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Fg (X) = —2 — 6x; — 2x, + 10 max {0, — x,} (10.16)

The solution of LP(xl, A)) via (10. lla) is depicted in Flgure 10.13b. The optimum
solution is x = (1, 9, so thatd, = (I, 5)’ O, 1) = (1, 5)’ solves (10. llb) From
(10.13), using (10.8) and (10. 16) along with x, = (0, 1)’and x, + d, = (1, %), we get
AFg, = —4.88 and AFy, = 2 Hence, the penalty function has worsened, and so we
reduce the step bounds at step 1 itself and repeat this step with the revised A; = (0.5,
0.5)".

The revised step bound box is shown dotted in Figure 10.13b. The corresponding
optimal solution is x = (0.5, 0.9y, which corresponds to the optimum d, = (0.5,
0.9y — (0, 1)) = (0. 5 —0.1)" for the problem (10.11b). From (10.13), using (10. 8)
and (10.16) along with x, = (0, 1) and x; + d, = (0.5, 0.9)", we get AFy, = 2.18
and AFy, = 2.8, which gives R, = 2.18/2.8 = 0.7786. We therefore accept this

“solution as the new iterate X, = (0.5, 0.9)" and, since R, > p, = 0.75, we amplify the

trust region by letting A, = A/B = (1, 1)". We now ask the reader (see Exercise 10.19)
to continue this process until a suitable termination criterion is satisfied, as discussed
above.

10.4 Successive Quadratic Programming or Projected Lagrangian

Approach

We have seen that Zoutendijk’s algorithm as well as Topkis and Veinott’s modification
of this procedure are prone to zigzagging and slow convergence behavior because of the
first-order approximations employed. The SLP approach enjoys a quadratic rate of

~convergence if the optimum occurs at a vertex of the feasible region, because then, the

method begins to imitate Newton’s method applied to the active constraints. However,
for nonvertex solutions, this method again, being essentially a first-order approximation
procedure, can succumb to a slow convergence process. To alleviate this behavior, we
can employ second-order approximations and derive a successive quadratic programming
approach (SQP).

SQP methods, also known as sequential, or recursive, quadratic programming,
employ Newton’s method (or quasi-Newton methods) to directly solve the KKT conditions
for the original problem. As a result, the accompanying subproblem turns out to be the
minimization of a quadratic approximation to the Lagrangian function optimized over a
linear approximation to the constraints. Hence, this type of process is also known as a
projected Lagrangian, or the Lagrange—Newton, approach. By its nature, this method
produces both primal and dual (Lagrange multiplier) solutions.

To present the concept of this method, consider the equality constrained nonlinear
problem, where x € E,, and all functions are assumed to be continuously twice-
differentiable.

P: Minimize . f(x)

17
subject to h(x) =0 i=1,...,1 (10.17

The extension for including inequality constraints is motivated by the following analysis
for the equality constrained case and is considered subsequently.

The KKT optimality conditions for Problem P require a primal solution x € E, and
a Lagrange multiplier vector v € E, such that ‘
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1
Vix) + D vVh(x) = 0
=1 (10.18)
hx)=0 i=1,...,1

Let us write this system of equations more compactly as W(x, v) = 0. We now use the
Newton—Raphson method to solve (10.18) or, equivalently, use Newton’s method to
minimize a function for which (10.18) represents the first-order condition that equates
the gradient to zero. Hence, given an iterate (X, v,), we solve the first-order approximation

W, v,) + VW(x,, vk)[’; B ’i’j =0 (10.19)

to the given system to determine the next iterate (X, V) = (X;.,, Vi41), Where VW
denotes the Jacobian of W. Defining V2L(x,) = V(x,) + P v.V?h(x,) to be the
usual Hessian of the Lagrangian at x, with the Lagrange multiplier vector v,, and letting

Vh denote the Jacobian of h comprised of rows Vh,(x)' fori = 1, ..., [, we have
' | V2L(x;) Vh(x,)’
VW(x,, v,) = [Vh(xk) 0 (10.20)
Using (10.18) and (10.20), we can rewrite (10.19) as -
VIL(x)(x — x) + VRX)(v — v) = = Vf(x) — Vh(x,)v,
Vh(x)(x — x,) = —h(x,)
Substituting d = x — Xx,, this in turn can be rewritten as
2 y — —
V2L(x,)d + Vh(x,)'v Vf(x,) (10.21)

