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Vix)d, =z, < —¢  fork € H' sufficiently large (10.4)
gi(x) + Vex)de =z, < —¢& - ‘
for k € XK' sufficiently large, fori ='1, ..., m (10.5) =

By continuous differentiability of f, (10.4) implies that Vf(x)'d < 0.
Since g, is continuously differentiable, from (10.5), there exists a 8 > O such that

the following inequality holds for each A € [0, 8l

, e
gi(x) + Vgi(x, + Ap)d, < “‘5_' '
for k € K’ sufficiently large, fori =1,...,m (10.6) °
Now let A € [0, 8]. By the mean value theorem, and since g;(x,) = 0 for each k and
each i, we get S
g:i(x, + Ady) = gi(x) + AVg(x;, + azhd,)d,
= (1 — Ngi(x) + Mgi(x) + Vgi(xe +'a’ik}\dk)tdk] (10.7
= Ng(x) + V(X + azhdy)d,]

where o, € [0, 1]. Since ay\ € [0, 8], from (10.6) and (10.7), it follows that g;(x, +
Ny = —\e/2 = 0 for k € ¥’ sufficiently large and for i = 1, . .., m. This shows
that x, + A\d, is feasible for each A € [0, 8], for all k € ' sufficiently large.
To summarize, we have exhibited a sequence {(x,, d)}s that satisfies conditions 1
~through 4 of Lemma 10.2.6. By the lemma, however, the existence of such a sequence
is not possible. This contradiction shows that x is a Fritz John point, and the proof is

complete.

10.3 | Successive Linear Programming Approach

In our foregoing discussion of Zoutendijk’s algorithm and its convergent variant as
proposed by Topkis and Veinott, we have learned that at each iteration of this method,
we solve a direction-finding linear programming problem based on first-order functional
approximations in a minimax framework and then conduct a line search along this direction.
Conceptually, this is similar to successive linear programming (SLP) approaches, also
known as sequential, or recursive, linear programming. Here, at each iteration k,
a direction-finding linear program is formulated based on first-order Taylor series
approximations to the objective and constraint functons, in addition to appropriate step
bounds or trust region restrictions on the direction components. If d, = 0 solves this
problem, then the ‘current iterate X, is optimal to the first-order approximation, .and so,
from Theorem 4.2.15, this solution is a KKT point and we terminate the procedure.
Otherwise, the procedure either accepts the new iterate X,,; = X, + d,, or rejects this
iterate and reduces the step bounds, and then repeats this process. The decision as to -
‘whether to accept or reject the new iterate is typically made based on a merit function
fashioned around [, or the absolute value penalty function [see equation (9.8)]..

The philosophy of this approach was introduced by Griffith and Stewart of the Shell *
Development Company in 1961, and has been widely used since then, particularly in the
oil and chemical industries (see Exercise 10.55). The principal advantage of this type of
method is its ease and robustness in implementation for large-scale problems, given an
efficient and stable linear programming solver. As can be expected, if the optimum isa
vertex of the (linearized) feasible region, then a rapid convergence is obtained. Indeed,
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once the algorithm enters a relatively close neighborhood of such a solution, it essentially
behaves like Newton’s algorithm applied to the binding constraints (under suitable
regularity assumptions), with the Newton iterate being the (unique) linear programming
solution, and a quadratic convergence rate obtains. Hence, highly constrained nonlinear
programming problems that have nearly as many linearly independent active constraints
as variables are very suitable for this class of algorithms. Real-world nonlinear refinery
models tend to be of this nature, and problems of up to 1000 rows have been successfully
solved. On the negative side, SLP algorithms exhibit slow convergence to nonvertex
solutions, and they also have the disadvantage of violating nonlinear constraints en route
to optimality. ,

Below, we describe an SLP algorithm, called the penalty successive linear pro-
gramming (PSLP) algorithm, which employs the /; penalty function more actively in the
direction-finding problem, itself, rather than as only a merit function, and enjoys good
robustness and convergence properties. The problem we consider is of the form:

