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Assignment 1

Consider the balanced network in the graph below in which the arcs are labeled with cost,

lower and upper bounds as follows
c,l,u−→. Nodes 1 and 2 are sources of capacity 4 and 4.

Nodes 5 and 7 are sinks of capacity 5 and 3, respectively.
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(2p) a) Consider the flow x12 = 1, x13 = 3, x23 = 2, x24 = 3, x35 = 1, x36 = 3, x37 = 2,
x43 = 1, x46 = 2, x67 = 5, x75 = 4. Is it a basic feasible solution?

(3p) b) Use the network simplex method to solve the min-cost flow problem starting from
the flow given in a). Make at most three iterations.

(1p) c) Is the obtained optimal flow unique?

Assignment 2

Consider the maximum flow problem defined by the graph in the figure below, in which the
arcs are labeled with capacity and flow as follows

u,x−→. The lower bounds are all zero. The
source is node 1, and the sink is node 6.
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(2p) a) Find capacity of the cut Ns = {1, 3, 5}. Find flow across this cut.

(3p) b) Use the max-flow algorithm for finding the maximum flow from node 1 to node
6. Start from the given flow. Present the results of using the modified Dijkstra’s
algorithm for finding a flow increasing path from node 1 to node 6. Show how arc’s
feasible directions are updated.

(3p) c) Find a minimum cut.
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Assignment 3

Consider the following network
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(2p) a) Use dynamic programming to find at least one shortest path from node 1 to node
10.

(1p) b) Find all the shortest paths from node 1 to node 10.

(1p) c) Use the results of a) for finding a shortest path from node 2 to node 10. Explain
how you used these results.

Assignment 4

Consider the function f(x) = ‖x‖ =
√
xTx, where x ∈ Rn.

(2p) a) Show that f(x) is a convex function in Rn.

(3p) b) Find the subdifferential of f(x) for x 6= 0.

(5p) c) Find the subdifferential of f(x) for x = 0.

Assignment 5 (4p.)

Consider the problem of minimizing f(x) = x21/2 + x22. Solve it using the conjugate gradient
method starting from the point x(0) = (2, 1)T .

Assignment 6 (3p.)

Consider the quadratic programming problem

min (x21 + x22)/2
s.t. x1 + 1 ≤ x2

x1 ≥ 0

Solve it using the active set method starting from the point x(0) = (2, 4)T . Start with the
set of active constraints in this point.
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Assignment 7

Consider the problem
min x
s.t. x2 + x ≤ 0

Let x∗ denote the solution to this problem. The penalty method and the logarithmic barrier
method reduce this constrained optimization problem to a sequence of unconstrained min-
imization of a function F (x, c) for a series of values of the parameter c. Let x(c) denote a
minimizer of F (x, c).

(3p) a) Find x(c) for the logarithmic barrier method and show that x(c)→ x∗.

(2p) b) Consider the problem in Assignment 6. For the quadratic penalty method, find the
value of F (x, 1) in the point x = (2, 0)T .
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ANSWERS

Assignment 1

a) It is a basic feasible solution, because the flow is feasible (the conservation flow holds
in each node and each arc flow is within the boundaries) and the set of basic arcs
composes a spanning tree.

b) The basic tree is composed of the edges (1,2), (1,3), (2,4), (3,7), (6,7), (7,5). The node
prices y = (0, 4, 1, 7, 6, 2, 4)T . Reduced costs and optimality:
c̄23 = 6 & x23 = l23 ⇒ OK
c̄35 = −1 & x35 = l35 ⇒ NOT OK
c̄36 = 2 & x36 = u36 ⇒ NOT OK
c̄43 = 10 & x43 = l43 ⇒ OK
c̄46 = 8 & x46 = l46 ⇒ OK
Since |c̄36| > |c̄35|, x36 enters the basis. This results in the cycle 6–3–7–6. It is possible
to send 2 units in the cycle with x36 exiting the basis. The basic tree does not change,
and the node prices remain the same. Reduced costs and optimality:
c̄23 = 6 & x23 = l23 ⇒ OK
c̄35 = −1 & x35 = l35 ⇒ NOT OK
c̄36 = 2 & x36 = l36 ⇒ OK
c̄43 = 10 & x43 = l43 ⇒ OK
c̄46 = 8 & x46 = l46 ⇒ OK
The arc x35 enters the basis. This results in the cycle 3–5–7–3. It is possible to send 3
units in the cycle with x35 exiting the basis (the alternative is that x37 exits the basis).
The basic tree does not change, and the node prices remain the same. Reduced costs
and optimality:
c̄23 = 6 & x23 = l23 ⇒ OK
c̄35 = −1 & x35 = u35 ⇒ OK
c̄36 = 2 & x36 = l36 ⇒ OK
c̄43 = 10 & x43 = l43 ⇒ OK
c̄46 = 8 & x46 = l46 ⇒ OK
Thus, the optimality conditions are satisfied.

c) The obtained optimal flow is unique, because there is no zero reduced cost.