Vh(x,)d = —h(x,)

We can now solve for (d, v) = (d,, v,,,), say, using this system, if a solution exists.
(See the convergence analysis below and Exercise 10.24.) Setting x,,, = X, + d,, we
then increment k by 1 and repeat this process until d = 0 happens to solve (10.21).
When this occurs, if at all, noting (10.18), we shall have found a KKT solution for
Problem P. :

Now, instead of adopting the foregoing process to find any KKT solution for P, we
can instead employ a quadratic minimization subproblem whose optimality conditions
duplicate (10.21), but which might tend to drive the process toward beneficial KKT
solutions. Such a quadratic program is stated below, where the constant term f(x,) has
been inserted into the objective function for insight and convenience.

OP(x;, vp): Minimize  f(x,) + Vf(x,)'d + 3d'V2L(x,)d

(10.22)
subject to h;(x,) + Vh(x)'d = 0, i=1...,1

Several comments regarding the linearly constrained quadratic subproblem QP(x,,
v,), abbreviated QP wherever unambiguous, are in order at this point. First, note that
an optimum to QP, if it exists, is a KKT point for QP and satisfies equations (10.21),
where v is the set of Lagrange multipliers associated with the constraints of QP. However,
the minimization process of QP drives the solution toward a desirable KKT point
satisfying (10.21) whenever alternatives exist. Second, observe that by the foregoing
derivation, the objective function of QP represents not just a quadratic approximation for
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Jf(x) but also incorporates an additional term %EL 1 v;d'V2h(x,)d to represent the curvature
of the constraints. In fact, defining the Lagrangian function L(x) = f(x) + i-1 Vil (x),
the objective function of QP(x,, v,) can alternatively be written as follows, noting the -
constraints:

Minimize L(x,) + V,L(x)'d + ; d'VZL(x,)d (10.23)

Observe that (10.23) represents a second-order Taylor series approximation for the :
Lagrangian function L. In particular, this supports the quadratic convergence rate behavior -
in the presence of nonlinear constraints (see also Exercise 10.25). Third, note that the
constraints of QP represent a first-order linearization at the current iterate x,. Fourth,
observe that QP might be unbounded or infeasible, whereas P is not. Although the first
of these unfavorable events can be managed by bounding the variation in d, for instance,
the second is more disconcerting. For example, if we have a constraint x} + x2 = 1 ang
we linearize this at the origin, we obtain an inconsistent restriction requiring —1 = 0.
We later present a variant of the above scheme which overcomes this difficulty (see also
Exercise 10.23). Notwithstanding this problem, and assuming a well-behaved QP

subproblem, we are now ready to state a rudimentary SQP algorithm. ‘

Rudimentary SQP Algorithm (RSQP)

Initialization Put the iteration counter k = 1 and select a (suitable) starting primal-
dual solution (x,, v,).

Main Step Solve the quadratic subproblem QP(x,, v,) to obtain a solution d, along
with a set of Lagrange multipliers v,,,. If d, = 0, then, from (10.21), (x,, v;.,)
satisfies the KKT conditions (10.18) for Problem P; stop. Otherwise, put x,,, =
X, + d,, increment k by 1, and repeat the main step.

Convergence Rate Analysis

Under appropriate conditions, we can argue a quadratic convergence behavior for the
foregoing algorithm. Specifically, suppose that % is a regular KK T solution for Problem
P which,. together with a set of Lagrange multipliers v, satisfies the second-order
sufficiency conditions of Theorem 4.4.2. Then, VW(x, ¥) = VW, say, defined by
(10.20) is nonsingular. To see this, let us show that the system

Vw&ﬁ{$]=o
2

has a unique solution given by (di, d;) = 0. Consider any solution (d!, d}). Since % is
a regular solution, Vh(%)’ has full column rank; and so, if d; = 0, then d, = 0 as well.
If d, # 0, then, since Vh(X)d, = 0, by the second-order sufficiency conditions we
have d{V?L(X)d, >0. However, since VZL(X)d, + _Vh(x)d, = 0, we have
diV’L(x)d, = —d4Vh(x)d, = 0, a contradiction. Hence, VW is nonsingular; and thus,
for (x,, v,) sufficienty close to (X, V), VW(x,, v,) is nonsingular. Therefore, the system
(10.21), and so Problem QP(x,, v,), has a well-defined (unique) solution. Consequently,
in the spirit of Theorem 8.6.5, when (x,, v,) is sufficiently close to (X, ¥), a quadratic
rate of convergence to (X, V) is obtained.

