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6.7

Describe the behavior of the conjugate gradient method for a positive semidef-
inite quadratic function. Consider the case where there is no optimal solution
and the case where there are infinitely many optimal solutions.

6.8 ’ .

Let f(z) = 42’Qz —b'x, where Q is positive definite and symmetric. Suppose
that z; and z» minimize f over linear manifolds that are parallel to subspaces 3
S: and Sa, respectively. Show that if z1 # z2, then z1 — 2 is Q-conjugate .

to all vectors in the intersection of S; and S2. Use this property to construct

a conjugate direction method that does not evaluate gradients and uses only

line minimizations.

1.7 QUASI-NEWTON METHODS

Quasi-Newton methods are gradient methods of the form
zhtl = gk 4+ ok dk, : (7.1)

dk = —D*V f(z+), » (7.2)

where DF is a positive definite matrix, which may be adjusted from one
iteration to the next so that the direction d* tends to approximate the ;
‘Newton direction. Some of these methods are quite popular because they .
typically converge fast, while avoiding the second derivative calculations :
associated with Newton’s method. Their main drawback relative to the
conjugate gradient method is that they require storage of the matrix Dk

as well as the matrix-vector multiplication overhead associated with the
calculation of the direction d* (see the subsequent discussion).

An important idea for many quasi-Newton methods is that two suc-

cessive iterates k¥, F+1 together with the corresponding gradients V f(x*),

V f(zk+1), yield curvature information by means of the approximate rela-

tion

gk ~ V2 f(zk+1)pk, (7.3)

where .
pk = gktl — gk, (7.4)

gk = Vf(zh+l) - Vf(z*). (7.5)
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In particular, given n linearly independent iteration increments p9, . . ., pn—1
together with the corresponding gradient 1ncrements q%...,q" 1, we can
obtain approximately the Hessian as

V2f(zr) =~ [qo qn—-l][po pn_l]—l,

and the inverse Hessian as
vzf(xn)—l ~ [po PP pn—l] [qo P qn—l]

When the cost is quadratic, this relation is exact. Many interesting quasi-
Newton methods use similar but more sophisticated ways to build curvature
information into the matrix D¥* so that it progressively approaches the
inverse Hessian.

In the most popular class of quasi-Newton methods, the matrix Dk+1 .
is obtained from D¥*, and the vectors p* and ¢* by means of the equation

pkpk’  Dkgkgk’ Dk

Dk+1 = Dk + o g Digh + Ekrkykyk’ - (76)
where ph Dk
vk = pk'qk - (7.7)
Tk = gk’ Dkqk, (7.8)
the scalars £k satlsfy, for all k, ’ »
o<er<1, (7.9)

and DO is an arbitrary positive definite matrix. The scalars £ parameterize
the method. If k.= 0 for all k, we obtain the Davidon-Fletcher-Powell
(DFP) method, which is historically the first quasi-Newton method. If
gk =1 for all k, we obtain the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method, for which there is substantial evidence that it is the best general
purpose quasi-Newton method currently known.

We first show that under a mild assumption, the matrices D* gener-
ated by Eq. (7.6) are positive definite. This is a very 1mportant property,
since it guarantees that d* is a descent direction.

- Proposition 1.7. 1 If Dk is positive definite and the step51ze ok is
chosen so that zk+1 satlsﬁes

(:c’“)’dk < Vf<mk+l>'dk i <710>

then Dk+1 as glven by Eq (7 6) is posmve deﬁmte




136 Unconstrained Optimization . Chap. 1

" Note: Tf z* is not étkstatibriéfy_’ip‘(i)int,”'Wé have V f (:‘t’“)”d"c < 0, so:'ixiﬂ '
order to satisfy condition (7.10), it is sufficient to carry out the line
search to a point where : o '

VF(k )| < [VE(@RYdH.

