
Partial Differential Equations (TATA27)
Spring Semester 2019

Homework 1

Review of previous seminar

In the first seminar we studied Chapters 1 and 3. Read through these chapters to check your
understanding and fill in any gaps. Then attempt the following question.

1.1 Prove that the following operators are linear operators.

(a) ∇ = (∂1, ∂2, . . . , ∂n) acting on functions u : Rn → R.

(b) The divergence operator div which acts via the formula div(u) =
∑n

j=1
∂ju

j on functions

u = (u1, u2, . . . , un) : Rn → Rn.

(c) curl acting on functions u = (u1, u2, u3) : R
3 → R3 by the formula

curl(u) = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1).

(d) ∆ := ∇ · ∇ =
∑n

j=1
∂2

j acting on functions u : Rn → R.

1.2 Classify the following equations in u as linear or non-linear (non-linear means not linear) and
give the order of the equation.

(a) utt(x, t)− uxx(x, t) + xu(x, t) = 0

(b) utt(x, t)− uxx(x, t) + x2 = 0

(c) ut(x, t) + uxxxx(x, t) +
√

1 + u(x, t) = 0

(d) ux(x, y) + eyuy(x, y) = 0

Preparation for the next seminar

In preparation for seminar 2 read through Chapter 2 and attempt the following two problems.

1.3 Use the method of characteristics to find an explicit formula for a smooth function u : R2 → R
which solves the equation

ux(x, y) + yuy(x, y) = 0 for all x, y ∈ R

and satisfies the condition u(0, y) = g(y) for all y ∈ R where g is a given smooth function.

1.4 Use the method of characteristics to find an explicit formula for a smooth function u : R2 → R
which solves the equation

(1 + x2)ux(x, y) + uy(x, y) = 0 for all x, y ∈ R

and satisfies the condition u(0, y) = g(y) for all y ∈ R where g is a given smooth function.

In-seminar group work

We will work on the following problem together in the seminar. It is best not to even read the
question in advance.

1.5 Let a, b and c be real numbers and suppose that b 6= 0. Use the method of characteristics to
find an explicit formula for a smooth function u : R2 → R which solves the equation

aux(x, t) + but(x, t) + cu(x, t) = 0 for all x ∈ R and t > 0

and satisfies the “initial condition” u(x, 0) = g(x) for all x ∈ R where g is a given smooth
function.



Review exercises

Here’s an addition homework exercise related to the method of characteristics that you can attempt
after seminar 2.

1.6 Let f : Rn × (0,∞) → R and g : Rn → R be two smooth functions and b ∈ Rn. Consider the
equations

ut(x, t) + b · ∇u(x, t) = f(x, t) for x ∈ Rn and t > 0, and

u(x, 0) = g(x) for x ∈ Rn.
(†)

Here ∇ denotes the gradient vector in the x-variables. Set z(s) = u(x + bs, t + s) for fixed
x ∈ Rn and t > 0 and derive an ODE which z satisfies. Use this ODE to find a formula
for a solution u to (†). (This method simply takes the characteristic curves (X,T ) to be
X(s) = x+ bs and T (s) = t+ s.)
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Solutions to Homework 1

1.1 (a) For u, v : Rn → R and a, b ∈ R, we have

∇(au+ bv) = (∂1(au+ bv), ∂2(au+ bv), . . . , ∂n(au+ bv))

= a(∂1u, ∂2u, . . . , ∂nu) + b(∂1v, ∂2v, . . . , ∂nv) = a∇u+ b∇v,

so ∇ is linear.

(b) For u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), functions from Rn to Rn, and a, b ∈ R,
we have

div(au+ bv) =

n
∑

j=1

∂j(au
j + bvj) =

n
∑

j=1

(a∂ju
j + b∂jv

j)

= a





n
∑

j=1

∂ju
j



+ b





n
∑

j=1

∂jv
j



 = a div u+ b div v,

so div is linear.

(c) For u = (u1, u2, u3) and u = (u1, u2, u3), functions from R3 to R3, and a, b ∈ R, we have

curl(au+ bv)

=
(

∂2(au3 + bv3)− ∂3(au2 + bv2), ∂3(au1 + bv1)− ∂1(au3 + bv3), ∂1(au2 + bv2)− ∂2(au1 + bv1)
)

=
(

a∂2u3 + b∂2v3 − a∂3u2 − b∂3v2, a∂3u1 + b∂3v1 − a∂1u3 − b∂1v3, a∂1u2 + b∂1v2 − a∂2u1 − b∂2v1
)

= a
(

∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1

)

+ b
(

∂2v3 − ∂3v2, ∂3v1 − ∂1v3, ∂1v2 − ∂2v1
)

= a curlu+ b curl v,

so curl is linear.

(d) For u, v : Rn → R and a, b ∈ R, we have

∆(au+ bv) =
n
∑

j=1

∂2

j (au+ bv) =
n
∑

j=1

∂j(a∂ju+ b∂jv)

=

n
∑

j=1

(a∂2

j u+ b∂2

j v) = a





n
∑

j=1

∂2

j u



+ b





n
∑

j=1

∂2

j v





= a∆u+ b∆v,

so ∆ is linear.

1.2 We can see directly that the orders of the equations are (a) 2, (b) 2, (c) 4 and (d) 1. It is also
easy to check that (a) and (d) are linear—which we do by check that if u and v are solutions,
and a and b are constants, then au+ bv is a solution.

Equation (b) is also linear, although non-homogeneous. Indeed we can write the equation as
Lu = −x2 where L = ∂2

t − ∂2

x. We can check that L is a linear operator by considering two
functions u and v and two constants α and β, and calculating

L(αu+βv) = (αu+βvu+βv)tt − (αu+βv)xx = αutt −αuxx +βvtt −βvxx = αL(u)+βL(v).

We can see that (c) is non-linear, as although the first two terms in the equation are linear,
the third is not. Indeed

√
1 + u +

√
1 + v =

√

1 + (u+ v) only if 4(1 + u)(1 + v) = 1, so
u 7→ ut + uxxxx +

√
1 + u is not a linear operator.

1.3 We look for curves t 7→ (X(t), Y (t)) on which a solution to

ux(x, y) + yuy(x, y) = 0 for all x, y ∈ R

will be constant. Thus, setting z(t) = u(X(t), Y (t)), we require

0 = z′(t) = X ′(t)ux(X(t), Y (t)) + Y ′(t)uy(X(t), Y (t))



so, comparing this equality with the PDE, we choose

X ′(t) = 1 and

Y ′(t) = Y (t).

Thus, X(t) = t + c1 and Y (t) = c2e
t. Let’s now consider a characteristic curve which passes

through an arbitrary point (x, y), say when t = 0. Such a curve will satisfy x = X(0) = 0+ c1
and y = Y (0) = c2e

0, so c1 = x and c2 = y and we have X(t) = t+ x and Y (t) = yet.