Actually, the closeness of x, alone to X is sufficient to establish convergence. It can
be shown (see the Notes and References section) that, if x, is sufficiently close to % and
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if VW(x,, v,) is nonsingular, then the algorithm SQPR converges quadratically to (X,
¥). In this respect, the Lagrange multipliers v, appearing only in the second-order term
in QP, do not play as important a role as they do in augmented Lagrangian (ALAG)
penalty methods, for example, and inaccuracies in their estimation can be more flexibly
tolerated.

Extension to Include Inequality Constraints

We now consider the inclusion of inequality constraints g;(x) = 0,i =1, ..., m, in
Problem P, where g, are continuously twice-differentiable for i = 1, ..., m. This
revised problem is restated below:

P: Minimize Jf(x)
subject to gx)=0 i=1,...,m (10.24)
h(x) =0 i=1,...,1

For this instance, given an iterate (X, W, Vi), where u, = 0 and v, are, respectively,
the Lagrange multiplier estimates for the inequality and the equality constraints, we
consider the following quadratic programming subproblem as a direct extension of

(10.22):
OP(x,, u,, v,): Minimize  f(x) + VAx,yd + ;d'VL(x)d
subject to g:(x,) + Vgi(x)d=0 i=1,...,m
hi(x,) + Vh(xyd = 0 i=1,...,1
(10.25)

where V2L(x,) = V3(x) + 201w, Vigi(x) + Si-1 v, V?h,(x,). Note that the KKT
conditions for this problem require that, in addition to primal feasibility, we find Lagrange
multipliers u and v such that

m 1
Vix,) + VL&) + 2 uVg(x) + >, vVh(x) =0 (10.26a)
i=1 i=1
ulg:(x,) + Vgi(x,)d] =0 i=1,...,m (10.26b)
u=90 v unrestricted (10.26¢)

Hence, if d, solves QP(X,, u;, V) with Lagrange multipliers u,,; and v, , and if d;, =
0, then x, along with (u,,, V,+,) yields a KKT solution for the original Problem P.
Otherwise, we set X,,, = X, + d, as before, increment k by 1, and repeat the process.
In a likewise manner, it can be shown that if X is a regular KKT solution which, together
with (@, ¥), satisfies the second-order sufficiency conditions, and if (x;, u, V) Is
initialized sufficiently close to (X, @, ¥), then the foregoing iterative process will converge
quadratically to (X, @, V). ’

Quasi-Newton Approximations

One disadvantage of the SQP method discussed thus far is that we require second-order
derivatives to be calculated and, besides, that V2L(x,) might not be positive definite.
This can be overcome by employing quasi-Newton positive definite approximations for
V2L. For example, given a positive definite approximation B, for V2L(x,) in the algorithm
SQPR described above, we can solve the system (10.21) with V2L(x;) replaced by B,,
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to obtain the unique solution d, and v, ;, and then set X, ,; = X, + d,. This is equivalep;
to the iterative step given by

[XHIJ — [Xk] _ [Bk Vh(xk)‘]—] [VL(xk)]

Vi+1 Vi Vh(x,) 0 h(x,)

where VL(x,) = Vf(x,) + Vh(x,)'v,. Then, adopting the popular BFGS update for the
Hessian as defined by (8.63), we can compute ‘

4 B.ppiB,
qiPx piBp:

B = B, + (10-273)

where

Pe = Xee1 — X q = VL'(X,41) — VL'(x,)
and where (10.27b)

1
VL'(x) = Vf(x) + ; Vier 1V Hi(X)

It can be shown that this modification in the rudimentary process, similar to the
quasi-Newton modification of Newton’s algorithm, converges superlinearly when initial-
ized sufficiently close to a solution (X, ¥) that satisfies the foregoing regularity and
second-order sufficiency conditions. However, this superlinear convergence rate is
strongly based on the use of unit step sizes.

