
TEKNISKA HÖGSKOLAN I LINKÖPING
Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

Exam TANA15 Numerical Linear Algebra, Y4, Mat4

Datum: 25:e Mars, 2025.

Hjälpmedel:

1. Föreläsningsanteckningar utskrivna från kurshemsidan utan egna anteck-
ningar.

2. Räknedosa i fickformat, med nollställt minne och utan instruktionsbok.

Examinator: Fredrik Berntsson

Maximalt antal poäng: 25 poäng. För godkänt krävs 10 poäng.

Jourhavandelärare Fredrik Berntsson (telefon 013 28 28 60)

Good luck!
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(4p) 1: Do the following

a) Let x ∈ R
n. Prove the inequality ‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞.

b) Let ‖ · ‖ be a vector norm. Clearly explain what it means for a matrix norm
to be induced from a vector norm.

c) Prove that ‖I‖ = 1 and ‖A‖‖A−1‖ ≥ 1 for all matrix norms induced by a
vector norm.

d) Show that the triangle inequality ‖A+B‖ ≤ ‖A‖+ ‖B‖ holds for any matrix
norm which is induced from a vector norm.

(4p) 2: Suppose we implement matrix-vector multiplication by a loop:

y=zeros(n,1);

for i=1:n

for j=1:n

y(i)=y(i)+A(i,j)*x(j);

end

end

on a machine where matrices are stored by column in main memory.

a) Suppose one memory block corresponds exactly to the size of one column
A(:,j) or the vectors x and y. Further assume that only a couple of memory
blocks fit in Cache memory. Clearly explain why the above code is inefficient.
Also check the ratio between the number of memory blocks loaded into Cache
memory and the number of floating point operations needed.

b) Propose an alternative implementation of matrix-vector multiply and clearly
explain why it is better.

(4p) 3: Suppose A is an m× n, m > n, matrix and the linear system Ax = b doesn’t have
an exact solution. The Total least squares solution x satisfies (A + E)x = b + r,
where [E, r] is given by

min ‖[E, r]‖2 such that (A+ E)x = b+ r.

Do the following:

a) Show that the Total least squares problem always has a solution.

b) Use the singular value decomposition to derive the solution to the problem.
Note that it may not always be possible to find the Total least squares solution
using the singular value decomposition and in the case it fails you should give
a clear criteria that shows if the formula worked or not.
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(4p) 4: a) Let a = (a1, a2, . . . , an)
T be a column vector. What is the singular value de-

composition of a considered as a n× 1 matrix? Similarily what is the singular
value decomposition of aT ?

b) Show that if A ∈ R
m×n has rank n, then ‖A(ATA)−1AT ‖2 = 1.

(4p) 5: Do the following:

a) Clearly demonstrate how a bidiagonal reduction A = UBV T can be computed
using Householder reflections. You have to specify which elements of the matrix
are used to create each reflection. It is enough to consider the 4× 4 case.

b) Give the definition of the singular values of an m× n, m > n, matrix A. Also
suppose we have all the eigenvalues {λi} of BTB, where A = UBV T is the
bidiagonal reduction. Clearly show how to obtain the singular values of A in
terms of the eigenvalues of B. What are the dimensions of the matrices B and
BTB?

(5p) 6: a) Show that any matrix A ∈ R
n×n can be factorized as A = QTQH , where Q is

unitary and T upper triangular. This is called the Schur decomposition.

b) A matrix B is called non-defective if it has a full set of eigenvectors, i.e. the
decomposition B = XDX−1 exists. Use the Shur decomposition to prove that
if A is defective then for any ε > 0 there is a non-defective matrix B such that
‖A−B‖2 ≤ ε.

Remark From b) we conclude that if a matrix is supposed to be defective and
we compute a numerical approximation it is likely that the matrix turns out to be
non-defective due to round-off errors.
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Lösningsförslag till tentan 25:e Mars 2025.