To calculate the value of u(x, y) we will use the fact u is constant along the characteristic
curves and the fact we know u(0, y) = g(y). We need to calculate for which t our characteristic
curve will cross the y-axis. This happens when 0 = X(t) = t + x, that is when t = −x.
Y (−x) = ye−x, so we have u(x, t) = u(0, ye−x) = g(ye−x). Thus we have calculated that the
solution must be

u(x, y) = g(ye−x).

We can check directly that this is indeed a solution.

1.4 We wish to find curves t 7→ (X(t), Y (t)) on which a solution to

(1 + x2)ux(x, y) + uy(x, y) = 0 for all x, y ∈ R

will be constant. Thus, setting z(t) = u(X(t), Y (t)), we require

0 = z′(t) = X ′(t)ux(X(t), Y (t)) + Y ′(t)uy(X(t), Y (t))

so, comparing this equality with the PDE, we choose

X ′(t) = 1 +X(t)2 and

Y ′(t) = 1.

Thus, Y (t) = t+ cY and

t =

∫

dt =

∫

X ′(t)

1 +X(t)2
dt = arctan(X(t)) + cX

so X(t) = tan(t− cX), for constants cX , cY ∈ R.

For a given point (x, y), we can find a characteristic curve which passes through (x, y), when
say t = 0, by taking Y (t) = t+ y and X(t) = tan(t+ arctan(x)) (that is, by choosing cY = y
and cX = − arctan(x)). Then, using the fact u is constant on characteristic curves and the
condition u(0, y) = g(y),

u(x, y) = u(X(0), Y (0)) = u(X(− arctanx), Y (− arctanx))

= u(− arctanx+ y, 0)

= g(y − arctanx).

1.5 For fixed (x, t), z(s) = u(x+ bs, t+ s) so we can compute

z′(s) =
d

ds
u(x+ bs, t+ s) = b · ∇u(x+ bs, t+ s) + ut(x+ bs, t+ s),

so, using the PDE, we see that

z′(s) = f(x+ bs, t+ s).

Integrating with respect to s from −t to 0, we obtain

∫

0

−t

f(x+ bs, t+ s)ds =

∫

0

−t

z′(s)ds = z(0)− z(−t) = u(x, t)−u(x− bt, 0) = u(x, t)− g(x− bt),

so

u(x, t) = g(x− bt) +

∫ t

0

f(x− bs, t− s)ds. (‡)



1.6 We search for appropriate curves (X,T ) such that the solution on the curves s 7→ z(s) :=
u(X(s), T (s)) behaves nicely. We have

z′(s) =
d

ds
u(X(s), T (s)) = X ′(s)∂1u(X(s), T (s)) + T ′(s)∂2u(X(s), T (s)),

so it seems reasonable to set X ′(s) = a and T ′(s) = b. Thus X(s) = as+cX and T (s) = bs+cT
for constants cX , cT ∈ R. We can then rewrite the PDE as

z′(s) + cz(s) = a∂1u(X(s), T (s)) + b∂2u(X(s), T (s)) + cu(X(s), T (s)) = 0.

This is an ODE with general solution z(s) = Ae−cs for any A ∈ R.

Now fix (x, t). If we choose cX = x and cT = t, then X(s) = as + x and T (s) = bs + t, and
when s = 0 the characteristic curve passes through (X(0), T (0)) = (x, t) and when s = −t/b
the curve passes through (X(−t/b), T (−t/b)) = (x− at/b, 0). When s = −t/b we can use the
initial condition to find the value of z:

z(−t/b) = u(X(−t/b), T (−t/b)) = u(x− at/b, 0) = g(x− at/b).

But on the other hand, using the form of the general solution to the characteristic ODE,
z(−t/b) = Aect/b, so A = g(x− at/b)e−ct/b. Equally, for s = 0,

u(x, t) = z(0) = Ae−c0 = g(x− at/b)e−ct/b,

which gives us an expression for the solution u.
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Homework 2

Preparation for the next seminar

In preparation for Seminar 3 read through Chapter 4 and Section 5.1 and attempt the following two
problems.

2.1 Let R2
+ = R × (0,∞), C(R2

+) denote the set of continuous real-valued functions on R2
+ and

C1(R2
+) denote the set of continuously differentiable real-valued functions on R2

+. Consider
the boundary-value problem

{

ux(x, y) + yuy(x, y) = 0 for all (x, y) ∈ R2
+, and

u(x, 0) = φ(x) for all x ∈ R.

(a) Show that if φ(x) = x for all x ∈ R, then no solution exists in C(R2
+) ∩ C1(R2

+).

(b) Show that if φ(x) = 1 for all x ∈ R, then there are many solutions in C(R2
+) ∩ C1(R2

+).

2.2 Fix ℓ > 0 and consider the following boundary-value problem. Given a function f : (0, ℓ) → R
we wish to find u : [0, ℓ] → R which is twice continuously differentiable such that

{

u′′(x) + u′(x) = f(x) for all x ∈ (0, ℓ), and
u′(0) = u(0) = 1

2
(u′(ℓ) + u(ℓ)).

(a) Prove that if a solution u exists, it is not unique.

(b) Find two conditions we must place on f for a solution to exist.

Group work

We will work on the following exercise at the end of the seminar then we will discuss possible
solutions together in Seminar 4.

2.3 Let Ω be a bounded open set. Prove that continuous functions u : Ω → R which satisfy

∆u(x) + x · ∇u(x) ≥ 0

for x ∈ Ω also satisfy the weak maximum principle:

max
Ω

u = max
∂Ω

u.

Review exercises

Here’s a couple of additional exercises for you to try.

2.4 Suppose u : R2 → R is a harmonic function.

(a) For constants a, b ∈ R show that v : R2 → R defined by

v(x, y) = u(x+ a, y + b) for all x, y ∈ R

is harmonic.

(b) For a constant α ∈ R show that w : R2 → R defined by

w(x, y) = u(x cosα+ y sinα, y cosα− x sinα) for all x, y ∈ R

is harmonic.

This exercise shows that Laplace’s equation in the plane is invariant under rigid motions
(translations and rotations).