A Globally Convergent Variant Using the [, Penalty as a Merit Function

10.4.1

A principal disadvantage of the SQP method described thus far is that convergence is
guaranteed only when the algorithm is initialized sufficiently close to a desirable solution
whereas, in practice, this condition is usually difficult to realize. To remedy this situation
and to ensure global convergence, we introduce the idea of a merit function. This is a
function that, along with the objective function, is simultaneously minimized at the
solution of the problem, but one that also serves as a descent function, guiding the
iterates and providing a measure of progress. Preferably, it should be easy to evaluate
this function, and it should not impair the convergence rate of the algorithm. We describe
the use of the popular /,, or absolute value, penalty function (9.8), restated below, as a
merit function for Problem P given in (10.24):

m !
Fe(x) = fx) + H[Z} max {0, g;(x)} + ; |hi(x)l] (10.28)

The following lemma establishes the role of F; as a merit function. The Notes and
References section points out other quadratic and ALAG penalty functions that can be
used as merit functions in a similar context.

Lemma

Given an iterate x,, consider the quadratic subproblem QP given by (10.25), where
V2L(x,) is replaced by any positive definite approximation B,. Let d solve this problem
with Lagrange multipliers u and v associated with the inequality and the equality
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constraints, respectively. If d # 0, and if p = max {u;, . . . , Uy, vil, . .., [v}, then
d is a descent direction at x = x, for the /, penalty function F; given by (10.28).

Proof
Using the primal feasibility, the dual feasibility, and the complementary slackness
conditions (10.25), (10.26a), and (10.26b) for QP, we have

m ) 1
Vix)d = —dBd — >, uVg(x)d — 3 vVh(x,)yd
( i=1 i=1

m 4
= —-dB,d + Z u,g:(xp) + Z Vil (Xe)
=1 & (10.29)

: m !
= -dBd + 2} u; max {0, g;(x)} + Z} [vil (x|

- 1
= —-dB,d + P«[; max {0, g,(x,)} +‘; |hi(xk)|:|

Now we have, from (10.28), that for a step length A = 0,
Fe(x,) — Fp(x, + Nd) = [f(x) — fx, + Ad)]

+ p,{E [max {0, g;(x,)} — max {0, g:(x, + Ad)}]
= (10.30)

]
+ 2 Il = Itx + xd)l]}
Letting O;(\) denote an appropriate function that approaches zero as A — 0, for i = 0,
1,...,m + [, we have, for A > 0 and sufficiently small,
fx, + A\d) = f(x,) + AVf(x,)'d + NOx(N) (10.31a)

AlSO; gix, + M) = gi(x,) + AVg(x)'d + NO;(N) = gi(x,) — Agi(x,) + NO;(N) from
(10.25). Hence,

max {0, g;(x, + M)} = (1 — \) max {0, g:(xp)} + NO,(N)| (10.31b)
Similarly, from (10.25), |
h(x, + M) = h(x) + AVA(X) + N0, () = (1 = Mh(x) + N0, (M)
and hence }
[ry(x + A)| = (1 = M|Ax)| + MO, ()] (10.31c)

Using (10.31) in (10.30), we obtain, for A = 0 and sufficiently small, Fg(x) —
Fox, + Ad) = N = VAx)d + p{S1 max {0, g(x)} + Zi=1 [h(x)| + O], where
O(\) — 0 as A — 0. Hence, by (10.29), this gives Fg(x,) — Fe(x, + \d) = A\[d'B,d +
O(\)] > 0 for all X € (0, ) for some & > 0 by the positive definiteness of B,, and this
completes the proof.

Lemma 10.4.1 exhibits the flexibility in the choice of B, for the resulting direction
to be a descent direction for the exact penalty function. This matrix only needs to be
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positive definite, and may be updated by using any quasi-Newton strategy such ag an -
extension of (10.27), or may even be held constant throughout the algorithm. This

descent feature enables us to obtain a globally convergent algorithm under mjq -
assumptions, as shown below. ~

Summary of the Merit Function SQP Algorithm (MSQP)

- Initialization  Put the iteration counter at k = 1 and select a (suitable) starting solutiop
X,. Also, select a positive definite approximation B, to the Hessian V2L(x,) defineq
with respect to some Lagrange multipliers u, = 0 and v, associated with the inequality -
and the equality constraints, respectively, of Problem (10.24). (Note that B, might be
arbitrary and need not necessarily bear any relationship to V2L(x,).) :