1: For a) we demonstrate the first inequality by

‖x‖2∞ = max
1≤i≤n

|xi|2 ≤
n∑

i=1

|xi|2 = ‖x‖22.

Also, since |xi| ≤ ‖x‖∞, we have

‖x‖22 =
n∑

i=1

|xi|2 ≤
n∑

i=1

‖x‖2∞ = n‖x‖∞.

For b) the matrix norm is defined as

‖A‖ = max
x 6=0

‖Ax‖
‖x‖ ,

where both Ax and x are vectors and the vector norm is used.

For c) we use the definition of the matrix norm, and since Ix = x we have

‖I‖ = max
x 6=0

‖Ix‖
‖x‖ = max

x 6=0

‖x‖
‖x‖ = 1, so 1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖.

For d) we use the definition of the induced norm and find that

‖A+B‖ = max
x 6=0

‖(A+B)x‖
‖x‖ ,

and since the triangle inequality holds for the vector norm we obtain

max
x 6=0

‖Ax+Bx‖
‖x‖ ≤ max

x 6=0

‖Ax‖ + ‖Bx‖
‖x‖ ≤ max

x 6=0

‖Ax‖
‖x‖ +max

x 6=0

‖Bx‖
‖x‖ = ‖A‖+ ‖B‖.

2: a)First during the inner loop y(i) and x can be kept in Cache memory. But the
elements A(i, j), for j = 1, . . . , n, all belong to different blocks. Thus a new block
needs to be loaded for each multiply A(i,j)*x(j). So the ratio memory loads to
multiplies is 1− 1.

b) To fix the issue is is enough to change the order of the loops. So the inner loop
copmputes y(i)=y(i)+A(i,j)*x(j), for i = 1, . . . , n. Now the column A(:, j) can
be loaded into Cache and n multiplications can be performed until the next vector
load is needed.
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3: For a) we simply observe that the equation (A + E)x = b + r is satisfied, for any
x, if E = −A and r = −b. The minimum is also bounded from below (by 0). Thus
there is some E, r that gives the minimum.

For b) we can assume that the agumented matrix [A, b] has full rank since otherwise
the minimum would be zero and the linear system Ax = b have a solution. We then
compute the singular value decomposition [A, b] = UΣV T of the m×(n+1) matrix.
The smallest perturbation [E, r] that makes the matrix [A+E, b+ r] rank deficient
is given by the last singular component [E, r] = −σn+1un+1v

T

n+1. There is an x such
that (A + E)x = (b + r) if [A + E, b + r](x,−1)T = 0, i.e. (x,−1)T belongs to the
null space of [A+E, b+r]. By the construction above the null space is exactly vn+1.
So we just take the last singular vector and multiply by a constant so that the last
component becomes 1. Thus x = vn+1(1 : n)/vn+1(n + 1). This is the total least
squares solution.

This obviously fails if vn+1(n+1) = 0. In that case we have to figure out something
else to find the total least squares solution.

4: For a) we note that a is n × 1 and the dimensions of the factors are U ∈ R
n×n,

Σ ∈ R
n×1 and V ∈ R

1×1. The decomposition is

a = UΣV T =

(
a

‖a‖2
A2

)(
‖a‖2
0

)
(1),

where A2 ∈ R
n×n−1 has columns that are orthogonal to a. To obtain the SVD of aT

we simply use AT = V ΣTUT .

For b) we first compute (ATA)−1 = (V ΣTUTUΣV T )−1 = V (ΣTΣ)−1V T . Here
ΣTΣ = diag(σ2

i
) ∈ R

n×n. Thus A(ATA)−1AT = UΣV TV (ΣTΣ)−1V TV ΣTUT =
UΣ(ΣTΣ)−1ΣTUT . Since U is orthogonal ‖A(ATA)−1A‖2 = ‖Σ(ΣTΣ)−1ΣT ‖2. Eva-
luate the product of the diagonal matrices to obtain

Σ(ΣTΣ)−1ΣT =

(
I 0
0 0

)
∈ R

m×m, I ∈ R
n×n.