2.5 The Schrödinger equation is a good model for the behaviour of particles at the atomic and
subatomic level. Solutions u : R3 ×R → C are complex-valued and are related to the proba-
bility that a particle can be found in a specific region. The equation which models the motion
of an electron around a hydrogen nucleus has the form

−ih̄
∂u

∂t
(x, t) =

h̄2

2m
∆u(x, t) +

e2

|x|
u(x, t)

for real constants h̄, m and e and all x ∈ R3 and t ∈ R. Assume that u and ∂tu are continuous
functions, and u, ∂tu and ∇u satisfy the estimate |u(x, t)|2 + |∂tu(x, t)|

2 + |∇u(x, t)|2 ≤
C(1+|x|)−2−ε for some C, ε > 0, so we can interchange integration and differentiation according
to the formula

d

dt

∫

B

u(x, t)dx =

∫

B

∂tu(x, t)dx

where B is any ball in R3 (see Strauss, p. 420, for the result for one spatial variable, but the
same rule applies in R3). Show that if

∫

R3

|u(x, t0)|
2dx = 1

for some t0 ∈ R, then
∫

R3

|u(x, t)|2dx = 1

for all t ∈ R.
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2.1 Using the method of characteristics, we set s(t) = u(X(t), Y (t)) where (X,Y ) : R → R2 are
the characteristic curves. If they satisfy the equations

{

X ′(t) = 1
Y ′(t) = Y (t)

then s′(t) = ux(X(t), Y (t)) + Y (t)uy(X(t), Y (t)) = 0, so s is a constant function. Solving the
ODEs above, we find X(t) = t + c and Y (t) = Cet for constants c and C. Thus any solution
to the PDE is constant on the lines y = Cex and so is of the form

u(x, y) = f(ye−x) (1)

for an arbitrary function f : [0,∞) → R. The requirement that u ∈ C1(R2
+) implies we need

f to be continuously differentiable on (0,∞). If u is to belong to C(R2
+), then in particular

u(x, 0) = lim
y→0

u(x, y).

Substituting in the boundary condition u(x, 0) = φ(x) and (1), we find

φ(x) = u(x, 0) = lim
y→0

u(x, y) = lim
y→0

f(ye−x) = f(0).

Thus, if the PDE is to have a solution in C(R2
+) ∩ C1(R2

+), φ must be a constant function.
Consequetly, (a) if φ(x) = x there are no such solutions, and (b) if φ(x) = 1, then (1) is
a solution for any continuous f which is continuously differentiable on (0,∞) and such that
f(0) = 1.

2.2 [Olle Abrahamsson] We will show that the equation has more than one solution by solving the
equation directly. We multiply the equation by the integrating factor ex to find

f(x)ex = u′′(x)ex + u′(x)ex =
d

dx
(u′(x)ex)

so

u′(x) = e−x

∫ x

0

f(t)etdt+ c0e
−x

for a constant c0. Thus

u(x) =

∫ x

0

e−s

∫ s

0

f(t)etdtds− c0e
−x + c1

=

∫ x

0

f(t)(1− et−x)dt− c0e
−x + c1,

where c1 is a constant.

The condition u′(0) = u(0) says that 0+c0 = 0−c0+c1, so c1 = 2c0, and u′(0) = 1

2
(u′(ℓ)+u(ℓ))

says

c0 =
1

2

(

e−ℓ

∫ ℓ

0

f(t)etdt+ c0e
−ℓ +

∫ ℓ

0

f(t)(1− et−ℓ)dt− c0e
−ℓ + 2c0

)

=
1

2

∫ ℓ

0

f(t)dt+ c0,

so we require
∫ ℓ

0
f(t)dt = 0, but no restriction on c0. Thus we have that

u(x) =

∫ x

0

f(t)(1− et−x)dt− c0e
−x + 2c0 (2)

is a solution for any c0 ∈ R. We can check directly that such a u will be twice continuously
differentiable if and only if f is continuous. Therefore we have shown that



(b) For a solution to exist in C2([0, ℓ]) we require f to be continuous and
∫ ℓ

0
f(t)dt = 0.

(a) If these conditions are satisfied then we have an infinite number of solutions in C2([0, ℓ])
given by (2) for an arbitrary c0 ∈ R.

2.3 For ε > 0 set v(x) = u(x) + ε|x|2. As the sum of two continuous functions, v is continuous
on Ω and so must attain a maximum somewhere in the compact set Ω = Ω ∪ ∂Ω. We will
now rule out the possibility that v attains its maximum in Ω. Suppose to the contrary that v
attains this maximum x ∈ Ω. Then we know x is a critical point, so ∇v(x) = 0 and, by the
second derivative test, ∆v(x) =

∑n
j=1

∂2
j v(x) ≤ 0. Therefore

∆v(x) + x · ∇v(x) = ∆v(x) + 0 ≤ 0 + 0 = 0.

But on the other hand, we can compute

∆v(x) + x · ∇v(x) = ∆u(x) + x · ∇u(x) + 2ε|x|2 + 2εn ≥ 2ε|x|2 + 2εn > 0,

via the differential inequality u satisfies. These two inequalities contradict each other, so v

cannot attain its maximum in Ω.

Therefore v must attain its maximum at a point y ∈ ∂Ω. Thus, for any x ∈ Ω,

u(x) ≤ v(x) ≤ v(y) = u(y) + ε|y|2 ≤ u(y) + εC2 ≤ max
∂Ω

u+ εC2,

where C is the constant obtained from the fact Ω is bounded. Since the above inequality holds
for any ε > 0, we have u(x) ≤ max∂Ω u for any x ∈ Ω, so

max
Ω

u ≤ max
∂Ω

u

Because ∂Ω ⊆ Ω we have that max∂Ω u ≤ max
Ω
u and combining these two inequalities we get

that max
Ω
u = max∂Ω u and the maximum of u is attained on ∂Ω.

2.4 (a) We can compute

∂xv = (∂1u)(x+ a, y + b), ∂2
xv = (∂2

1u)(x+ a, y + b),

∂yv = (∂2u)(x+ a, y + b) and ∂2
yv = (∂2

2u)(x+ a, y + b).

so

∆v(x, y) = ∂2
xv(x, y) + ∂2

yv(x, y)

= (∂2
1u)(x+ a, y + b) + (∂2

2u)(x+ a, y + b) = ∆u(x+ a, y + b) = 0.

(b) We can compute

∂xw(x, y) = cosα(∂1u)(x cosα+ y sinα, y cosα− x sinα)

− sinα(∂2u)(x cosα+ y sinα, y cosα− x sinα), and

∂2
xw(x, y) = cos2 α(∂2

1u)(x cosα+ y sinα, y cosα− x sinα)

− 2 cosα sinα(∂2∂1u)(x cosα+ y sinα, y cosα− x sinα)

+ sin2 α(∂2
2u)(x cosα+ y sinα, y cosα− x sinα)

And

∂yw(x, y) = sinα(∂1u)(x cosα+ y sinα, y cosα− x sinα)

+ cosα(∂2u)(x cosα+ y sinα, y cosα− x sinα), and

∂2
xw(x, y) = sin2 α(∂2

1u)(x cosα+ y sinα, y cosα− x sinα)

+ 2 cosα sinα(∂2∂1u)(x cosα+ y sinα, y cosα− x sinα)

