Consider the balanced network in the graph below in which the arcs are labeled with cost, lower and upper bounds as follows $\xrightarrow{c,l,u}$. Nodes 1 and 2 are sources of capacity 4 and 4. Nodes 5 and 7 are sinks of capacity 5 and 3, respectively.

- (2p) a) Consider the flow $x_{12} = 1$, $x_{13} = 3$, $x_{23} = 2$, $x_{24} = 3$, $x_{35} = 1$, $x_{36} = 3$, $x_{37} = 2$, $x_{43} = 1$, $x_{46} = 2$, $x_{67} = 5$, $x_{75} = 4$. Is it a basic feasible solution?
- (3p) b) Use the network simplex method to solve the min-cost flow problem starting from the flow given in a). Make at most three iterations.
- (1p) c) Is the obtained optimal flow unique?

Assignment 2

Consider the maximum flow problem defined by the graph in the figure below, in which the arcs are labeled with capacity and flow as follows $\xrightarrow{u,x}$. The lower bounds are all zero. The source is node 1, and the sink is node 6.

- (2p) a) Find capacity of the cut $N_s = \{1, 3, 5\}$. Find flow across this cut.
- (3p) b) Use the max-flow algorithm for finding the maximum flow from node 1 to node 6. Start from the given flow. Present the results of using the modified Dijkstra's algorithm for finding a flow increasing path from node 1 to node 6. Show how arc's feasible directions are updated.
- (**3p**) c) Find a minimum cut.

Consider the following network

- (2p) a) Use dynamic programming to find at least *one* shortest path from node 1 to node 10.
- (1p) b) Find *all* the shortest paths from node 1 to node 10.
- (1p) c) Use the results of a) for finding a shortest path from node 2 to node 10. Explain how you used these results.

Assignment 4

Consider the function $f(x) = ||x|| = \sqrt{x^T x}$, where $x \in \mathbb{R}^n$.

- (2p) a) Show that f(x) is a convex function in \mathbb{R}^n .
- (3p) b) Find the subdifferential of f(x) for $x \neq 0$.
- (5p) c) Find the subdifferential of f(x) for x = 0.

Assignment 5 (4p.)

Consider the problem of minimizing $f(x) = x_1^2/2 + x_2^2$. Solve it using the conjugate gradient method starting from the point $x^{(0)} = (2, 1)^T$.

Assignment 6 (3p.)

Consider the quadratic programming problem

$$\begin{array}{ll} \min & (x_1^2 + x_2^2)/2 \\ \text{s.t.} & x_1 + 1 \le x_2 \\ & x_1 \ge 0 \end{array}$$

Solve it using the active set method starting from the point $x^{(0)} = (2, 4)^T$. Start with the set of active constraints in this point.

Consider the problem

$$\begin{array}{ll} \min & x \\ \text{s.t.} & x^2 + x \le 0 \end{array}$$

Let x_* denote the solution to this problem. The penalty method and the logarithmic barrier method reduce this constrained optimization problem to a sequence of unconstrained minimization of a function F(x, c) for a series of values of the parameter c. Let x(c) denote a minimizer of F(x, c).

- (3p) a) Find x(c) for the logarithmic barrier method and show that $x(c) \to x_*$.
- (2p) b) Consider the problem in Assignment 6. For the quadratic penalty method, find the value of F(x, 1) in the point $x = (2, 0)^T$.

ANSWERS

Assignment 1

a) It is a basic feasible solution, because the flow is feasible (the conservation flow holds in each node and each arc flow is within the boundaries) and the set of basic arcs composes a spanning tree.

b) The basic tree is composed of the edges (1,2), (1,3), (2,4), (3,7), (6,7), (7,5). The node prices $y = (0, 4, 1, 7, 6, 2, 4)^T$. Reduced costs and optimality: $\bar{c}_{23} = 6 \& x_{23} = l_{23} \Rightarrow \text{OK}$ $\bar{c}_{35} = -1 \& x_{35} = l_{35} \Rightarrow \text{NOT OK}$ $\bar{c}_{36} = 2 \& x_{36} = u_{36} \Rightarrow \text{ NOT OK}$ $\bar{c}_{43} = 10 \& x_{43} = l_{43} \Rightarrow \text{OK}$ $\bar{c}_{46} = 8 \& x_{46} = l_{46} \Rightarrow \text{OK}$ Since $|\bar{c}_{36}| > |\bar{c}_{35}|$, x_{36} enters the basis. This results in the cycle 6–3–7–6. It is possible to send 2 units in the cycle with x_{36} exiting the basis. The basic tree does not change, and the node prices remain the same. Reduced costs and optimality: $\bar{c}_{23} = 6 \& x_{23} = l_{23} \Rightarrow \text{OK}$ $\bar{c}_{35} = -1 \& x_{35} = l_{35} \implies \text{NOT OK}$ $\bar{c}_{36} = 2 \& x_{36} = l_{36} \Rightarrow \text{OK}$ $\bar{c}_{43} = 10 \& x_{43} = l_{43} \Rightarrow \text{OK}$ $\bar{c}_{46} = 8 \& x_{46} = l_{46} \Rightarrow \text{OK}$ The arc x_{35} enters the basis. This results in the cycle 3–5–7–3. It is possible to send 3 units in the cycle with x_{35} exiting the basis (the alternative is that x_{37} exits the basis). The basic tree does not change, and the node prices remain the same. Reduced costs and optimality: $\bar{c}_{23} = 6 \& x_{23} = l_{23} \Rightarrow \text{OK}$ $\bar{c}_{35} = -1 \& x_{35} = u_{35} \Rightarrow \text{OK}$ $\bar{c}_{36} = 2 \& x_{36} = l_{36} \Rightarrow \text{OK}$ $\bar{c}_{43} = 10 \& x_{43} = l_{43} \Rightarrow \text{OK}$ $\bar{c}_{46} = 8 \& x_{46} = l_{46} \Rightarrow \text{OK}$

Thus, the optimality conditions are satisfied.

c) The obtained optimal flow is unique, because there is no zero reduced cost.

