92 Unconstrained Optimization ‘Chap. 1

4.5

Con31der a truncated Newton method and assume that {z*} converges to
a nonsingular local mlmmum z*. Assume that the matrices H* and the
directions d* satisfy :

k gk 4 v (ok
lim ||H* - V2 f(a")|| =0, lim | " + V") _
e woe VM)

Show that {l]wk —z* H} converges superlinearly.

4.6
Apply Newton’s method to minimization of the function f (z) = |lz||* and
show that it converges linearly to * = 0. Explain this fact in light of Prop.
1.4.1.

4.7

Apply Newton’s method with the trust region implex“nentation to a positive
definite quadratic function. Show that the method terminates in a finite
number of iterations.

ik O

1.5 LEAST SQUARES PROBLEMS

In this section we consider methods for solvmg least squares problems
- vof the form

m

minimize f(z) = 3]l9(«)[> = } E;IIQz OIC (5.1)

.

subject to x € R",

where g is a continuously differentiable function with component functions
gi,...,9m, where g; : ®* — Rri. Usually r; = 1, but it is sometimes
notationally convenient to consider the more general case.

Least squares problems are very common in practice. ‘A principal case
arises when g consists of n scalar-valued functions and we want to solve
the system of n equations with n unknowns g(z) = 0. We can formulate
this as the least squares optimization problem (5.1) [z* solves the system
g(z) = 0 if and only if it minimizes }||g(x)||? and the optimal value is zero).
Here are some other examples:

Sec. 1.5 Least Squares Problems , ’ 93
Example 5.1 (Model Construction — Curve Fitting)

Suppose that we want to estimate n parameters of a mathematical model
so that it fits well a physical system, based on a set of measurements. In
particular, we hypothesize an approximate relation of the form

z = h(m,y),

where h is a known function representing the model and

z € R" is a vector of unknown parameters,
2z € R" is the model’s output,
y € RP is the model’s input.

Given a set of m input-output data pairs (y1,21), - -, (Ym, #m) from measure-
ments of the physical system that we try to model, we want to find the vector
of parameters z that matches best the data in the sense that it minimizes the
sum of squared errors

M ER RN

For example, to fit the data pairs by a cubic polynomial approximation, we
would choose '
h(z,y) = z3y° + z2y” + 21y + 20,

where z = (@0, 21, T2, z3) is the vector of unknown coefficients of the cubic
polynomial. ‘ ‘
The next two examples are really special cases of the preceding one.

Example 5.2 (Dynamic System Identification)

A common model for a single input-single output dynamic system is to relate
the input sequence {yx} to the output sequence {zx} by a linear equation of

the form .
» n n
Z%’Z}c—j ='Zﬁjyk—j-
j=0 j=0

Given a record of inputs and outputs Y1,21,- - Ym, Zm from the true system,
we would like to find a set of parameters {a;, B; | j = 0,1,...,n} that
matches this record best in the sense that it minimizes

2

m

ne n) \
E Qj2h—j — E BiYk—j
=0 =0

k=n

This is a least-squares problem.

94 i Unconstrained Optimizatjon Chap. 1
Example 5.3 (Neural N etworks)

A least squares modeling problem that has received a lot of ‘attention is pro-
vided by neural networks. Here the model is specified by a multistage system,
also called a multilayer perceptron. The kth stage consists of nx activation
“units, each of which is a single input-single output mapping of a given form
¢ : R — R to be described shortly. The output of the jth activation unit of
the (k + 1)st stage is denoted by xfc 41 and the input is a linear function of

the output vector zx = (zj,...,z,*) of the kth stage. Thus
z‘lyc-{-l = ¢ uzj +Z wzuzj) .7 = 1, sy Met1, (52) :
s=1

where the coefficients u}’ (also called weights) are to be determined.
Suppose that the multilayer perceptron has N stages, and let u denote
the vector of the weights of all the stages:

u={ul |k=0,...,N—=1,5=0,...,n5,5=1,...,7%41}.

Then, for a given vector u of weights, an input végtor xo to the first stage
produces a unique output vector zy from the Nth stage via Eq. (5.2). Thus,
we may view the multilayer perceptron as a mapping h that is parameter-
ized by u and transforms the input vector zy into an output vector of the
form zy = h(u,zo). Suppose that we have m sample input-output pairs
(y1,21), -+, (Ym, 2m) from a physical system that we are trying to model.
Then, by selecting u appropriately, we can try to match the mapping of the
multilayer perceptron with the mapping of the physical system. A common .
way to do this is to minimize over u the sum of squared errors

1>z = b,)l

-

In the terminology of neural network theory, the process of finding the optimal
weights is known as training the network.
Common examples of activation units are functions such as

#(§) = —1—:{-};‘—5’ (sigmoidal function),
of _ o=t ‘ ,
(&) = pranperd (hyperbolic tangent function),

whose gradients are zero as the argument £ approaches —oo and co. For these
functions ¢, it is possible to show that with a sufficient number of activation
units and a number of stages N > 2, a multilayer perceptron can approximate
arbitrarily closely very complex input-output maps; see [Cyb&9].

