1.8

142 Unconstrained Optimization Chap. 1

NONDERIVATIVE METHODS

All the gradient methods examined so far require calculation of at
Jeast the gradient Vf(z*) and possibly the Hessian matrix V2f(zk) at
each generated point z*. In many problems, either these derivatives are not
available in explicit form or they are given by very complicated expressions.
In such cases, it may be preferable to use the same algorithms as earlier
with all unavailable derivatives approximated by finite differences.

First derivatives may be approximated by the forward difference for-

mula of(zk) 1 : _ 4
e ﬁ(f(:ck + hei) — f(zF)) . (8.1)
or by the central difference formula
Of (z* 1 |
J;(;) A~ %(f(mk + he;) — f(zk — hes)). (8.2)

In these relations, h is a small positive scalar and e; is the ¢th unit vector

(ith column of the identity matrix). In some cases the same value of h

~ can be used for all partial derivatives, but in other cases, particularly when

the problem is poorly scaled, it is essential to use a different value of h for
each partial derivative. This is a tricky process that often requires trial
and error; see the following discussion.

The central difference formula requires twice as much computation as
the forward difference formula. However, it is much more accurate. This
can be seen by forming the corresponding Taylor series expansions, and by
verifying that (in exact arithmetic) the absolute value of the error between
the approximation and the actual derivatives is O(h) for the forward dif-
ference formula, while it is O(h2) for the central difference formula. Note
that if the central difference formula is used, one obtains at essentially no
extra cost an approximation of each diagonal element of the Hessian using
the formula ‘ '

'a(—af:f% ~ o5 (@b + heo) + f(a¥ = hes) = 2 (@)

These approximations can be used in schemes based on diagonal scaling.
To reduce the approximation error, we would like to choose the fi-
nite difference interval h as small as possible. Unfortunately, there is a
limit on how much h can be reduced due to the roundoff error that occurs
when quantities of similar magnitude are subtracted by the computer. In
particular, an error ¢ due to finite precision arithmetic in evaluating the
numerator in Eq. (8.1) [or Eq. (8.2)], results in an error of § /h (or 6/2h,
respectively) in the first derivative evaluation. Roundoff error is particu-
larly evident in the approximate formulas (8.1) and (8.2) near a stationary

Sec. 1.8 Nonderivative Methods : 143

point where V f is nearly zero, and the relative error size in the gradlent
approximation becomes very large.

Practical experience suggests that a good policy is to keep the scalar h
for each derivative at a fixed value, which roughly balances the approxima-
tion error against the roundoff error. Based on the preceding calculations,
this leads to the guideline

' % =O(h) or h=0(61?), for the forward difference formula (8.1),
% =O(h?) or h=0(6/3), for the central difference formula (8.2),

where 6 is the error due to finite precision arithmetic in evaluating the
‘numerator in Eq. (8.1) [or Eq. (8.2)]. Thus, a much larger value of h
can be used in conjunction with the central difference formula. A good
practical rule is to use the forward formula (8.1) until the absolute value
of the corresponding approximate derivative becomes less than a certain
tolerance; i.e.,

f(@F + hei) — f(zF)

h

where € > 0 is some prespecified scalar. At that point, a switch to the
- central difference formula should be made. , '

Second derivatives may be approximated by the forward difference
formula

<,

8:@8:1:3 Ozt Oz '
or the central difference formula
02f(x’?) - 1 [Of(zk + hej) 8f(— hej) (8.4)
Bx:0z; 2h Oz; 0z; o ’

Practical experience suggests that in discretized forms of Newton’s method,
extreme accuracy in approximating second derivatives is not very impor-
tant in terms of rate of convergence. For this reason, exclusive use of the
forward difference formula (8.3) is adequate in most cases. However, one
should certainly check for positive definiteness of the discretized Hessian
approximation and introduce modifications if necessary, as discussed in
Section 1.4.

1.8.1 Coordinate Descent

There are several other nonderivative methods for minimizing differ-
entiable functions. A particularly important algorithm is the coordinate
descent method. Here the cost is minimized along one coordinate direction
at each iteration. The order in which coordinates are chosen may vary in

144 Unconstrained Optimization Chap. 1

the course of the algorithm. In the case where this order is cyclical, given
gk, the ith coordinate of xk+1 is determined by

: k+1 k+1
zh = argrgrg%f(:vl’" T yzh TR (8.5)

see Fig. 1.8.1. The method can also be used for minimization of f subject
to upper and lower bounds on the variables z¢ (the minimization over £ € R
in the preceding equation is replaced by minimization over the appropriate
interval). We will analyze the method within this more general context in
the next chapter.