Main Step Solve the quadratic programming subproblem QP given by (10.25) with
V2L(x,) replaced by B, and obtain a solution d, along with Lagrange multipliers -
(81, Virr)- If d = 0, then stop with x, as a KKT solution for Problem P of (10.24),
having Lagrange multipliers (u,,, V,.;). Otherwise, find x,,, = x, + \d,, where
A\, minimizes Fg(x, + Ad,) over N € E,, A = 0. Update B, to a positive definite
matrix B, ,, [which might be B,, itself, or V2L(x, ) defined with respect to (s :
Vi+1), OF some approximation thereof updated according to a quasi-Newton scheme),
Increment k£ by 1 and repeat the main step.

The reader may note that the line search above is to be performed with respect to
a nondifferentiable function, which obviates the use of the techniques in Sections 8.2
and 8.3, including the popular curve fitting approaches. Below, we sketch the proof
‘of convergence for algorithm MSQP. In Exercise 10.26, we ask the reader to provide
a detailed argument.

10.4.2 Theorem

Algorithm MSQP either terminates finitely with a KKT solution to Problem P defined in °
(10.24), or else an infinite sequence of iterates {x,} is generated. In the latter case, |
assume that {x,} C X, a compact subset of E,, and that for any point x € X and any °
positive definite matrix B, the quadratic programming subproblem QP (with V2L replaced
by B) has a unique solution d (and so this problem is feasible), and has unique Lagrange
multipliers u and v satisfying p. = max {u;, . . ., u,, |vi|, . . ., [v|}, where p is the
penalty parameter for F;; defined in (10.28). Furthermore, assume that the accompanying
sequence {B,} of positive definite matrices generated lies in a compact subspace, with
all accumulation points being positive definite (or with {B; '} also being bounded). Then,
every accumulation point of {x,} is a KKT solution for P.

Proof

Let the solution set {) be composed of all points x such that the corresponding
subproblem QP produces d = 0 at optimality. Note from (10.26) that, given any positive
definite matrix B, x is a KKT solution for P if and only if d = 0 is optimal for QP, that
is, x € ). Now the algorithm MSQP can be viewed as a map UMD, where D is the
direction-finding map that determines the direction d, via the subproblem QP defined
with respect to x, and B,, M is the usual line search map, and U is a map that updates
B, to B, . Since the optimality conditions of QP are continuous in the data, the output
of QP can readily be seen to be a continuous function of the input. By Theorem 8.4.1,
the line search map M is also closed, since F; is continuous. Since the conditions of
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Theorem 7.3.2 hold, MD is therefore closed. Moreover, by Lemma 10.4.1, if x, & (),
then Fy(X,,,) < Fg(X,), thus providing a strict descent function. Since the map U does
not disturb this descent feature; and since {x,} and {B,} are contained within compact
sets, with any accumulation point of B, being positive definite, the argument of Theorem
7.3.4 holds. This completes the proof.

Example
To illustrate algorithms RSQP and MSQP, consider the following problem:

Minimize 2x% 4+ 2x3 — 2x.x; — 4x; — 6x,
subject to  g(x) = 2x} — x, =0
g(X) =x + 55, —5=0
gx) = —x =0
g(x) = —x, =0

A graphical solution of this problem appears in Figure 10.13a. Following Example
10.3.2, let us use p. = 10 in the /, penalty merit function Fy defined by (10.28). Let us

also use B, = VZ2L(x,) itself, and commence with x, = (0, 1) and with Lagrange
multipliers u, = (0, 0, 0, 0)". Hence, we have f(x,) = —4 = Fg(x,), since X, happens
to be feasible. Also, g,(x;) = —1, g(x,) = 0, g(x;) = 0, and g4(x,) = — 1L The

function gradients are Vf(x;) = (=6, —2), Vgi(x;) = (0, —1), Vg, (x;) = (1, 5),
Vgi(x,) = (—1, 0), and Vg,(x,) = (0, —1). The Hessian of the Lagrangian is

ViL(x) = V() = [_g ’i]

Accordingly, the quadratic programming subproblem QP defined in (10.25) is as follows:

QP: Minimize —6d, — 2d, + 3 [4d} + 4d3 — 4d,d;)]
subject to -1-4d,=0, d, +5d,=0,
_dlso, '—l—dZSO