Neural network training problems can be quite challenging. Their cost
function is typically nonconvex and involves multiple local minima. For large

Sec. 1.5 Least Squares Problems - 95

Figure 1.5.1. Three-dimensional plot of a least squares cost function

5

3 Z (2 — duryi + uo:)) ’

=1

for a neural network training problem where there are only two weights uo and
u1, five data pairs, and ¢ is the hyperbolic tangent function. The data of the
problem are given in Exercise 5.3. The cost function tends to a constant as u is
changed along rays of the form 74, where 7 > 0 and % is a fixed vector.

values of the weights uf, the cost becomes “fAat”. In fact, as illustrated in
Fig. 1.5.1, the cost function tends to a constant as u is changed along rays of
the form 7%, where r > 0 and % is a fixed vector. For u near the origin, the
cost function can be quite complicated alternately involving flat and steep
regions.

The next example deals with an important context where neural net-
works are often used:

Example 5.4 (Pattern Classification)

Consider the problem of classifying objects based on the values of their char-

96

Unconstrained Optimization Chap. 1

acteristics. (We use the term “object” generically; in some contexts, the clas-
sification may relate to persons or situations.) Each object is presented to us
with a vector y of features, and we wish to classify it in one of s categories
1,...,s. For example, the vector y may represent the results of a collection of
tests on a medical patient, and we may wish to classify the patient as being
healthy or as having one of several types of illnesses. . , ‘

A classical pattern classification approach is to assume that we know
the probabilities p(jly) of an object with feature vector y being of category
j, where j = 1,...,s. Then we may associate an object with feature vector y

with the category j*(y) having maximum posterior probability, that is,

i*ly) = arg gllaxsp(j ly). - ' (5.3)

Suppose now that the probabilities p(jly) are unknown, but instead we
have a sample consisting of m object-category pairs. Then we may try to
estimate p(j|y) based on the fact that, out of all functions f;(y) of ¥, p(jlv)
is the one that minimizes the expected value of (z; — f; (v))?, where '

v = 1 if y is of category j,
’ 0 otherwise. ‘

In particular, let y; denote the feature vector of the ith object. For each
category j = 1,...,s, we estimate the probability p(jly) as a function of y,
by a function h;(xz;,y) that is parameterized by a vector ;. The function h;
could be provided for example by a neural network (cf. Example 5.3). Then,

 we can obtain z; by minimizing the least squares function

1> (= - hs(@s,))
=1

where ‘
i _ [1 if y; is of category j,

zi = ,
J 0 otherwise.

This minimization approximates the minimization of the expected value of
(z; — fi(y))?. Once the optimal parameter vectors z},j=1,...,s, have been
obtained, we may use them to classify a new object with feature vector y
according to the rule ’

Estimated Object Category = arg max hi(z},9),
=158

which approximates the maximum posterior probability rule (5.3).

For the simpler case where there are just two categories, say A and B, a
similar formulation is to hypothesize a relation of the following form between
feature vector y and category of an ob ject:

A if h(z,y) =1,

Object Category = {B i h(:f W= A .

Sec. 1.5 Léast Squares Problems 97

where h is a given function and z is an unknown vector of parameters. Given
a set of m data. pairs (21,41), - - -, (2m,Ym) Of representative objects of known
category,. Where yi is-the feature vector of the zth ‘object, and

= { 1 1f y is of category A,
*7 =1 if yis of category B,

we obtain z by minimizing the least squares function

m
2
Z » — h(z,y:) .
The optimal parameter vector z* is used to classify a new object with feature

vector y according to the rule

A if h(z",y) >0,

Estimated Object Category = { B if h(z*,y) < 0

There are several other variations on the above theme, for which we refer to
the specialized literature.

1.5.1 The Gauss-Newton Method

Let us consider now specialized methods for minimizing the least
squares cost (1/2)|g(z)||2, starting with the most commonly used method,
the Gauss-Newton method. Given a point zk, the pure form of the Gauss-
Newton iteration is based on linearizing g to obtain '

g(z,z*) = g(z*) + Vg(z*) (z — z*)
and then minimizing the norm of the linearized function §:
k41 — in L& kY||2
z arg min 3[g(z, z*)l| |
= arg min }{llg(z*)||? + 2(z — 2*)'Vg(a*)g(z¥)
TERT ;
+ (z — zk)'Vg(zF)Vg(zk) (z — =) }.