An important advantage of the coordinate descent method is that it
is well suited for parallel computation. In particular, suppose that there
is a subset of coordinates Xi;, Tigs -«) Lim> which are not coupled through
the cost function, that is, f(z) can be written as S, fir(x), where for
each r, fi,.(z) does not depend on the coordinates i, for all s # r. Then
one can perform the m coordinate descent iterations

k+1 . ’
wz:— = argmgmfir(xk + e,), r=1,...,m,

independently and in parallel. Thus, in problems with special structure
where the set of coordinates can be partitioned into p subsets with the
independence property just described, one can perform a full cycle of co-
ordinate descent iterations in p (as opposed to n) parallel steps (assuming
of course that a sufficient number of parallel processors is available).

The coordinate descent method generally has similar convergence
properties to steepest descent. For continuously differentiable cost func-
tions, it can be shown to generate sequences whose limit points are sta-
tionary, although the proof of this is sometimes complicated and requires
some additional assumptions (see Prop. 2.7.1 in Section 2.7, which deals
with a constrained version of coordinate descent and requires strict con-
vexity of the cost function along each coordinate). There is also a great
deal of analysis of coordinate descent in a context where its use is particu-
larly favorable, namely in solving dual problems (see Section 6.2). Within
this context, the strict convexity assumption is neither satisfied nor is it
essential (see the references given in Chapter 6). The convergence rate of
coordinate descent to nonsingular and singular local minima can be shown
to be linear and sublinear, respectively, similar to steepest descent. Often,
the choice between coordinate descent and steepest descent is dictated by
the structure of the cost function. Both methods can be very slow, but for
many practical contexts, they can be quite effective.

1.8.2 Direct Search Methods

In the coordinate descent method we search along the fixed set of
coordinate directions and we are guaranteed a cost improvement at a non-
stationary point because these directions are linearly independent. This

Sec. 1.8 Nonderivative Methods 145

Figure 1.8.1. Illustration of the coordi-
nate descent method.

idea can be generalized by using a different set of directions and by occa-
sionally changing this set of directions with the aim of accelerating conver-
gence. There are a number of methods of this type: Rosenbrock’s method
[Ros60a], the pattern search algorithm of Hooke and Jeeves [HoJ61], and
‘the simplex algorithms of Spendley, Hext, and Himsworth [SHH62], and
Nelder and Mead [NeM65]. Unfortunately, the rationale of these methods
often borders on the heuristic, and their theoretical convergence properties
are often unsatisfactory. However, these methods are often fairly simple
to implement and like the coordinate descent method, they do not require
gradient calculations. We describe the Nelder and Mead simplex method
(not to be confused with the simplex method of linear programming), which
has enjoyed considerable popularity.

At the typical iteration of this method, we start with a simplez, that
is, the convex hull of n+1 points, 0, z1, ..., 2", and we end up with another
simplex. Let msn and Tmaqs denote the “best” and “worst” vertices of the
simplex, that is the vertices satisfying

f(@min) = _min f(a), (86)
Flomas) = e f(a). CY

1=0,1,...,n

Let also # denote the centroid of the face of the simplex formed by the
vertices other than ez

L1 o
Tr = ;L_ ("'mmax +Z.’L‘) . (8.8)

1=

The iteration replaces the worst vertex Tmagz by a “better” one. In
particular, the reflection point Trey = 2% — Tmas is computed, which lies
on the line passing through Zm.: and £, and is symmetric t0 Tmaz with
respect to &. Depending on the cost value of z,cs relative to the points of
the simplex other than Zmag, & New vertex Tnew is computed, and a new
simplex is formed from the old by replacing the vertex Zmaz by Tnew, while
keeping the other n vertices. :

146 , Unconstrained OptimiZation Chap. 1

Typical Iteration of the Simplex Method

Step 1: (Reflection Step) Compute
mref == 2@ - xmam.v v (8.9)

Then compute Znew according to the following three cases:
(1) (%ref has min cost) If f(Zmin) > f(Zres), g0 to Step 2.