+ cos2 α(∂2
2u)(x cosα+ y sinα, y cosα− x sinα)



so

∆w(x, y) = cos2 α(∂2
1u)(x cosα+ y sinα, y cosα− x sinα)

− 2 cosα sinα(∂2∂1u)(x cosα+ y sinα, y cosα− x sinα)

+ sin2 α(∂2
2u)(x cosα+ y sinα, y cosα− x sinα)

+ sin2 α(∂2
1u)(x cosα+ y sinα, y cosα− x sinα)

+ 2 cosα sinα(∂2∂1u)(x cosα+ y sinα, y cosα− x sinα)

+ cos2 α(∂2
2u)(x cosα+ y sinα, y cosα− x sinα)

= (cos2 α+ sin2 α)(∂2
1u)(x cosα+ y sinα, y cosα− x sinα)

+ (cos2 α+ sin2 α)(∂2
2u)(x cosα+ y sinα, y cosα− x sinα)

= (∂2
1u)(x cosα+ y sinα, y cosα− x sinα)

+ (∂2
2u)(x cosα+ y sinα, y cosα− x sinα)

= ∆w(x cosα+ y sinα, y cosα− x sinα) = 0.

2.5 Fix N > 0 and let BN = {x ∈ Rn | |x| < N} be a ball in Rn centred at the origin. Then
∫

BN

|u(x, t)|2dx−

∫

BN

|u(x, t0)|
2dx =

∫ t

t0

d

ds

(
∫

BN

|u(x, s)|2dx

)

ds

=

∫ t

t0

∫

BN

∂

∂s

(

|u(x, s)|2
)

dxds =

∫ t

t0

∫

BN

∂

∂s

(

u(x, s)u(x, s)
)

dxds

=

∫ t

t0

∫

BN

(∂su(x, s)u(x, s) + u(x, s)∂su(x, s)) dxds,

(3)

where the second equality (commuting the derivative and integral) is be justified by our as-
sumptions. From the Schrödinger’s equations, we have that

∂u

∂s
(x, s) =

i~

2m
∆u(x, s) +

ie2

~|x|
u(x, s)

and taking complex conjugates

∂u

∂s
(x, s) = −

i~

2m
∆u(x, s)−

ie2

~|x|
u(x, s).

Thus

(∂su(x, s))u(x, s) + u(x, s)(∂su(x, s)) =
i~

2m
(∆u(x, s)u(x, s)− u(x, s)∆u(x, s)) .

The divergence theorem tells us
∫

BN

((∂su(x, s))u(x, s) + u(x, s)(∂su(x, s))) dx

=

∫

BN

i~

2m
(∆u(x, s)u(x, s)− u(x, s)∆u(x, s)) dx

= −
i~

2m

∫

BN

(∇u(x, s) · ∇u(x, s)−∇u(x, s) · ∇u(x, s)) dx

+
i~

2m

∫

∂BN

(

∂u

∂n
(x, s)u(x, s)− u(x, s)

∂u

∂n
(x, s)

)

dσ(x)

=
i~

2m

∫

∂BN

(

∂u

∂n
(x, s)u(x, s)− u(x, s)

∂u

∂n
(x, s)

)

dσ(x).

Substituting this into (3) and using our assumptions about the decay of u, we find
∣

∣

∣

∣

∫

BN

|u(x, t)|2dx−

∫

BN

|u(x, t0)|
2dx

∣

∣

∣

∣

=

∣

∣

∣

∣

i~

2m

∫ t

t0

∫

∂BN

(

∂u

∂n
(x, s)u(x, s)− u(x, s)

∂u

∂n
(x, s)

)

dσ(x)ds

∣

∣

∣

∣

≤
C|t− t0|~

2m
|∂BN |(1 +N)−2−ε



where |∂BN | is the area of the set ∂BN and equals 3α(3)N2, where α(3) is the volume of the
unit ball in R3. Thus |∂BN |(1+N)−2−ε = 3α(3)N2(1+N)−2−ε → 0 as N → ∞, which proves

∫

R3

|u(x, t)|2dx =

∫

R3

|u(x, t0)|
2dx = 1,

as required.



Partial Differential Equations (TATA27)
Spring Semester 2019

Homework 3

Review of previous seminar

To finish off our work from Seminar 3 read Section 5.2.

Preparation for the next seminar

In preparation for Seminar 4 read through Section 5.3 and attempt the following problem.

3.1 Consider two points x,y ∈ R2 with polar coordinates (r, θ) and (a, φ), respectively. Using a
geometric argument (or otherwise) show that

|x− y|2 = r2 − 2ar cos(θ − φ) + a2.

Use this fact to help you rewrite the Poisson formula

u(r, θ) =
(a2 − r2)

2π

∫

2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ (5.6)

as

u(x) =
(a2 − |x|2)

2πa

∫

|y|=a

h̃(y)

|x− y|2
dσ(y). (5.7)

Group work

We will work on the following exercise at the end of the seminar then we will discuss possible
solutions together in Seminar 5.

3.2 Let W = {x = (r, θ) ∈ R2 | 0 < r < a and 0 < θ < β} denote a wedge of length a and angle
β (where (r, θ) are polar coordinates). Using the same procedure as we used to derive the
Poisson formula for D derive a analogous formula for the solution u to







∆u = 0 in W ,
u(r, 0) = u(r, β) = 0 for r ∈ (0, a), and
u(a, θ) = h(θ) for θ ∈ (0, β).

Review exercises

Heres an additional exercise for you to try.

3.3 Using the method of separation of variables find a function u : S → R which is harmonic on
the square S = {(x, y) | 0 < x < π, 0 < y < π} and which satisfies the boundary conditions

uy(x, 0) = uy(x, π) = 0 for 0 < x < π,

u(0, y) = 0 for 0 < y < π, and

u(π, y) = cos2 y for 0 < y < π.

[Hint: The coordinate system you separate variables in should be chosen based on the geometry
of S.]



Partial Differential Equations (TATA27)
Spring Semester 2019
Solutions to Homework 3

3.1 Consider two points x,y ∈ R2 with polar coordinates (r, θ) and (a, φ), respectively. Looking
at Figure 1 we can see that the right-angled triangle with vertices x, y and z has hypotenuse
of length |x− y| and the other two sides are of length r− a cos(φ− θ) and a sin(φ− θ). Thus,
by Pythagoras’ theorem

|x− y|2 = (r − a cos(φ− θ))2 + (a sin(φ− θ))2

= r2 − 2ar cos(φ− θ) + a2(cos2(φ− θ) + sin2(φ− θ))

= r2 − 2ar cos(φ− θ) + a2.

(1)

Figure 1: Two points x,y ∈ R2 with polar coordinates (r, θ) and (a, φ), respectively.