Assignment 2

a) The capacity of the given cut is equal to 5 + 2 + 3 + 5 = 15. The flow across this cut
is equal to 2 + 2 + 1 + 4 - 2 = 7.

b) The modified Dijkstra’s algorithm gives the flow increasing path 1—2—3—5—6 whose
capacity is 1. Then f = 8. The modified Dijkstra’s algorithm being applied to the new
flow shows that there is no flow increasing path. This means that the obtained flow is
maximal.

c) The modified Dijkstra’s algorithm produces the two alternative minimum cuts N ′s =
{1, 2} and N ′′s = {1, 2, 3, 4, 5} (it is sufficient to find at least one of them).
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Assignment 3

a) The length of shortest path from node 1 to node 10 is equal to 9. All shortest paths are
listed in b).

b) All the alternative shortest paths:
1–3–5–9–10
1–3–6–9–10

c) For stage 2, we have f2(2) = 7, which is the length of the shortest path from node 2 to
node 10. The values x∗2(2) = 6, x∗3(6) = 9 and x∗4(9) = 10 define a shortest path: 2–6–
9–10. The values x∗2(2) = 7, x∗3(7) = 9 and x∗4(9) = 10 define an alternative shortest
path: 2–7–9–10. The values x∗2(2) = 7, x∗3(7) = 8 and x∗4(8) = 10 define one more
shortest path: 2–7–8–10.

Assignment 4

a) It is necessary to show that

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v), ∀u, v ∈ Rn, λ ∈ [0, 1].

Indeed, from the triangular inequality and the non-negativity of λ and (1−λ), we have

‖λu+ (1− λ)v‖ ≤ ‖λu‖+ ‖(1− λ)v‖,= λ‖u‖+ (1− λ)‖v‖, ∀u, v ∈ Rn, λ ∈ [0, 1].

b) f(x) = ‖x‖ is differntiable for all x 6= 0, and its subdifferential is composed of one vector
x/‖x‖.

c) By the definition of subgradient g ∈ Rn in x = 0, the inequality ‖x‖ ≥ gTx must hold
for all x ∈ Rn. Since gTx = ‖g‖‖x‖ cos(ϕ), the inequality 1 ≥ ‖g‖ cos(ϕ) must hold
for any angle ϕ between g and x. This is possible if, and only if, ‖g‖ ≤ 1. Thus, the
subdifferential of ‖x‖ for x = 0 is the set of vectors {g ∈ Rn : ‖g‖ ≤ 1}.

Assignment 5

k = 0: d0 = (−2, −2)T , t0 = 2/3, x1 = (2/3, −1/3)T .
k = 1: β1 = 1/9, d1 = 4/9 · (−2, 1)T , t1 = 3/4, x2 = (0, 0)T .
k = 2: ‖∇q(x2)‖ = 0 ⇒ x2 is the optimal solution, because q(x) ia a convex function.

Assignment 6

k = 0 : x0 = (2, 4)T , S0 = ∅, d0 = (−2, −4)T , t = 1/2, x1 = (1, 2)T .
k = 1 : S1 = {1}, d1 = (−3/2, −3/2)T , v1 = 1/2, t = 2/3, x2 = (0, 1)T .
k = 2 : S2 = {1, 2}, d1 = (0, 0)T , v2 = (1, 1)T ≥ 0 ⇒ x = (0, 1)T is the optimal solution.
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Assignment 7

a) F (x, c) = x− c ln(−x2− x) is a convex function of x ∈ (−1, 0) for any c > 0. The first
derivative of this function has two roots.
The root c− 1/2 +

√
c2 + 1/4 > 0, i.e. it is infeasible.

The root c− 1/2−
√
c2 + 1/4 ∈ (−1, 0), i.e. it is feasible.

Thus, x(c) = c− 1/2−
√
c2 + 1/4. Obviously, x(c)→ x∗ = −1 with c→ +0.

b) We rewrite the inequality-type constraints in the form gi(x) ≤ 0, i = 1, 2, where g1(x) =
x1−x2+1 and g2(x) = −x1. The quadratic penalty function P (x) = [g+1 (x)]2+[g+2 (x)]2.
For x = (2 0)T :
g1(2, 0) = 3 =⇒ g+1 (2, 0) = 3,
g2(2, 0) = −2 =⇒ g+2 (2, 0) = 0,

Thus, P (2, 0) = 9. For the given x = (2 0)T , F (x, 1) = f(x) + 1 · P (x) = 11.
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