P: Minimize f(x)
" subject to g(x)=<0 fori=1,...,m
h(x) =0 fori=1,...,1
XEX = {x:Ax= b}

where all functions are assumed to be continuously differentiable, where x € E,, and
where the linear constraints defining the problem have all been accommodated into the
set X. : :

Now let Fz(x) be the [,, or absolute value, exact penalty function of equation (9.8),
restated below for a penalty parameter p. > 0:

m 1
Fg(x) = f(x) + p«[Z} max {0, g:(x)} + ZI |h,~(X)I] (10.8)
Accordingly, consider the fbllowing (linearly constrained) penalty problem PP
PP: Minimize {Fy(x) : x € X} (10.9a)
Substituting y; for max {0, g;(x)}, i = 1, ..., m, and writing h;(x) as the difference
z; — z; of two nonnegative yariables, where |h;(x)| = z;* +z;7, fori = 1, ..., |,

we can equivalently rewrite (10.9a) without the nondifferentiable terms as follows:

m l}
- PP: Minimize fx) + P«I:E y; + 2 (z;" + Zi—)]
. i=1 i=1

subjectto  y, = g,(x) i=1,...,m
-z = h®  i=1,.. ., (10.50)
xEX,y,=0 fori=1,...,m
ztandz;7 =0 fori=1,...,1

Note that, given any x € X, since p > 0, the optimal completion (y, z*, z7) =

Vys « o v s Vs 215+ o+ 521,27 « . . ,z[") is determined by letting
y;i = max {0, g(x)} i=1,...,m
zt = max {0, h,(x)} z7 =max{0, - AX)} i=1,...,0  (10.10)
so that (z;* + z;7) = |h(x)| i=1,...,1 '

Consequently, (10.9b) is equivalent to (10.9a) and may be essentially viewed as also
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being a problem in the x-variable space. Moreover, under the condition of Theorem
9.3.1, if w is sufficiently large and if X is an optimum for P, then X solves Pp.
Alternatively, as in Exercise 9.12, if w is sufficiently large and if X satisfies the second-
order sufficiency conditions for P, then X is a strict local minimum for PP. In either Case,
w must be, at least, as large as the absolute value of any Lagrange multiplier associated
with the constraints g(x) = 0 and h(x) = 0 in P. Note that instead of using a single
penalty parameter ., we can employ a set of parameters W, . . . , P4, ONE associated -
with each of the penalized constraints. Selecting some reasonably large values for these
parameters (assuming a well-scaled problem), we can solve PP; and if an infeasible
solution results, then these parameters can be manually increased and the process repeated.
‘We shall assume, however, that we have selected some suitably large, admissible value
of a single penalty parameter . With this motivation, the algorithm PSLP seeks to solve -
Problem PP, using a box step or hypercube first-order trust region approach as introduced-
in Section 8.7. ’ :

Specifically, this approach proceeds as follows. Given a current iterate x, € X and
a trust region or step bound vector A; € E,, consider the following linearization of PP,
given by (10.92a), where we have also imposed a trust region bound based on the I, or
sup-norm. ' '

LP(x;,Ay):  Minimize FELk(x) =f(x,) + V(x)(x — x)
f" IJ'I:ZI max {0, g:(x0) + Vg, (x)i(x — X}

! ' ' (10.11a)
+ ; Ihi(xk) + Vh(x)(x — _xk)l:l

subject to xEX={x:Ax=b}
| —A=X—X =4

- Similar to (10.9) and (10.10), this can be equivalently restated as the following linear
programming problem, where we have also used the substitution x = X, + d and have
dropped the constant f(x,) from the objective function: '

m I
LP(x,,A,): Minimize  Vf(x,)d + p[E yit+ D (" + z,-’)]
i=1 i=1

subjectto  y; = gi(x,) + Vgi(x,)d i=1,.%.,m (1011p)
(zt —z7) = h(x) + Vh(x)d  i=1,...,1
A, +d)<b
—Ay=d,=A, i=1,...,n

y=0,z"=0,z" =0

The linear program LP(x,, A,) given by (10.11b) is the direction-finding subproblem
that yields an optimal solution d,, say, along with the accompanying values of y, z*,
and z~, which are given as follows, similar to (10.10):

yi = max {0, &i(x) + Vgi(x)d} i=1...,m
zt = max {0, &i(x,) + VA (x,)d,} zi = max {0, = [h(x0) + Vh(x)'dl}
sothat (z;" + z7) = |h(x) + Vh(x)d,| i=1,...,1 (10.12)