A line integral of f : γ → R over a curve γ ⊂ R2 is defined to be

∫

γ

f(y)dσ(y) =

∫

2π

0

f(r(φ))|r′(φ)|dφ

where r : [0, 2π] → R is a parametrisation of γ. Thus, if we take the parametrisation r(φ) =
(a cosφ, a sinφ) of the cicle {y ∈ R2 | |y| = a}, then |r′(φ)| = a and

∫

|y|=a

h̃(y)

|x− y|2
dσ(y) =

∫

2π

0

h̃(r(φ))

|x− r(φ)|2
adφ = a

∫

2π

0

h(φ)

r2 − 2ar cos(φ− θ) + a2
dφ,

where we used (1) (observing r(φ) has polar coordinates (a, φ)). Since |x|2 = r2, this implies

(a2 − |x|2)

2πa

∫

|y|=a

h̃(y)

|x− y|2
dσ(y) =

(a2 − r2)

2π

∫

2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ.

3.2 We search for solutions of the form u(r, θ) = R(r)Θ(θ) via the method of separation of variables,
just as we did in Section 5.3.2. Exactly as before we wish to solve the two separate ODEs

Θ′′ + λΘ = 0 and r2R′′ + rR′ − λR = 0,

for λ ∈ R, but instead of wanting to find periodic Θ as we did for the disc, the boundary
conditions u(r, 0) = u(r, β) = 0 imply we need

Θ(0) = Θ(β) = 0.

Solving the ODE for Θ with these boundary conditions gives

λ =

(

mπ

β

)2

and Θ(θ) = sin(mπθ/β)



for m = 1, 2, . . . . We now solve the ODE for R, which is of Euler form. We find that R(r) = rα,
where α2 = λ. We reject negative exponents α, as they produce solutions R which are not
continuous at the origin (the vertex of the wedge).1 Thus we have a solution

u(r, θ) = R(r)Θ(θ) = rmπ/β sin(mπθ/β)

for each positive integer m. In order to try to satisfy the boundary condition u(a, θ) = h(θ)
we consider linear combinations of these,

u(r, θ) =
∞
∑

m=1

Amrmπ/β sin(mπθ/β),

and consider the boundary value

h(θ) = u(a, θ) =

∞
∑

m=1

Amamπ/β sin(mπθ/β),

which has the form of a Fourier sine series for h, so it is natural to choose

Am =
2

βamπ/β

∫ β

0

h(φ) sin(mπφ/β)dφ

and so

u(r, θ) =
2

β

∞
∑

m=1

( r

a

)mπ/β
∫ β

0

h(φ) sin(mπφ/β) sin(mπθ/β)dφ.

3.3 We search for a solution which separates in the Cartesian coordinates x and y, that is, we
search for a solution u of the form u(x, y) = X(x)Y (y). In this case the equation ∆u(x, y) = 0
can be rewritten as X ′′(x)Y (y) +X(x)Y ′′(y) = 0, and will be fullfiled if X and Y satisfy

X ′′(x) = λX(x) and Y ′′(x) = −λY (x)

for some constant λ.

For negative λ, the general solution for Y has the form

Y (y) = Ae
√
−λy +Be−

√
−λy.

But the only choice of constants A and B which can satisfy the first two boundary conditions
Y ′(0) = Y ′(π) = 0 is A = B = 0.

For non-negative λ, the general solutions for Y has the form

Y (y) = Aei
√
λy +Be−i

√
λy,

when λ > 0 or Y (y) = A+By in the case λ = 0. The boundary conditions Y ′(0) = Y ′(π) = 0
require A = B and λ = n2 for n = 1, 2, . . . and B = 0 when λ = 0. Thus for each non-negative
integer n,

Yn(y) = An cos(ny)

solves Y ′′
n (x) = −λnYn(x) with λn = n2.

Functions Xn which solve X ′′
n(x) = λnXn(x) and the boundary condition Xn(0) = 0 are

Xn(x) = sinh(nx) for positive n and X0(x) = x.

Since the Laplacian is a linear operator and the first three boundary conditions are homo-
geneous, we can take linear combinations of Xn(x)Yn(y) to constructed harmonic functions
which satisfies the first three boundary conditions:

u(x, y) = A0x+

∞
∑

n=1

An sinh(nx) cos(ny).

1It is of course interesting to think about what would happen if we do not impose such continuity, but makes the

solution more involved.



In order to choose An so that the last boundary condition is satisfied, we write

cos2(y) =
cos(2y) + 1

2

and so we require

cos(2y) + 1

2
= cos2(y) = u(π, y) = A0π +

∞
∑

n=1

An sinh(nπ) cos(ny).

This can be achieved by choosing A0 = 1/(2π), A2 = 1/(2 sinh(2π)) and all the other An equal
to zero. Thus, our sought-after function is

u(x, y) =
x

2π
+

sinh(2x) cos(2y)

2 sinh(2π)
.



Partial Differential Equations (TATA27)
Spring Semester 2019

Homework 4

Preparation for the next seminar

In preparation for Seminar 5 read through Sections 5.4.1, 5.4.2 and 5.4.4, and attempt the following
problem.

4.1 Green’s second identity says that for two functions u, v ∈ C2(Ω)

∫

Ω

u(x)∆v(x)− v(x)∆u(x)dx =

∫

∂Ω

u(x)
∂v

∂n
(x)− v(x)

∂u

∂n
(x)dσ(x). (5.10)

Use Green’s first identity (5.8) to prove (5.10).

Group work

You should work on the following problem after Seminar 5, and then we will discuss possible solutions
together in Seminar 6.

4.2 Let Ω be an open set with C1 boundary, and let f : Ω → R and h : ∂Ω → R. Use Green’s first
identity (5.8) to prove the uniqueness of solutions u ∈ C2(Ω) to the following boundary value
problems.

(a)
{

∆u = f in Ω, and
u = h on ∂Ω

(b)
{

∆u = f in Ω, and
∂u

∂n
+ au = h on ∂Ω

where ∂u/∂n := n · ∇u, n is the outward unit normal to ∂Ω and a > 0 is a constant.

Review exercises

Heres an additional exercise for you to try.

4.3 Consider a solution u ∈ C2(Ω) to the boundary value problem

{

∆u = f in Ω, and
∂u

∂n
= h on ∂Ω

Observe that for any c ∈ R u+ c is also a solution. Could there be any more C2(Ω) solutions?



Partial Differential Equations (TATA27)
Spring Semester 2019
Solutions to Homework 4

4.1 For two functions u, v ∈ C2(Ω), Green’s first identity (5.8) says

∫

∂Ω

v(x)
∂u

∂n
(x)dσ(x) =

∫

Ω

(∇v(x) · ∇u(x) + v(x)∆u(x))dx.

Reversing the roles of u and v, we also have

∫

∂Ω

u(x)
∂v

∂n
(x)dσ(x) =

∫

Ω

(∇u(x) · ∇v(x) + u(x)∆v(x))dx.

