, . . . , vk). A criteria for existance
is thus vTi b = 0, for i = k + 1, . . . , n. If this criteria is satisfied we can write

b =

k
∑

i=1

(vTi b)vi = ATx =

k
∑

i=1

σi(u
T
i x)vi.

Identifying coefficients gives us vTi b = σi(u
T
i x), for i = 1, . . . , k. We can express x

in the basis {u1, . . . , um} so

x =

m
∑

i=1

(uT
i x)ui =

k
∑

i=1

vTi b

σi

ui +

m
∑

i=k+1

ciui

where ci are free parameters. The solution is not unique.

5: For a) we illustrate the algorithm as follows: First we use the same reflection H1

applied from the left and from the right. The reflection is selected so the elements
A(3 : 4, 1) are set to zero. We get

H1









x x x x

x x x x

x x x x

x x x x









HT
1 =









x x x x

+ + + +

0 + + +

0 + + +









HT
1 =









x + + +

x + + +

0 + + +

0 + + +









.

Second we find a reflection H2 that zeroes out the element A(4, 2). We get

H2









x x x x

x x x x

0 x x x

0 x x x









HT
2 =









x x x x

x x x x

0 + + +

0 0 + +









HT
2 =









x x + +

x x + +

0 x + +

0 0 + +









,
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which is Hessenberg. For b) we assume that (x, λ) is an eigen pair of A and
A = QHQT . Then QHQTx = λx or H(QTx) = λ(QTx). Thus λ is also an eigen
value of H . The new eigen vector is y = QTx. Similarily an eigenvalue of H is also
an eigenvalue of A.

6: For a) We have the eigenpair (λ, x). If we compute the full QR decomposition of
x ∈ R

n×1 we obtain an orthogonal matrix suxch that Q = (x,Q2), where QH
2 x = 0.

This is assuming that ‖x1‖2 = 1. We find that

QHAQ = (x,Q2)
TA(x,Q2) = (x,Q2)

H(Ax,AQ2) = (x,Q2)
H(λx,AQ2) =

(

λxHx xHAQ2

λQH
2 x QH

2 AQ2

)

=

(

λ wH

0 B

)

,

where we have the correct structure. For b) we simply note that AH = (QTQH)H =
QTHQH . For symmetric matrices, i.e. A real and AT = A, we thus get AT = AH =
QTHQH = A = QTQH . Thus TH = T which means that T is a diagonal since
we already knew that T is upper triangular. Also the diagonal elements satisfy
(T )ii = ¯(T )ii which means the elements on the diagonal are real. Since the diagonal
elements of T are also the eigenvalues of A this shows that the eigenvalues are real.

For c) we assume that A is defective and compute its Shur decomposition A =
QTQH . For A to be defective it has to have at least one eigenvalue λ1 with an
algebraic multiplicity γ1(λ1) strictly larger than the geometric multiplicity γ2(λ1).
Thus, if all diagonal elements of T were different then the matrix A would be non-
defective. Thus we pick a diagonal matrix D = diag(ǫ1, . . . , ǫn) so that T +D has
unique diagonal elements. Then B = Q(T +D)QH is non-defective and ‖A−B‖2 =
‖D‖2 ≤ max |ǫi| = ǫ.
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