As with trust region methods described in Section 8.7, the decision whether to accept of
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to reject the new iterate x, + d, and the adjustment of the step bounds A, is made based
on the ratio R, of the actual decrease AFy, in the /, penalty function Fg, and the decrease
AFy,, as predicted by its linearized version Fg,,, provided that the latter is nonzero. These
quantities are given as follows from (10.8) and (10.11a):

AFy, = Fg(x) — Fg(x, + dp) AFg, = Fg (%) — Fp (% +dp)  (10.13)

The principal concepts tying in the developmént presented thus far are encapsulated
by the following result.

Theorem

Consider Problem P and the absolute value (l,) penalty function (10.8), where p is
assumed to be large enough as in Theorem 9.3.1.

‘a. If the conditions of Theorem 9.3.1 hold and if X solves Problem P, then X also
solves PP of equation (10.9a). Alternatively, if X is a regular point that satisfies
the second-order sufficiency conditions for P, then X is a strict local minimum

: for PP. ;

b. Consider Problem PP given by (10.9b), where (y, z*, z7) are given by (10.10)
for any x € X. If x is a KKT solution for Problem P, then, for . large enough,
as in Theorem 9.3.1, X is a KKT solution for Problem PP. Conversely, if X is
a KKT solution for PP and'if % is feasible to P, then X is a KKT solution “for
P. »

c. The solution d, = 0 is optimal for LP(x,, A,) defined by (10.11b) and (10.12)
if and only if x, is a KKT solution for PP.

d. The predicted decrease AFy;, in the linearized penalty function, as given by
(10.13), is nonnegative, and is zero if and only if d, = 0 solves Problem
LP(x,, A,).

Proof

The proo'fvflor part a is similar to that of Theorem 9.3.1 and of Exercise 9.12, and
is left to the reader in Exercise 10.18. Next, consider part b. The KKT conditions for P
require a primal feasible solution X, along with Lagrange multipliers @i, ¥, and W satisfying

m ) !
> 4Vg(® + 2 9VhE + AW = — Vf(®)
i=1 i=1
a=0 v unrestricted w=0 (10.14)
agx) =0 w(AX —b) =0
Furthermore, X is a KKT point for PP, with X € X and with (y, z*, 27) given accordingly
by (10.10), provided Lagrange multipliers @, ¥, and W exist satisfying

m 1 E .
> @ Vg (%) + >, 7 VhE) + AW = —Vf(X) (10.15a)
i=1 i=1
Osi,=p (@—py; =0 aly,—ga®]=0 fori=1,...,m (10.15b)
[l = p zr(w—9)=0 z7(u+9)=0 fori=1,...,0 (10.150)

WA —-b) =0 Ww=0 (10.15d)
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Now let X be a KKT solution for Problem P, with Lagrange multipliers @, v,
satisfying (10.14). Defining (¥, z*, z7) according to (10.10), we gety = 0, 2% =
z- = 0; and so, for p large enough, as in Theorem 9.3.1, % is a KKT solution for Pp
by (10.15). Conversely, let X be a KKT solution for PP and suppose that X is feasible
to Problem P. Then, we again havey = 0, z+ =z~ = 0by (10.10); and so, by (10.15)
and (10.14), % is a KKT solution for Problem P. This proves part b.

Part ¢ follows from Theorem 4.2.15, noting that LP(x,, A,) represents a first-order
linearization of PP at the point X, and that the step bounds — A, = d = A, are nonbinding
atd, = 0, thatis, at X = X,. .

' Finally, consider part d. Since d, minimizes LP(x, A,) in (10.11b), x = x; + d,
minimizes (10.11a); and so, since X, is feasible to (10.11a), we have Fg (x,) =
Fp (X, + dy), or that AFz, = 0. By the same token, this difference is zero if and only
if d, = 0 is optimal for LP(x;, A,), and this completes the proof.