In particular, if o is determined by the line minimization rule, then
we have V f(z¥+1)'dk = 0 and Eq. (7.10) is satisfied. = -

Proof: We first note that Eq. (7.10) implies that o # 0, ¢* # 0, and
pk' gk = akdF (V f(zh+1) — V f(z*)) > 0. (7.11)

Thus all denominator terms in Egs. (7.6) and (7.7) are nonzero, and Dk+1
is well defined. '
Now for any z # 0 we have

_ 19k )2 k! Dk )2
o/ DE+1y = 2/ Dky + (;’gql)c - (ZlekZ’)“ + ghrk(vk )2, (7.12)

Using the notation a = (D*)1/2z, b = (D¥)1/2¢¥, this equation is written
as :

, lal|?o]l2 — (a'b)? | (2'P*)? :
z D’“ﬂz = BE + o + ngk(vk z)2. (7.13)

From Egs. (7.8), and (7.11), and the Schwartz inequality [Eq. (A.2)
in Appendix A], we have that all terms on the right-hand side of Eq. (7.13)
are nonnegative. In order that z/D*+1z > 0, it will suffice to show that we
cannot have simultaneously

lal2]p]2 = (@’b)2  and  2'pF=0.

Indeed if ||a||2]|b]|2 = (a’b)2, we must have a = Ab or equivalently, z = Agk.
Since z # 0, it follows that A # 0, so if 2/p* = 0, we must have ¢k'pk = 0,
which is impossible by Eq. (7.11). Q.E.D.

An important property of the algorithm is that when applied to the
‘positive definite quadratic function f(z) = j2'Qz — b'z, with the stepsize
ok determined by line minimization, it generates a Q-conjugate direction
sequence, while simultaneously constructing the inverse Hessian Q—1 after
n iterations. This is the subject of the next proposition.
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Proposition 1.7.2: Let {z*}, {d*}, and {D*} be sequences gener-
ated by the Quasi-Newton algorithm (7.1)-(7.2), (7.6)-(7.9), applied
to minimization of the positive definite quadratic function~ =

f(z) = 10/Qz — bz,

with o chosen by

- fla* —f-akdk)’-—; win f(a:k+ad’°) i (714)
Assume that none of the Vectofs z0,...,zn1 is optimal. Then:
(a) The vectors d°,...,d"~1 are Q-conjugate.

(b) There holds
Dn = Q-1

Proof: We will show that for all &
d'Qdi =0, 0<i<j<k, | (7.15)
DkﬂQp" = pt, 0<71<k. ‘ ’ (7.16)

Equation (7.15) proves part (a) and it can be shown that Eq. (7.16) proves
part (b). Indeed, since for ¢ < n, none of the vectors z* is optimal and d' is a
descent direction [cf. Eq. (7.2) and Prop. 1.7.1], we have that p¢ # 0. Since
pt = atdi and d°, ..., d"1 are Q-conjugate, it follows that p0, ... pn—1 are
linearly independent and therefore, Eq. (7.16) implies that D*Q is equal
to the identity matrix. ‘

We first verify that

DFHQpk =pk, Y k. - (7.17)
From the equatioh Qp* = ¢* and the updating formula (7.6), we have

pkpk' gk Dkgkgk’ Dkgk
ph'gk gk Dkgk

Dk+1Qpk = Dk+1gk = Dkgk + Ehrhykyk! gk

From Egs. (7.7) and (7.8), we have that v¥'gk = 0 and Eq. (7.17) follows.

We now show Eqgs. (7.15) and (7.16) simultaneously by induction. For
k = 0 there is nothing to show for Eq. (7.15), while Eq. (7.16) holds in view
of Eq. (7.17). Assuming that Egs. (7.15) and (7.16) hold for k, we prove
them for k£ + 1. We have, for i < k, |

Vf(zh+l) = Vf(zi+l) + Q(pi+l + - - - + pk). (7.18)
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The vector p is orthogonal to each vector in the right-hand side of this
equation; it is orthogonal to Qpitl,...,QpF because p°,..., pk are Q-

conjugate (since p' = aid’) and it is orthogonal to V f(zi*1) because of -

the line minimization property of the stepsize [cf. Eq. (7.14)]. Therefore
from Eq. (7.18) we obtain

p'V(k+l) =0, 0<i<k.
From this equation and Eq. (7.16),
pi'QDFHIV f(zk+1) =0, 0<i<Kk,
and since p¢ = aidé and dk+! = —DFHV f (zk+1), we obtain
di'Qdk+1 = 0, 0<i<k. | , (7.19)

