
TEKNISKA HÖGSKOLAN I LINKÖPING
Matematiska institutionen
Beräkningsmatematik/Fredrik Berntsson

Exam TANA15 Numerical Linear Algebra, Y4, Mat4

Datum: Klockan 14-18, 21:e Mars, 2015.

Hjälpmedel:

1. Föreläsningsanteckningar utskrivna från kurshemsidan utan egna anteck-
ningar.

2. Räknedosa i fickformat, med nollställt minne och utan instruktionsbok.

Examinator: Fredrik Berntsson

Maximalt antal poäng: 25 poäng. För godkänt krävs 8 poäng.

Jourhavandelärare Fredrik Berntsson - (telefon 013 282860)

Besök av jourhavande lärare sker ungefär 15.15.

Resultat meddelas via epost senast 1:a April. Lösningsförslag finns på kurs-
hemsidan efter tentans slut.

Visning av tentamen sker på Examinators kontor Torsdag den 2:a April, klockan
12.15-13.00 (Hus B, Ing. 23, Plan-2, A-korr).

Good luck!
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(3p) 1: Consider the matrix

A =





11 −1.3 −0.5
−1.3 9 0.3
−0.5 0.3 5





a) Use Gershgorin’s theorem to estimate the eigenvalues as accurately as possible.
Can you conclude that the matrix is non-singular?

b) Let s be a scalar and v1 be an eigenvector. Show that the matrix B = A+sv1v
T
1

has the same eigenvectors as A. What are the eigenvalues of B?

(4p) 2: Let,

f(x) =

(

x1 + x2
2 − 2

2x1 + x1x2 − 2

)

.

a) Compute the Jacobian matrix Jf(x) of the function f(x).

b) Perform one Newton step for solving the non–linear equation f(x) = 0 using
the starting value x(0) = (1, 0)T .

(5p) 3: Two important parts of the QR algorithm for computing eigenvalues is the initial
Hessenberg reduction and the deflation step.

a) The Hessenberg decomposition can be written as A = V HV T where H is has
Hessenberg structure and V is orthogonal. Clearly give state what Hessenberg
structure means and also prove that A and H have the same eigenvalues.

b) Suppose that after k steps in the QR algorithm the matrix Ak has the following
structure

Ak =

(

A11 A21

0 A22

)

,

where both A11 and A22 are quadratic matrices. Show that if λ is an eigenvalue
of either A11 or A22 then λ is also an eigenvalue of Ak. Thus we can reduce
the dimension of the problem and compute the eigenvalues of the two smaller
problems A11 and A22.

(3p) 4: Suppose we want to QR decomposition the structured matrix

A =









x x x x
0 x x x
0 0 x x
x x x x









,

where the x denotes a non-zero element. The matrix is already ”almost” triangular.
Clearly demonstrate how a sequence of Givens rotations can be used to compute
the R part of the QR factorization. Present the sparsity pattern after each step.
How many Givens rotations are needed?
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(5p) 5: Suppose A ∈ R
m×n, m > n, rank(A) = k < n, and that we have the decomposition

A = UΣV T .

a) Use the singular value decomposition to write down an orthogonal basis for
the subspaces Range(A) and Range(A)⊥. What are the dimensions of the two
subspaces?

b) Suppose b ∈ Range(A) so the solution to the linear system Ax = b exists.
Demonstrate that the formula

x =

k
∑

i=1

uT
i b

σi

vi,

gives an x that satisfies the linear system Ax = b. Is the solution unique? If
not then use the SVD to construct at least one additional solution.

c) Suppose that instead we are intrested in solving ATx = b, where as previously
A ∈ R

m×n, m > n, rank(A) = k < n, and the singular value decomposition
of A is known. Give a basis for Range(AT ) and give a criteria that guarantees
the existance of a solution to ATx = b and also derive a formula that gives a
solution.

(5p) 6: We want to solve Ax = b, where A is a large sparse and non-singular matrix,
and have computed an orthogonal basis Vk for the Krylov subspace Kk(A, r

(0)) of
dimension k, where r(0) = b− Ax(0), and x(0) is the inital guess.

The following projection method is used: Find x(k) = x(0) + Vky, y ∈ R
k, such that

the resuidual is orthogonal to the space spanAVk.

a) Derive a formula for the solution x(k) in terms of the initial guess x(0) and the
matrices A and Vk.

b) For the projection step to be well-defined it is essential that the matrix V T
k (ATA)Vk

is non-singular. Prove that this is indeed the case here.

c) Let the starting residual be r(0) and normalize so v1 = r(0)/‖r(0)‖2 is the
first basis vector in the Krylov subspace. Suppose we compute w2 = Av1.
Clearly demonstrate how to use Gram-Schmidt ortogonalization to obtain an
orthonormal basis {v1, v2} for the Krylov subspace of dimension 2.
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