Figure 10.14 depicts the graphical solution of this problem. At optimality, only the
second constraint of QP is binding. Hence, the KKT system gives

4d1“2d2—6+u2=0 4d2_2d1_2+5u2=0 d1+5d2=0

Solving, we obtain d;, = %, —311 *and u, = (0, 1.032258, 0, 0) as the primal and dual
optimal solutions, respectively, to QP. '

Now for algorithm RSQP, we would take a unit step-size to obtain X, = x; +
d, = (1.1290322, 0.7741936). This completes one iteration. We ask the reader in
Exercise 10.27 to continue this process and to examine its convergence behavior.

On the other hand, for algorithm MSQP, we need to perform a line search,
minimizing Fy; from x, along the direction d,. This line search problem is, from (10.28),

Minimize Fe(x, + Ad))

A=0 .
= [3.1612897\% — 6.3225804\ — 4]
+ 10[max {0, 2.5494274\* + 0.2258064\ — 1}
+ max {0, 0} + max {0, —1.1290322\}
+ max{0, — 1 + 0.2258064\}]

Using the Golden Section Method, for example, we find the step length N\, = 0.5835726.
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Figure 10.14 Solution of Subproblem QP.

(Note that the unconstrained minimum of f(x; + Ad,) occurs at A = 1; but beyond
A = Ay, the first max {0, -} term starts to become positive and increases the value of F,
hence, giving \, as the desired step size.) This produces the new iterate x, = x, +
Ad; = (0.6588722, 0.8682256)". Observe that, because the generated direction d,
happened to be leading toward the optimum for P, the minimization of the exact |,
penalty function (with p sufficiently large) produced this optimum. We ask the reader
in Exercise 10.27 to verify the optimality of x, via the corresponding quadratic
programming subproblem. '

The Maratos Effect

Consider the equality constrained Problem P defined in (10.17). (A similar phenomenon
holds for Problem (10.24).) Note that the rudimentary SQP algorithm adopts a unit step
size and converges quadratically when (x,, v,) is initialized close to a regular solution
(X, V) satisfying the second-order sufficiency conditions. The merit function-based
algorithm, however, performs a line search at each iteration to minimize the exact penalty
function F; of (10.28), given that the conditions of Lemma 10.4.1 hold true. Assuming
all of the foregoing conditions, one might think that when (x,, v,) is sufficiently close
to (X, ¥), a unit step size would decrease the value of Fy. This statement is incorrect,
and its violation is known as the Maratos effect, after N. Maratos, who discovered this
in relation to Powell’s algorithm in 1978.

10.4.4. Example (Maratos Effect)

Consider the following example discussed in Powell (1986).

Minimize fX) = —x; +2(x3 + % —1)
subject to hx) =x2+x—-1=0

Clearly, the optimum occurs at X = (1, 0)". The Lagrange multiplier at this solution is
readily obtained from the KKT conditions to be v = —%, and, so, VL(X) =




10.4 Successive Quadratic Programming or Projected Lagrangian Approach 447

V(%) + vV?h(%) = L. Let us take the approximations B, to be equal to I throughout
the algorithm.

Now let us select x, to be sufficiently close to X, but lying on the unit ball defining’
the constraint. Hence, we can let x, = (cos 0, sin 0)’, where 6] is small. The quadratic
program (10.22) is given by

Minimize f(x,) + (=1 + 4 cos 8)d; + (4sin 0)d, + 3 [d} + d3]
subjectto 2 cos 0d; + 2sin0d, = 0}
= Minimize { f(x,) — d; + 3 (d? + d?) : cos 0d, + sin6d, = 0}

Writing the KKT conditions for this problem and solving, we readily obtain the optimal
solution d, = (sin? ®, — sin 0 cos 6). Hence, x,,; = (x, + d,) = (cos 8 + sin” 0,
sin & — sin 0 cos 6). Note that |lx, — x|? = V2(1 — cos 6) = 0, adopting a second-
order Taylor series approximation while, similarly, [|(x, + d,) — %|| = 6%2, thereby
attesting to the rapid convergence behavior. However, it is readily verified that f(x, +
d,) = —cos 6 + sin> § while f(x,) = —cos 8 and, also, that h(x, + d,) = 2 sin 0
while A(x,) = 0. Hence, although a unit step makes |x, + d; — X considerably smaller
than |x, — |, it results in an increase in both f and in the constraint violation, and
therefore would increase the value of F; for any p = 0 or, for that matter, it would
increase the value of any merit function.