Summary of the Penalty Successive Linear Programming (PSLP) Algorithm

Initialization Put the iteration counter k = 1, and select a starting solution x, € X
feasible to the linear constraints, along with a step bound or trust region vector A, >
0 in E,. Let Ay > 0 be some small ‘Jower bound tolerance on A,. (Sometimes,
Az = 0 is also used.) Also, select a suitable value of the penalty parameter . (or
values for penalty parameters i, - - - 5 Hom+1 88 discussed above). Choose values for
the scalars 0 < po < p; < pp < I to be used in the trust region ratio test, and for the

* step bound adjustment multiplier § € (0, 1). (Typically, py = 10~%, p, = 0.25,
p, = 0.75,and B = 0.5.) :

Step 1 Linear Programming S ubproblem  Solve the linear program LP(x,, A,) to obtain
an optimum d,. Compute the actual and the predicted decreases AFy, and AFy,,
respectively, in the penalty function as given by (10.13). If AFg, = 0 (equivalently,
by Theorem 10.3.1d, if d, = 0), then stop. Otherwise, compute the ratio R, = AFg/
AFg,. If Ry < po, then, since AFy;, = 0 by Theorem 10.3.1d, the penalty function
has either worsened or its improvement is insufficient. Hence, reject the current
solution, shrink A, to BA,, and repeat this step. (Zhang, Kim, and Lasdon [1985]
show that within a finite number of such reductions, we will have R, = p,. Note that,
while R, remains less than p,, components of A, may shrink below those of Arg.) On
the other hand, if R, = po, proceed to step 2.

Step 2 New Iterate and Adjustment of Step Bounds Let X, = X + d, If0=
R, < p;, then shrink A, to A4, = BA,, since the penalty function has not improved
sufficiently. If p, = R, < p,, then retain A,., = A, On the other hand, if R, > P,
then amplify the trust region by letting A,,.; = A/B. In all cases, replace A, by -
max {A,.,, As}, where the max {-} is taken componentwise. Increment k by 1 and

return to step 1.

A few comments are in order at this point. First, note that the linear program
(10.11b) is feasible and bounded (d = 0 is a feasible solution) and that it preserves
any sparsity structure of the original problem. Second, if there are any variables that
appear linearly in the objective function as well as in the constraints of P, then the
corresponding step bounds for such variables can be taken as some arbitrarily large
value M and can be retained at that value throughout the procedure. Third, when
termination occurs at step 1, then, by Theorem 10.3.1, x, is a KKT solution for PP;
and if x, is feasible to P, then it is also a KKT solution for P. (Otherwise, the penalty
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parameters may need to be increased as discussed earlier.) Fourth, it can be shown
that either the algorithm terminates finitely or, else, an infinite sequence {X,} is
generated such that if the level set {x € X:Fu(x) =< Fg(x,)} is bounded, then {x,} has
an accumulation point, and every such accumulation point is a KKT solution for
Problem PP. Finally, the stopping criterion of step 1 is usually replaced by several
practical termination criteria. For example, if the fractional change in the /; penalty
function is less than a tolerance (¢ = 10™%) for some ¢ (= 3) consecutive iterations,
or if the iterate is e-feasible and either the KKT conditions are satisfied within an
e-tolerance, or if the fractional change in the objective function value for Problem P
is less than e for ¢ consecutive iterations, then the procedure can be terminated. Also,
the amplification or reduction in the step bounds are often modified in implementations

" s0 as to treat deviations of R, from unity symmetrically. For example, at step 2, if
|1 — R,] < 0.25, then all step bounds are amplified by dividing by B = 0.5; and if
|1 — R,| > 0.75, then all step bounds are reduced by multiplying by 8. In addition,
if any nonlinear variable remains at the same step bound for ¢ (= 3) consecutive
iterations, then its step bound is amplified by dividing by B.