Subtracting the first equality from the second, we obtain

∫

Ω

u(x)∆v(x)− v(x)∆u(x)dx =

∫

∂Ω

u(x)
∂v

∂n
(x)− v(x)

∂u

∂n
(x)dσ(x).

4.2 Let Ω be an open set with C1 boundary, and let f : Ω → R and g : ∂Ω → R. Suppose we had
two solutions u ∈ C2(Ω) to the following boundary value problems.

(a) Suppose we had two solutions u1, u2 ∈ C2(Ω) to the boundary value problem

{

∆u = f in Ω, and
u = h on ∂Ω.

Then v = u1 − u2 solves
{

∆v = 0 in Ω, and
v = 0 on ∂Ω.

Therefore, using (5.8),

∫

Ω

|∇v(x)|2dx =

∫

Ω

∇v(x) · ∇v(x)dx = −

∫

Ω

v(x)∆v(x)dx = 0

which implies ∇v = 0, so v must be a constant. However, since v is zero on ∂Ω, it must
be that v = 0. Therefore u1 = u2.

(b) Suppose we had two solutions u1, u2 ∈ C2(Ω) to the boundary value problem

{

∆u = f in Ω, and
∂u

∂n
+ au = h on ∂Ω

Then v = u1 − u2 solves
{

∆v = 0 in Ω, and
∂v

∂n
+ av = 0 on ∂Ω

Therefore, using (5.8),

0 ≤

∫

Ω

|∇v(x)|2dx =

∫

Ω

∇v(x) · ∇v(x)dx = −

∫

Ω

v(x)∆v(x)dx+

∫

∂Ω

v(x)
∂v

∂n
(x)dσ(x)

=

∫

∂Ω

v(x)
∂v

∂n
(x)dσ(x)

= −a

∫

∂Ω

|v(x)|2dσ(x) ≤ 0

which implies ∇v = 0, so v must be a constant. This means ∂v

∂n
= 0 on ∂Ω and so

the boundary condition then tells us that av = 0, which implies v = 0, since a > 0.
Alternatively, we also see from the above calculation that

∫

∂Ω

|v(x)|2dσ(x) = 0,

so if v is a constant it must be zero.

In any case, we can thus conclude that u1 = u2.



4.3 Suppose we had two solutions u1, u2 ∈ C2(Ω) to the boundary value problem

{

∆u = f in Ω, and
∂u

∂n
= h on ∂Ω

Then v = u1 − u2 solves
{

∆v = 0 in Ω, and
∂v

∂n
= 0 on ∂Ω

Therefore, using (5.8),

∫

Ω

|∇v(x)|2dx =

∫

Ω

∇v(x) · ∇v(x)dx = −

∫

Ω

v(x)∆v(x)dx+

∫

∂Ω

v(x)
∂v

∂n
(x)dσ(x)

=

∫

∂Ω

v(x)
∂v

∂n
(x)dσ(x) = 0

which implies ∇v = 0, so v must be a constant. This means u1 = u2 + c for some constant
c ∈ R, so, no, there cannot be any more C2(Ω) solutions.



Partial Differential Equations (TATA27)
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Homework 5

Preparation for the next seminar

I didn’t go over all the material I planned to in the last seminar, so this weeks homework is a bit
shorter than normal. First take a quick second look at Sections 5.4.2 and 5.4.4 from last time. Then
read carefully through Section 5.4.3 (which was not part of last weeks homework), and attempt the
following problem.

5.1 Let Ω be an open set with C1 boundary. For λ ≥ 0, define the energy of each continuously
differentiable v : Ω → R to be

Eλ[v] =
1

2

∫

Ω

(|∇v(x)|2 + λ|v(x)|2)dx.

Show that a function u ∈ C2(Ω) which satisfies ∆u− λu = 0 in Ω is such that

Eλ[u] ≤ Eλ[v]

for all v ∈ C1(Ω) such that v(x) = u(x) for all x ∈ ∂Ω.

Observe that the energy Eλ[v] makes sense for functions in C1(Ω), but (assuming a solution
to the corresponding boundary value problem exists) a minimiser can sometimes be found in
a better class. For example, if λ = 0, Lemma 5.5 tells us any solution u is smooth in Ω.

Group work

You should work on the following problem after Seminar 6, and then we will discuss possible solutions
together in Seminar 7.

5.2 Let Ω be an open set with C1 boundary and h : ∂Ω → R a C1 function. Define the energy of
each continuously differentiable v : Ω → R to be

Eh[v] =
1

2

∫

Ω

|∇v(x)|2dx−

∫

∂Ω

h(x)v(x)dσ(x).

Show that a function u ∈ C2(Ω) which satisfies the boundary value problem

{

∆u = 0 in Ω, and
∂u

∂n
:= n · ∇u = h on ∂Ω

is such that
Eh[u] ≤ Eh[v]

for all v ∈ C1(Ω). Here n is the outward unit normal to ∂Ω.

Here, in contrast to question 5.1, the boundary condition ∂u/∂n = h is incorporated into the
energy and we see that a solution u is a minimum of Eh over all v ∈ C1(Ω) regardless of how
v behaves at the boundary.
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5.1 Suppose u ∈ C2(Ω) satisfies ∆u− λu = 0 in Ω and v ∈ C1(Ω) is such that v(x) = u(x) for all
x ∈ ∂Ω. Then, setting w = v − u and using Green’s first identity (5.8), we see that

Eλ[v] =
1

2

∫

Ω

(|∇v(x)|2 + λ|v(x)|2)dx

=
1

2

∫

Ω

(|∇w(x) +∇u(x)|2 + λ|w(x) + u(x)|2)dx

=
1

2

∫

Ω

(|∇w(x)|2 + λ|w(x)|2)dx+ Eλ[u] +

∫

Ω

(∇w(x) · ∇u(x) + λw(x)u(x))dx

=
1

2

∫

Ω

(|∇w(x)|2 + λ|w(x)|2)dx+ Eλ[u] +

∫

Ω

w(x)(−∆u(x) + λu(x))dx

=
1

2

∫

Ω

(|∇w(x)|2 + λ|w(x)|2)dx+ Eλ[u]

≥ Eλ[u].