This proves Eq. (7.15) for £+ 1. v
From the induction hypothesis (7.16) and Eq. (7.19), we have for all

i with 0 <4 <k,
gk+1 Dk+1Qpt = qk+1’pi = ph+1'Qpi = ak+tlaidk+t'Qdi = 0. (7.20)
From Eq. (7.6), we have, for 0 <1 <k,

pkt+ipk+l/gi Dk+1gk+1gk+1’ Dk+1gi
pht1’ gk+1 gkt DR+lghtl (7.21)
+ §k+17-k+1lvk+1vk+l’qi_ '

Since pktlgi = pk+1'Qpi = ak+1laidk+1'Qdi = 0, we see that the second
term in the right-hand side of Eq. (7.21) is zero. Similarly, Eq. (7.16)
implies that qk+1’ Dkt+lgi = qk+1’ Dk+1Qpé = qlé+1’pi = pk+1'Qp¢ = 0
and we see that the third term in the right-hand side of Eq. (7.21) is zero.
Finally, a similar argument using the definition (7.7) of v¥+1, shows that the
fourth term in the right-hand side of Eq. (7.21) is zero as well. Therefore,
Egs. (7.21) and (7.16) yield

Dk+2Qpi = Dk+2¢i = Dk+lgi = DF+1Qpé = pi, 0<i S k.
‘Taking into account also Eq. (7.17), this proves Eq. (7.16) for k+1. Q.E.D.

Tt is.also interesting to note that the sequence {z*} in Prop. 1.7.2 1s
identical to the one that would be generated by the preconditioned conjugate
gradient method with scaling matriz H = DO; ie., for k=10,1,...,n—1,
the vector zk+! minimizes f over the linear manifold

Mk ={z]|z=2" +~0DOV f(z0) 4 ..+ ykDOV f(zk), 70,...,Y* € R}

’&*=éiwﬂ%ﬁ%§¢imﬁ%ﬁiﬁ&%ﬁ(ifsﬁiuﬁéx o
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This can be proved for the case where D% = I by verifying through induc-
tion that for all k there exist scalars fg such that

Dk = I+Z§jﬁ V(@) f ().

1=0 j=0
Therefore, for some scalars b¥ and all k, we have

k

dk = —DFVf(zk) = > bV F(zi).

=0
Hence, for all i, zi+1 lies on the manifold
 Mi= {z]2=a0+~0Vf(z) + IV (), A0,y € R},

“and since, by Prop. 1.7.2, the algorithm is a conjugate direction method,

z+1 minimizes f over M*® based on the results of the preceding section
[cf. Egs. (5.7) and (5.8)]. Thus, when D% = I, the algorithm satisfies the
defining property of the conjugate gradient method (for all 4, z¢+! is the
unique minimum of f over M?).

For the case where DO # I, the proof follows by making a transfor-
mation of variables so that in the transformed space the initial matrix is
the identity. A consequence of this result is that if line minimization is
used and the cost is quadratic, the generated iterates do not depend on the
values of the scalar £k, It turns out that this is also true even when the
cost is nonquadratic ([Dix72a], [Dix72b]), which is a rather surprising re-
sult. Thus the choice of £* makes a difference only if the line minimization
1s inaccurate. '

- Finally, we note that multlplymg the initial matrix DO by a positive
scaling factor can have a significant beneficial effect on the behavior of the
algorithm in the initial iterations of an n-iteration cycle, and also more
generally in the case of a nonquadratlc problem. A popular choice is to
compute

