TEKNISKA HOGSKOLAN I LINKOPING
Matematiska institutionen
Beridkningsmatematik /Fredrik Berntsson

Exam TANA15 Numerical Linear Algebra, Y4, Mat4

Datum: Klockan 14-18, 21:e Mars, 2015.
Hjalpmedel:

1. Forelasningsanteckningar utskrivna fran kurshemsidan utan egna anteck-
ningar.

2. Réknedosa i fickformat, med nollstéllt minne och utan instruktionsbok.
Examinator: Fredrik Berntsson

Maximalt antal podng: 25 poing. For godkint kréavs 8 poing.

Jourhavandelérare Fredrik Berntsson - (telefon 013 282860)

Besok av jourhavande liarare sker ungefar 15.15.

Resultat meddelas via epost senast 1:a April. Losningsforslag finns pa kurs-
hemsidan efter tentans slut.

Visning av tentamen sker pa Examinators kontor Torsdag den 2:a April, klockan
12.15-13.00 (Hus B, Ing. 23, Plan-2, A-korr).

Good luck!






(8p) 1: Consider the matrix
11 —-1.3 =05
A= -13 9 0.3
—-0.5 0.3 D

a) Use Gershgorin’s theorem to estimate the eigenvalues as accurately as possible.
Can you conclude that the matrix is non-singular?

b) Let s be a scalar and v; be an eigenvector. Show that the matrix B = A—i—svlvlT
has the same eigenvectors as A. What are the eigenvalues of B?

(4p) 2: Let,

2371 + X1x9 — 2

f(x):( T+ 32 )

a) Compute the Jacobian matrix J;(z) of the function f(x).

b) Perform one Newton step for solving the non-linear equation f(x) = 0 using
the starting value (¥ = (1,0)7.

(5p) 3: Two important parts of the QR algorithm for computing eigenvalues is the initial
Hessenberg reduction and the deflation step.

a) The Hessenberg decomposition can be written as A = VHVT where H is has
Hessenberg structure and V' is orthogonal. Clearly give state what Hessenberg
structure means and also prove that A and H have the same eigenvalues.

b) Suppose that after & steps in the QR algorithm the matrix Ay has the following
structure A 1
_ 11 A2l
A = < 0 Ay ) ’

where both A;; and Ayy are quadratic matrices. Show that if A is an eigenvalue
of either Aj; or Ay then A is also an eigenvalue of Ag. Thus we can reduce
the dimension of the problem and compute the eigenvalues of the two smaller
problems A;; and Ags.

(8p) 4: Suppose we want to QR decomposition the structured matriz

8 OO 8
8 O8 8
8 8 8 8
8 8 8 8

where the z denotes a non-zero element. The matrix is already "almost” triangular.
Clearly demonstrate how a sequence of Givens rotations can be used to compute
the R part of the QR factorization. Present the sparsity pattern after each step.
How many Givens rotations are needed?



(5p) 5: Suppose A € R™™ m > n, rank(A) = k < n, and that we have the decomposition
A=UxVT.

a) Use the singular value decomposition to write down an orthogonal basis for
the subspaces Range(A) and Range(A)L. What are the dimensions of the two
subspaces?

b) Suppose b € Range(A) so the solution to the linear system Az = b exists.
Demonstrate that the formula

T
u; b
x = U;
> U
i=1
gives an x that satisfies the linear system Ax = b. Is the solution unique? If
not then use the SVD to construct at least one additional solution.

c) Suppose that instead we are intrested in solving ATz = b, where as previously
A € R™" m > n, rank(A) = k < n, and the singular value decomposition
of A is known. Give a basis for Range(AT) and give a criteria that guarantees
the existance of a solution to ATz = b and also derive a formula that gives a
solution.

(5p) 6: We want to solve Az = b, where A is a large sparse and non-singular matrix,
and have computed an orthogonal basis V; for the Krylov subspace Ky (A, 7®) of
dimension k, where 7(® = b — Az© and z(© is the inital guess.

The following projection method is used: Find z*) = 2 + V.5, y € R¥, such that
the resuidual is orthogonal to the space spanAV;,.

a) Derive a formula for the solution 2*) in terms of the initial guess 2(® and the
matrices A and V.

b) For the projection step to be well-defined it is essential that the matrix VI (AT A)V;
is non-singular. Prove that this is indeed the case here.

c) Let the starting residual be r® and normalize so v; = 7@ /||r©@|, is the
first basis vector in the Krylov subspace. Suppose we compute wy = Av;.
Clearly demonstrate how to use Gram-Schmidt ortogonalization to obtain an
orthonormal basis {vy,vs} for the Krylov subspace of dimension 2.