Assignment 2

- a) The capacity of the given cut is equal to 5 + 2 + 3 + 5 = 15. The flow across this cut is equal to 2 + 2 + 1 + 4 2 = 7.
- b) The modified Dijkstra's algorithm gives the flow increasing path 1-2-3-5-6 whose capacity is 1. Then f = 8. The modified Dijkstra's algorithm being applied to the new flow shows that there is no flow increasing path. This means that the obtained flow is maximal.
- c) The modified Dijkstra's algorithm produces the two alternative minimum cuts $N'_s = \{1, 2\}$ and $N''_s = \{1, 2, 3, 4, 5\}$ (it is sufficient to find at least one of them).

- a) The length of shortest path from node 1 to node 10 is equal to 9. All shortest paths are listed in b).
- **b**) All the alternative shortest paths:

1-3-5-9-101-3-6-9-10

c) For stage 2, we have $f_2(2) = 7$, which is the length of the shortest path from node 2 to node 10. The values $x_2^*(2) = 6$, $x_3^*(6) = 9$ and $x_4^*(9) = 10$ define a shortest path: 2–6–9–10. The values $x_2^*(2) = 7$, $x_3^*(7) = 9$ and $x_4^*(9) = 10$ define an alternative shortest path: 2–7–9–10. The values $x_2^*(2) = 7$, $x_3^*(7) = 8$ and $x_4^*(8) = 10$ define one more shortest path: 2–7–8–10.

Assignment 4

a) It is necessary to show that

$$f(\lambda u + (1 - \lambda)v) \le \lambda f(u) + (1 - \lambda)f(v), \quad \forall u, v \in \mathbb{R}^n, \lambda \in [0, 1].$$

Indeed, from the triangular inequality and the non-negativity of λ and $(1-\lambda)$, we have

$$\|\lambda u + (1-\lambda)v\| \le \|\lambda u\| + \|(1-\lambda)v\|, = \lambda \|u\| + (1-\lambda)\|v\|, \quad \forall u, v \in \mathbb{R}^n, \lambda \in [0,1].$$

- b) f(x) = ||x|| is differntiable for all $x \neq 0$, and its subdifferential is composed of one vector x/||x||.
- c) By the definition of subgradient $g \in \mathbb{R}^n$ in x = 0, the inequality $||x|| \ge g^T x$ must hold for all $x \in \mathbb{R}^n$. Since $g^T x = ||g|| ||x|| \cos(\varphi)$, the inequality $1 \ge ||g|| \cos(\varphi)$ must hold for any angle φ between g and x. This is possible if, and only if, $||g|| \le 1$. Thus, the subdifferential of ||x|| for x = 0 is the set of vectors $\{g \in \mathbb{R}^n : ||g|| \le 1\}$.

Assignment 5

$$\begin{array}{ll} k=0 \colon \ d_0=(-2,\ -2)^T, \ t_0=2/3, \ x_1=(2/3,\ -1/3)^T.\\ k=1 \colon \ \beta_1=1/9, \ d_1=4/9 \cdot (-2,\ 1)^T, \ t_1=3/4, \ x_2=(0,\ 0)^T.\\ k=2 \colon \ \|\nabla q(x_2)\|=0 \ \Rightarrow \ x_2 \ \text{is the optimal solution, because } q(x) \ \text{ia a convex function.} \end{array}$$

Assignment 6

$$\begin{aligned} &k = 0: \ x_0 = (2, \ 4)^T, \ S_0 = \emptyset, \ d_0 = (-2, \ -4)^T, \ t = 1/2, \ x_1 = (1, \ 2)^T. \\ &k = 1: \ S_1 = \{1\}, \ d_1 = (-3/2, \ -3/2)^T, \ v_1 = 1/2, \ t = 2/3, \ x_2 = (0, \ 1)^T. \\ &k = 2: \ S_2 = \{1, 2\}, \ d_1 = (0, \ 0)^T, \ v_2 = (1, \ 1)^T \ge 0 \ \Rightarrow \ x = (0, \ 1)^T \text{ is the optimal solution.} \end{aligned}$$

- a) $F(x,c) = x c \ln(-x^2 x)$ is a convex function of $x \in (-1,0)$ for any c > 0. The first derivative of this function has two roots. The root $c - 1/2 + \sqrt{c^2 + 1/4} > 0$, i.e. it is infeasible. The root $c - 1/2 - \sqrt{c^2 + 1/4} \in (-1,0)$, i.e. it is feasible. Thus, $x(c) = c - 1/2 - \sqrt{c^2 + 1/4}$. Obviously, $x(c) \to x_* = -1$ with $c \to +0$.
- b) We rewrite the inequality-type constraints in the form $g_i(x) \le 0, i = 1, 2$, where $g_1(x) = x_1 x_2 + 1$ and $g_2(x) = -x_1$. The quadratic penalty function $P(x) = [g_1^+(x)]^2 + [g_2^+(x)]^2$. For $x = (2 \ 0)^T$: $g_1(2, 0) = 3 \implies g_1^+(2, 0) = 3,$ $g_2(2, 0) = -2 \implies g_2^+(2, 0) = 0,$ Thus, P(2, 0) = 9. For the given $x = (2 \ 0)^T$, $F(x, 1) = f(x) + 1 \cdot P(x) = 11$.