Assuming that the n x n matrix Vg(z*)Vg(z*)’ is invertible, the above
quadratic minimization yields

skl = ok (Vg(ah) V(b)) " V(ok)g(sb) 5.4

Note that if g is already a linear function, we have ||g(z)||? = |§(z, %) |2,
and the method converges in a single iteration. Note also that the direction

—(Vgla®)Vg(ak)) ™ Vg(zk)g(a*)

98 Unconstrained Optimization Chap. 1

used in the above iteration is a descent direction since Vg(z*k)g(z*) is
the gradient at z* of the least squares cost function (1/2)|g(x)||? and
(Vg(a:k)Vg(a:k)’)—l is a positive definite matrix.

To ensure descent, and also to deal with the case where the matrix
Vg(z*)Vg(z*) is singular (as well as enhance convergence when this matrix
is nearly singular), the method is often implemented in the modified form

zhtl = ok — ok (Vg(ak)Vg(ah) + AF) ' Vg(ah)g(a¥), (5.5)

where aF is a stepsize chosen by one of the stepsize rules that we have |
discussed, and AF is a diagonal matrix such that

Vg(zk)Vg(xk) + Ak : positive definite.

For example, A*¥ may be chosen in accordance with the Cholesky factor-
ization scheme outlined in Section 1.4. An early proposal, known as the
Levenberg-Marquardt method, is to choose A¥ to be a positive multiple of
the identity matrix. With these choices of A%, it can be seen that the
directions used by the method are gradient related, and the convergence
results of Section 1.2 apply. ‘

Relation to Newton’s Method

The Gauss-Newton method bears a close relation to Newton’s method.
In particular, assuming each g; is a scalar function, the Hessian of the cost

- (1/2)llg(=)||? is

Vg(a*)Vg(zk) +) V2gi(a*)gi(z*), (5.6)

=1

so it is seen that the Gauss-Newton iterations (5.4) and (5.5) are approxi-
mate versions of their Newton counterparts, where the second order term

> V2gi(z*)gi(a*) | (5.7)

=1

is neglected. Thus, in the Gauss-Newton method, we save the computation
of this term at the expense of some deterioration in the convergence rate.
If, however, the neglected term (5.7) is relatively small near a solution, the
convergence rate of the Gauss-Newton method is satisfactory. This is often
true in many applications such as for example when g is nearly linear, and
also when the components g;(z) are small near the solution. In the case -
when m = n and we try to solve the system g(z) = 0, the neglected term
is zero at a solution. In this case, assuming Vg(z¥) is invertible, we have

(Vg(z*)Vg(zk)) " Va(ek)g(a*) = (Vg(z*)) " g(a*),)

Sec. 1.5 Least Squares Problems : 99

and the pure form of the Gauss-Newton method (5.4) takes the form
zhH1 = ok — (Vg(ak)) " gle*),

- which is identical to Newton’s method for solving the system g(x) = 0

[rather than Newton’s method for minimizing ||g(z)||?]. Thus, the con-
vergence rate is typically superlinear in this case, as discussed in Section
1.4. '

1.5.2 Incremental Gradient Methods*

Let us return to the model construction Example 5.1, where we want
to find a vector z € R of model parameters based on data obtained from
a physical system. Each component g; in the least squares formulation
is referred to as a data block, and the entire function g = (g1,...,9m) is
referred to as the data set.

In many problems of interest where there are many data blocks, the
'Gauss-Newton method may be ineffective, because the size of the data
set makes each iteration very costly. For such problems it may be more
attractive to use an incremental method that does not wait to process the
entire data set before updating z; instead, the method cycles through the
data blocks in sequence and updates the estimate of z after each data block
is processed. ' v

For example, given z¥ we may obtain z*+1 at the last step of the
following algorithm '

¢z = 1hi—1 — aFhy, i=1,...,m, (5.8)

where

ok > 0 is a stepsize, and the direction h; is the gradient of the ith data
block,

hi = Vgi(i—1)gi(Yi-1). (5.9)

This method, assuming the same stepsize o is used for all 4, can be written
as

pht = gk — ok Vgi(hio)gi(ti-1): (5.10)

i=1

It may be viewed as an incremental version of the steepest descent method,
which is

2hH = ok — bV f(oF) = o — ok Y Vgi(ak)gi(").

1=1