(2) (zres has intermediate cost) If max{ fz*) | =t # a:maa,} > f(Zref) 2>
f(Zmin), g0 to Step 3.

(3) (res has max cost) If f(zres) 2 ma,x{f(aci) | z* # mmam}, goto Step
4. | |

Step 2: (Attenipt Expansioh) Compute
zezp == 21177-ef - &/‘. » (8.10)

Define i
z _ {memp if f(me:z:p) < f(x'ref))
new Tref Otherwise,

and form the new simplex by replacing the vertex Tmaz with Znew.

Step 3: (Use Reflection) Define Tnew = Zref, and form the new simplex
by replacing the vertex Tmaz With Znew.

Step 4: (Perform Contraction) Define

WZmas + &) i f(Tmaz) < f(@res)
J— 2 ,
new = { 3(zref +2) otherwise, (8.11)

and form the new Simplex by replacing the vertex Tmaz with Znew-

* The reflection step and the subsequent possible steps of the iteration
are illustrated in Fig. 1.8.2 (a)-(d). The entire method is illustrated in Fig.
1.8.3. Exercise 8.3 shows a cost improvement property of the method in the
case where f is strictly convex. However, there are no known convergence: ‘
results for the method. Furthermore, when the cost function is not convex, ‘
it is possible that the new simplex vertex Tnew has larger cost value than
the old vertex Zmaz. In this case a modification that has been suggested
is to “shrink” the old simplex towards the best vertex Tmin, that is, form
a new simplex by replacing all the vertices z?, 1 =0,1,...,n, by

ZE'L: %(fcz‘l"mmzn), 7;:0,1,...,71.

The method as given above seems to work reasonably well in prac-
tice, particularly for problems of relatively small dimension (say up to 10).
However, it is not guaranteed to have desirable convergence properties,
and in fact a convergence counterexample is given in [McK94]. Reference

Sec. 1.8 Nonderivative Methods 147

[Tse95a] provides a relatively simple modification with satisfactory conver-
gence properties. There are also a number of related methods, some of
which have demonstrable convergence properties; see [DeT91] and [Tor91].
Note that the constants used in Egs. (8.9), (8.10), and (8.11) are somewhat
arbitrary, as suggested by the interpretation of the method given in Figs.
1.8.2 and 1.8.3. More general forms of these equations are -

Tref = T+ ,3(57 - mma:r)7
Texp = Tref + 7($ref - 53)1
. _ 0T max + (1 "‘0)-'2 if f(xma:v) < f(xref)’
con 0zrer + (1 —0)2 otherwise,

where 3 > 0, v+ > 0, and 6 € (0,1) are scalars known as the reflection
coefficient, the expansion coefficient, and the contraction coefficient, re-
spectively. The formulas of Egs. (8.9)-(8.11) correspond to § =1, v = 1,
and 6 = 1/2, respectively.

Xexp,

Figure 1.8.2. Illustration of the reflection step and the possible subsequent steps
of an iteration of the simplex method. In (a), the new vertex Tnew is determined
via the expansion Step 2. In (b), Znew is determined via Step 3, and the reflection
step is accepted. In (c) and (d), Znew is determined via the contraction Step 4.

;

148 Unconstrained Optimization Chap. 1

xg’xp

Figure 1.8.3. Illustration of three iterations of the simplex method, which gen-
‘erate the points z3, %, and z9, starting from the simplex z0, 21, z2. The simplex
obtained after these three iterations consists of z2, %, and z°.

EXERCISES

8.1

Let f : R — R be continuously differentiable, let p1,...,pn be linearly
independent vectors, and suppose that for some z*, a = 0 is a stationary point
of each of the one-dimensional functions g;(a) = f(z* + api), i = 1,...,n.
Show that z* is a stationary point of f. - - :

8.2 (Stepsize Sele»ction‘ in Jacobi Methods)

Let f: ™ — R be a continuously differentiable convex function. For a given
ze€R” and alli = 1,...,n, define the vector T by

T; = argzréigr%lf(ml, .. ,:n@-_l,f‘, Tid1,. .-y Tn)-
The Jacobi method is defined by the iteration
z =z + a(T —),

where o is a positive stepsize parameter.

(a) Show that if z does not minimize f, then the Jacobi iteration reduces
the value of f when o =1/n.