The norm is the largest diagonal entry, i.e. 1.

5: For a) we illustrate the algorithm as follows: First we use a reflection H1 applied
from the left. The reflection is selected so the elements A(2 : 4, 1) are set to zero.
Second we apply a reflection H2 from the right to zero out the elements Ã(1, 3 : 4).
We get

H1




x x x x

x x x x

x x x x

x x x x


 .




+ + + +

0 + + +

0 + + +

0 + + +


HT

2 =




x + 0 0

0 + + +

0 + + +

0 + + +


 .

Now we continue with reflections H3 and H4 that zero out A(3 : 4, 2) and A(2, 4).
We get

H3




x x 0 0

0 x x x

0 x x x

0 x x x


HT

4 =




x x 0 0

0 + + +

0 0 + +

0 0 + +


HT

4 =




x x 0 0

0 x + 0

0 0 + +

0 0 + +


 .
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Finally we apply one reflection H5 from the left to zero out the element A(4, 3).
We get

H5




x x 0 0

0 x x 0

0 0 x x

0 0 x x


 =




x x 0 0

0 x x 0

0 0 + +

0 0 0 +


 ,

which is bidiagonal.

For b) there easiest way to define the singular values is to say that the singular
value decomposition is A = UΣV T , where U and V are orthogonal matrices and Σ is
diagonal. The singular values σk are the diagonal elements of Σ provided that U and
V are chosen so that the diagonal elements are positive and sorted in descending
order. The dimension of BTB is n × n and the dimension of BBT is m × m. If
A = UBV T then ATA = UBTBUT so the eigenvalues of BTB are the same as
those of ATA. Also suppose A = ŪΣV̄ T is the singular value decomposition of A.
Then ATA = V̄ ΣTΣV̄ T . So the eigenvalues of ATA are λi = σ2

i
, where σi are the

singular values of A. Thus σi =
√
λi, i = 1, 2, . . . , n. We are just missing m−n zero

singular values to get the correct dimension.

6: For a) we pick an eigenpair (λ, x). If we compute the full QR decomposition of
x ∈ R

n×1 we obtain an orthogonal matrix suxch that Q = (x,Q2), where QH

2 x = 0.
This is assuming that ‖x1‖2 = 1. We find that

QHAQ = (x,Q2)
TA(x,Q2) = (x,Q2)

H(Ax,AQ2) = (x,Q2)
H(λx,AQ2) =

(
λxHx xHAQ2

λQH

2 x QH

2 AQ2

)
=

(
λ wH

0 B

)
,

where we have the correct structure. This is the first step of finding the Hessen-
berg decomposition. Now we make the induction argument that the Hessenberg
decomposition exists for dimension n− 1 and find B = Q1H1Q

H

1 . We then have

QHAQ =

(
λ wH

0 Q1H1Q
H

1

)
=

(
1 0
0 Q1

)
=

(
λ wH

0 H1

)(
1 0
0 Q1

)H

.

For b) we simply note that AH = (QTQH)H = QTHQH . For symmetric matrices,
i.e. A real and AT = A, we thus get AT = AH = QTHQH = A = QTQH . Thus TH =
T which means that T is a diagonal since we already knew that T is upper triangular.
Also the diagonal elements satisfy (T )ii = ¯(T )ii which means the elements on the
diagonal are real. Since the diagonal elements of T are also the eigenvalues of A
this shows that the eigenvalues are real.

For c) we assume that A is defective and compute its Shur decomposition A =
QTQH . For A to be defective it has to have at least one eigenvalue λ1 with an
algebraic multiplicity γ1(λ1) strictly larger than the geometric multiplicity γ2(λ1).
Thus, if all diagonal elements of T were different then the matrix A would be non-
defective. Thus we pick a diagonal matrix D = diag(ǫ1, . . . , ǫn) so that T +D has
unique diagonal elements. Then B = Q(T +D)QH is non-defective and ‖A−B‖2 =
‖D‖2 ≤ max |ǫi| = ǫ.
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