5.2 Suppose u ∈ C2(Ω) satisfies the boundary value problem

{

∆u = 0 in Ω, and
∂u

∂n
:= n · ∇u = h on ∂Ω

For v ∈ C1(Ω) set w = v − u. Then, using Green’s first identity (5.8),

Eh[v] =
1

2

∫

Ω

|∇v(x)|2dx−

∫

∂Ω

h(x)v(x)dσ(x)

=
1

2

∫

Ω

|∇w(x) +∇u(x)|2dx−

∫

∂Ω

h(x)(w(x) + u(x))dσ(x)

=
1

2

∫

Ω

|∇w(x)|2dx+ Eh[u] +

∫

Ω

∇w(x) · ∇u(x)dx−

∫

∂Ω

h(x)w(x)dσ(x)

=
1

2

∫

Ω

|∇w(x)|2dx+ Eh[u]−

∫

Ω

w(x)∆u(x)dx+

∫

∂Ω

(

∂u

∂n
(x)− h(x)

)

w(x)dσ(x)

=
1

2

∫

Ω

|∇w(x)|2dx+ Eh[u]

≥ Eh[u].
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Homework 6

Review of previous seminar

6.1 Consider the function Φ: Rn \ {0} → R defined by

Φ(x) =

{

− 1
2α(2) ln |x| if n = 2,

1
n(n−2)α(n)

1
|x|n−2 if n > 2,

where α(n) is the volume of the unit ball in Rn. (So, in particular, α(2) = π and α(3) = 4π/3.)
The aim of this exercise is to prove some properties of Φ stated in class and fill in the remaining
gaps in the proof of Lemma 5.9.

(a) Prove that Φ is harmonic on Rn \ {0}.

(b) Consider the domain Br(0) = {y ∈ Rn | |y| < r}. Then the outward unit normal at
x ∈ ∂Br(0) is n(x) = x/|x|. Prove that

∂Φ

∂n
(x) =

−1

nα(n)

1

|x|n−1

for each n = 1, 2, . . . .

6.2 Prove the following lemma, which is a generalisation of Lemma 5.9 that does not assume that
u is harmonic.

Lemma. Let Ω be an open bounded set with C1 boundary and suppose that u ∈ C2(Ω) is such
that ∆u = f for some f ∈ C(Ω). Then

u(x) =

∫

∂Ω

{

Φ(y − x)

(

∂u

∂n

)

(y)−

(

∂Φ

∂n

)

(y − x)u(y)

}

dσ(y)−

∫

Ω

f(y)Φ(y − x)dy.

for each x ∈ Ω.

[Hint: Follow the proof of Lemma 5.9.]

Preparation for the next seminar

In preparation for seminar 7, read through sections 5.4.5 and 5.4.6.

Group work

Try this exercise after seminar 7. Please try to discuss your solution with others taking the course.

6.3 Use the lemma from question 6.2 to prove the following generalisation of Theorem 5.11.

Theorem. Let Ω ⊂ Rn be an open bounded set with C2 boundary, and suppose h ∈ C2(∂Ω)
and f ∈ C(Ω). If G is a Green’s function for the Laplacian in Ω then the solution of the

boundary value problem
{

∆u = f in Ω, and
u = h on ∂Ω,

(∗)

is given by

u(x) = −

∫

∂Ω

(

∂G(x, ·)

∂n
(y)

)

h(y)dσ(y)−

∫

Ω

f(y)G(x,y)dy.

where (∂G(x, ·)/∂n)(y) := n(y) · ∇yG(x,y) is the normal derivative of y 7→ G(x,y).

We proved the uniqueness of solutions to (∗) in Section 5.2 of our notes, so when we can find
a Green’s function we have both the existence and uniqueness of solutions to (∗).



Extra problem

The following exercise is quite hard, so can be considered a bonus exercise to do it you have some
spare time, but it is nevertheless a excellent way to check you have mastered the material we are
studying.

6.4 The aim of this question is to prove Theorem 5.12. Let Ω be an open bounded set with C2

boundary.

(a) In this part of the question we will prove that the Green’s function for the Laplacian in
Ω is unique. Suppose we have two Green’s functions G1 and G2 for the Laplacian in Ω.

i. For each fixed x ∈ Ω, prove that y 7→ G1(x,y)−G2(x,y) has a continuous extension
which belongs to C2(Ω) and is harmonic in Ω.

ii. By considering a boundary value problem that y 7→ G1(x,y)−G2(x,y) solves, prove
that G1 = G2.

(b) We now wish to prove the Green’s function is symmetric, that is G(x,y) = G(y,x) for
all x,y ∈ Ω.

i. Fix x,y ∈ Ω with x 6= y and consider the functions z 7→ u(z) := G(x, z) and
z 7→ v(z) := G(y, z). Apply Green’s second identity (5.10) to u and v in the domain
Ωr := Ω \ (Br(x) ∪Br(y)) for r > 0 so small that (Br(x) ∪Br(y)) ⊂ Ω and Br(x) ∩
Br(y) = ∅ to obtain that

0 =

∫

∂Br(x)

G(x, z)
∂G(y, ·)

∂n
(z)−G(y, z)

∂G(x, ·)

∂n
(z)dσ(z)

+

∫

∂Br(y)

G(x, z)
∂G(y, ·)

∂n
(z)−G(y, z)

∂G(x, ·)

∂n
(z)dσ(z).

(†)

ii. Using the definition of the Green’s function, prove that

∫

∂Br(x)

(G(x, z)− Φ(z− x))
∂G(y, ·)

∂n
(z)dσ(z) → 0

and
∫

∂Br(x)

G(y, z)

(

∂G(x, ·)

∂n
(z)−

∂Φ

∂n
(z− x)

)

dσ(z) → 0

as r → 0.

iii. Using the same ideas as in the proof of Lemma 5.9 prove that

∫

∂Br(x)

Φ(z− x)
∂G(y, ·)

∂n
(z)dσ(z) = 0

and
∫

∂Br(x)

G(y, z)
∂Φ

∂n
(z− x)dσ(z) = −G(y,x).

iv. Combine the results above to show that
∫

∂Br(x)

G(x, z)
∂G(y, ·)

∂n
(z)−G(y, z)

∂G(x, ·)

∂n
(z)dσ(z) → G(y,x). (‡)

as r → 0. (Observe the left-hand side of (‡) is the first term on the right-hand side
of (†).)

v. Swap the roles of x and y in (‡) to conclude a similar statement for the second
term on the right-hand side of (†). Combine your answer with (†) and (‡) to prove
G(x,y) = G(y,x).
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6.1 Consider the function Φ: Rn \ {0} → R defined by

Φ(x) =

{

− 1
2α(2) ln |x| if n = 2,

1
n(n−2)α(n)

1
|x|n−2 if n > 2,

where α(n) is the volume of the unit ball in Rn. (So, in particular, α(2) = π and α(3) = 4π/3.)

(a) For x = (x1, x2, . . . , xn) 6= 0 we have

∂Φ

∂xj
(x) =

−xj

nα(n)

(

n
∑

k=1

x2
k

)−n/2

and

∂2Φ

∂x2
j

(x) =
−1

nα(n)

(

n
∑

k=1

x2
k

)−n/2

+
x2
j

α(n)

(

n
∑

k=1

x2
k

)−(n+2)/2

.