- po'qo
0 £ 2 O
b qO'DOQOD (7.22)

once the vector z! (and hence also p® and qo) has been obtained, and use DO
in place of DO in computing D!. Sometimes it is beneficial to scale D¥ even
after the first iteration by multiplication with p*’qk /g%’ Dkgk; see [OrL74],
[Ore73], where it is shown that such scaling can improve the convergence
rate.
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Comparison of Quasi-Newton Methods With Other Methods

Let us now consider a nonquadratic problem, and compare the Quasi-
Newton method of Egs. (7.1)-(7.2), (7.6)-(7.9) with the conjugate gradient
method. One advantage of the quasi-Newton method is that when line
search is accurate, the algorithm not only tends to generate conjugate direc-
tions but also constructs an approximation to the inverse Hessian matrix.
As a result, near convergence to a local minimum with positive definite
Hessian, it tends to approximate Newton’s method thereby attaining a fast
convergence rate. It is significant that this property does not depend on
the starting matrix DO, and as a result it is not usually necessary to pe-
riodically restart the method with a steepest descent-type step, which is
something that is essential for the conjugate gradient method.

A second advantage is that the quasi-Newton method is not as sensi-
tive to accuracy in the line search as the conjugate gradient method. This
has been verified by extensive computational experience and can be sub-
stantiated to some extent by analysis. A partial explanation is that, under
essentially no restriction on the line search accuracy, the method generates
positive definite matrices D* and hence directions of descent (Prop. 1.7.1).

To compare further the conjugate gradient method and the quasi-
Newton method, we consider their computational requirements per itera-
tion when n is large. The kth iteration of the conjugate gradient method
requires computation of the cost function and its gradient (perhaps several
times in the course of the line minimization) together with O(n) opera-

tions to compute the conjugate direction d* and the next point z¥+1. The
quasi-Newton method requires roughly the same amount of computation for
function and gradient evaluations together with O(n?) operations to com-
pute the matrix D* and the next point z*+1. If the computation needed for
a function and gradient evaluation is larger or comparable to O(n?) oper-
ations, the quasi-Newton method requires only slightly more computation
per iteration than the conjugate gradient method and holds the edge in view
of its other advantages mentioned earlier. In problems where a function
and gradient evaluation requires computation time much less than O(n?)
operations, the conjugate gradient method is typically preferable. As an
example, we will see in Section 1.9, that in optimal control problems where
typically n is very large, a function and a gradient evaluation typically re-
quires O(n) operations. For this reason the conjugate gradient method is
typically preferable for these problems.

In general, both the conjugate gradient method and the quasi-Newton
algorithm require less computation per iteration than Newton’s method,
which requires a function, gradient, and Hessian evaluation, as well as
O(n3) operations at each step for computing the Newton direction. This
is counterbalanced by the faster speed of convergence of Newton’s method.
Furthermore, in some cases, special structure can be exploited to compute
the Newton direction efficiently. For example in optimal control problems,
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Newton’s method typically requires O(n) operations per iteration versus
O(n?) operations for the quasi-Newton method (see Section 1.9).

EXERCISES

7.1 (Rank One Quasi-Newton Methods)
Suppose that D* is updated according to the formula

‘l
B _ Dkgk)yk

k+1 _ 1k (P
D =D" + qk’yk

)

where y* is any vector such that qk/y’c %+ 0. Show that we have

k+1 Kk k .
DFtlgF = pF.

Conclude that for a positi\;e definite quadratic‘problem, after n steps for which
n linearly independent increments ¢°,...,¢" ! are obtained, D™ is equal to
the inverse Hessian. ’

7.2 (Limited Memory BFGS Method [Noc80])

- A major drawback of Quasi-Newton methods for large problems is the large
storage requirement. This motivates methods that construct the Quasi-
Newton direction d* = —D*V f(z*) using only a limited number of the vectors
p* and ¢* (for example, the last m). This exercise shows one way to do this.

(a) Show that the BFGS updating formula can be written as
DFHL = Y phyk gk

where

1 ~ '
pk:W, VE = [~ pFghpt .
q-p

(b) Show how to calculate the direction d* = —D*V f(z*®) using D° and
the past vectors p*, ¢*,1=10,1,...,k — 1. ' '