Several suggestions have been proposed for overcoming the Maratos effect based
on tolerating an increase in both f and the constraint violations, or recalculating the step .
length after correcting for second-order effects, or altering the search direction via
modifications in second-order approximations to the objective and the constraint functions.
We direct the reader to the Notes and References section for further reading on this
subject.

Using the [, Penalty in the QP Subproblem—The L,SQP Approach

In Section 10.3, we presented a superior penalty-based SLP algorithm that adopts trust
region concepts and affords a robust and efficient scheme. A similar procedure has been
proposed by Fletcher [1981] in the SQP framework, which exhibits a relatively superior
computational behavior. Here, given an iterate X, and a positive definite approximation
B, to the Hessian of the Lagrangian function, analogous to (10.11a), this procedure
solves the following quadratic subproblem:

QP: Minimize [ f(x) + Vf(x,)d + 1d'B,d]

+ u[; max {0, g,(%) + Vei(x,)d} 1032

!
+ 2 |hi(x,) + Vh,-(xk)’d|]

i=1

subject to -A,=d=A,

where A, is a trust region step bound and, as before, p is a suitably large penalty
parameter. Note that in comparison with Problem (10.25), the constraints have been
accommodated into the objective function via an [, penalty term and have been
replaced by a trust region constraint. Hence, the subproblem QP is always feasible
and bounded and has an optimum. To contend with the nondifferentiability of the
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10.5.2

objective function, the /, terms can be retransferred into the constraints as i,
(10.11b). Similar to the PSLP algorithm, if d, solves this problem along wig,
Lagrange multiplier estimates (W, Vi1y), and if X,,; = X, + d, is e-feasible apq °
satisfies the KKT conditions within a tolerance, or if the fractional improvement i
the original objective function is not better than a given tolerance over some -
consecutive iterations, the algorithm can be terminated. Otherwise, the process ig
iteratively repeated. This type of procedure enjoys the asymptotic local convergence -
properties of SQP methods but also achieves global convergence owing to the |,
penalty function and the trust region features. However, it is also prone to the
Maratos effect, and corrective measures are necessary to avoid this phenomenop,
The reader should refer to the Notes and References section for further reading op
this topic.

The Gradient Projection Method of Rosen

As we learned in Chapter 8, the direction of steepest descent is that of the negative
gradient. In the presence of constraints, however, moving along the steepest descent
direction may lead to infeasible points. The gradient projection method of Rosen [1960] |
projects the negative gradient in such a way that improves the objective function and
meanwhile maintains feasibility.

First, consider the following definition of a pl‘O_)CCthIl matrix.

Definition

An n X n matrix P is called a projection matrix if P = P" and PP = P.

Lemma

Let P be an n X n matrix. Then, the following statements are true:

1. If P is a projection matrix, then P is positive semidefinite.

2. P is a projection matrix if and only if I — P is a projection matrix.

3. Let P be a projection matrix and let Q = I — P. Then, L = {Px:x € E,} and
L' = {Qx:x € E,} are orthogonal linear subspaces. Furthermore, any point
X € E, can be represented uniquely as p + q, where p € L and q € L*.

Proof

Let P be a projection matrix, and let x € E, be arbitrary. Then, xXPx = xPPx =
xPPx = |Px|? = 0, and, hence, P is positive semidefinite, and part 1 follows.

By Definition 10.5.1, part 2 is obvious. Clearly L and L+ are linear subspaces. Note
that PQ = Pd — P) = P — PP = 0, and hence, L and L* are indeed orthogonal.
Now let x be an arbitrary point in E,. Then, x = Ix = (P + Q)x = Px + Qx =
p + q, where p € L and q € L*. To show uniqueness, suppose that x can also be
represented as x = p’ + q', where p’ € L and q' € L*. By subtraction, it follows that
p—-p =¢q — q.Sincep — p' €ELand q — q € L*, and since the only point in
the intersection of L and L+ is the zero vector, it follows thatp — p' = q' — q =
Thus the representation of X is unique, and the proof is complete.