10.3.2 Examplé

Consider the problem

Minimize  f(x) = 2x} + 2x3 — 2x.x, — 4x; — 6x,
subject to gi(x) =2x} —x,=0
XEX={x=(x;,%):x +55,=5x=0}

Figure 10.13a provides a sketch for the graphical solution of this problem. Note that this
problem has a “vertex” solution, and thus we might expect a rapid convergence behavior.
Let us begin with the solution x; = (0, 1)’ € X and use p. = 10 (which can be verified
to be sufficiently large—see Exercise 10.19). Let us also select A, .= (1, 1), A =
(1076, 1079, p, = 107%, p, = 0.25, p, = 0.75, and B = 0.5.

The linear program LP(x,, A,) given by (10.11b) now needs to be solved, as, for
example, by the simplex method. To graphically illustrate the process, consider the
equivalent problem (10.11a). Noting that x, = O, 1Y, p = 10, fx) = —4,
Vix,) = (=6, —2), gi(x;) = —1, and Vg,(x;) = (0, —1), we have

Xp X5

)

8, \

\\\ (5, 0)

(a) | (b)
Figure 10.13 [Illustration for Example 10.3.2.
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10.4

Fg (x) = —2 — 6x; — 2x, + 10 max {0, — x} (10.16)

The solution of LP(x,, A,) via (10.11a) is depicted in Figure 10.13b. The optimur
solution is x = (1, 3y, so thatd, = (1, %' — (0, 1) = (1, —3)" solves (10.11b). Frop,
(10.13), using (10.8) and (10.16) along with x, = (0, 1) and x;, + d, = (1, 2y, we get
AF; = —4.88 and AFy, = 2 Hence, the penalty function has worsened, and so we
reduce the step bounds at step 1 itself and repeat this step with the revised A; = (0.5,
0.5)".

The revised step bound box is shown dotted in Figure 10.13b. The corresponding
optimal solution is x = (0.5, 0.9)", which corresponds to the optimum d, = (0.5,
0.9 — (0, 1)) = (0.5, —0.1)" for the problem (10.11b). From (10.13), using (10.8)
and (10.16) along with x; = (0, 1)’ and x;, + d, = (0.5, 0.9), we get AF; = 2.18
and AFy, = 2.8, which gives R, = 2.18/2.8 = 0.7786. We therefore accept this

“solution as the new iterate x, = (0.5, 0.9)" and, since R, > p, = 0.75, we amplify the

trust region by letting A, = A,/B = (1, 1)". We now ask the reader (see Exercise 10.19)
to continue this process until a suitable termination criterion is satisfied, as discussed
above.

Successive Quadratic Programming or Projected Lagrangian
Approach

We have seen that Zoutendijk’s algorithm as well as Topkis and Veinott’s modification
of this procedure are prone to zigzagging and slow convergence behavior because of the
first-order approximations employed. The SLP approach enjoys a quadratic rate of
convergence if the optimum occurs at a vertex of the feasible region, because then, the
method begins to imitate Newton’s method applied to the active constraints. However,
for nonvertex solutions, this method again, being essentially a first-order approximation
procedure, can succumb to a slow convergence process. To alleviate this behavior, we
can employ second-order approximations and derive a successive quadratic programming
approach (SQP).

SQP methods, also known as sequential, or recursive, quadratic programming,
employ Newton’s method (or quasi-Newton methods) to directly solve the KKT conditions
for the original problem. As a result, the accompanying subproblem turns out to be the
minimization of a quadratic approximation to the Lagrangian function optimized over a
linear approximation to the constraints. Hence, this type of process is also known as a
projected Lagrangian, or the Lagrange—Newton, approach. By its nature, this method
produces both primal and dual (Lagrange multiplier) solutions.

To present the concept of this method, consider the equality constrained nonlinear
problem, where x € E,, and all functions are assumed to be continuously twice-
differentiable.

P: Minimize = f(x)

A7
subject to h(x) =0 i=1,...,1 (10.17)

The extension for including inequality constraints is motivated by the following analysis
for the equality constrained case and is considered subsequently.

The KKT optimality conditions for Problem P require a primal solution x € E, and
a Lagrange multiplier vector v € E, such that