Therefore

∆Φ(x) =

n
∑

j=1

∂2Φ

∂x2
j

(x) =
−1

α(n)

(

n
∑

k=1

x2
k

)−n/2

+

∑n
j=1 x

2
j

α(n)

(

n
∑

k=1

x2
k

)−(n+2)/2

= 0.

(b) From (a) we see that

∇Φ(x) =
−1

nα(n)

x

|x|n

so
∂Φ

∂n
(x) = n · ∇Φ(x) =

x

|x|
·

−1

nα(n)

x

|x|n
=

−1

nα(n)

1

|x|n−1
.

6.2 We want to prove the following.

Lemma. Let Ω be an open bounded set with C1 boundary and suppose that u ∈ C2(Ω) is such
that ∆u = f for some f ∈ C(Ω). Then

u(x) =

∫

∂Ω

{

Φ(y − x)

(

∂u

∂n

)

(y)−

(

∂Φ

∂n

)

(y − x)u(y)

}

dσ(y)−

∫

Ω

f(y)Φ(y − x)dy. (1)

for each x ∈ Ω.

Proof. We wish to apply Green’s second identity (5.10) to the functions Φ(· − x) and u in Ω.
However we cannot as Φ(·−x) is not defined at x. We instead apply (5.10) to Ωr := Ω\Br(x).
We obtain

∫

Ωr

f(y)Φ(y − x)dy =

∫

∂Ωr

{

Φ(y − x)

(

∂u

∂n

)

(y)−

(

∂Φ

∂n

)

(y − x)u(y)

}

dσ(y).

However, ∂Ωr has two components, ∂Ω and ∂Br(x). The integral over ∂Ω appears on the
right-hand side of (1), so we wish to calculate the integral over ∂Br(x). From (5.11) it is clear
that Φ is a radial function—that is, we can write Φ(x) = φ(|x|) for

φ(r) =

{

− 1
2α(2) ln |r| if n = 2,

1
n(n−2)α(n)

1
rn−2 if n > 2.

Remembering that the outward normal n to Ωr is actually an inward normal to Br(x) on
∂Br(x), we have from (5.12) that

∂Φ

∂n
(y − x) =

1

nα(n)

1

rn−1
.



Thus
∫

∂Br(x)

{

Φ(y − x)

(

∂u

∂n

)

(y)−

(

∂Φ

∂n

)

(y − x)u(y)

}

dσ(y)

=

∫

∂Br(x)

φ(r)

(

∂u

∂n

)

(y)dσ(y)−

∫

∂Br(x)

1

nα(n)

1

rn−1
u(y)dσ(y)

=φ(r)

(

∫

∂Br(x)

(

∂u

∂n

)

(y)dσ(y)

)

−

(

1

nα(n)rn−1

∫

∂Br(x)

u(y)dσ(y)

)

.

Applying the divergence theorem (with −n being the outward unit normal), we see that

(

∫

∂Br(x)

(

∂u

∂n

)

(y)dσ(y)

)

= −

∫

Br(x)

∆u(y)dy = −

∫

Br(x)

f(y)dy.

Since f ∈ C(Ω) we know it is bounded, say by M , so

φ(r)

(

∫

∂Br(x)

(

∂u

∂n

)

(y)dσ(y)

)

= −φ(r)

∫

Br(x)

f(y)dy ≤ φ(r)α(n)rnM → 0

as r → 0.

Since nα(n)rn−1 is the surface area of ∂Br(x) and u is continuous,

lim
r→0

(

1

nα(n)rn−1

∫

∂Br(x)

u(y)dσ(y)

)

= u(x).

Putting these facts together, and taking the limit r → 0 we see the lemma is proved. [It’s
worth observing that since f is bounded the integral

∫

Ωr

f(y)Φ(y−x)dy converges absolutely

to
∫

Ω
f(y)Φ(y − x)dy as r → 0, since the singularity of Φ is absolutely integrable.]

6.3 We wish to prove the following theorem.

Theorem. Let Ω ⊂ Rn be an open bounded set with C2 boundary, and suppose h ∈ C2(∂Ω)
and f ∈ C(Ω). If G is a Green’s function for the Laplacian in Ω then the solution of the

boundary value problem
{

∆u = f in Ω, and
u = h on ∂Ω,

is given by

u(x) = −

∫

∂Ω

(

∂G(x, ·)

∂n
(y)

)

h(y)dσ(y)−

∫

Ω

f(y)G(x,y)dy. (2)

where (∂G(x, ·)/∂n)(y) := n(y) · ∇yG(x,y) is the normal derivative of y 7→ G(x,y).

Proof. Green’s second identity (5.10) applied to the functions u and y 7→ G(x,y)− Φ(y − x)
tells us

−

∫

Ω

(G(x, z)−Φ(z−x))f(z)dz =

∫

∂Ω

u(z)
∂(G(x, ·)− Φ(· − x))

∂n
(z)−(G(x, z)−Φ(z−x))

∂u

∂n
(z)dσ(z).

and from (1) we have

u(x) =

∫

∂Ω

{

Φ(z− x)

(

∂u

∂n

)

(z)−

(

∂Φ

∂n

)

(z− x)u(z)

}

dσ(z)−

∫

Ω

f(z)Φ(z− x)dz.

Taking the difference of the two equalities and using the fact that G(x, z) = 0 for z ∈ ∂Ω gives
(2).

6.4 Let Ω be an open bounded set with C2 boundary.



(a) i. Fix x ∈ Ω. Suppose we have two Green’s functions G1 and G2 for the Laplacian in
Ω. By Definition 5.10 we know that both

y 7→ G1(x,y)− Φ(y − x) and y 7→ G2(x,y)− Φ(y − x)

have continuous extensions which belongs to C2(Ω) and are harmonic in Ω. Here
Φ is the fundamental solution definted by (5.11). Thus the difference of these two
functions

y 7→ (G1(x,y)− Φ(y − x))− (G2(x,y)− Φ(y − x)) = G1(x,y)−G2(x,y)

also has a continuous extension which belongs to C2(Ω) and is harmonic in Ω.

ii. By Definition 5.10 we know that G1(x,y) = G2(x,y) = 0 for y ∈ ∂Ω. Thus y 7→
G1(x,y) −G2(x,y) solves (5.2) with f = 0 and g = 0. Since we know from Section
5.2, there is at most one continuous solution to (5.2) and the zero function is also a
solution, we can conclude that G1(x,y) − G2(x,y) = 0. Thus there is at most one
Green’s function for a given Ω.

(b) i. Fix x,y ∈ Ω with x 6= y and consider the functions z 7→ u(z) := G(x, z) and
z 7→ v(z) := G(y, z). We apply Green’s second identity (5.10) to u and v in the
domain Ωr := Ω \ (Br(x) ∪Br(y)) for r > 0 so small that (Br(x) ∪Br(y)) ⊂ Ω and
Br(x) ∩Br(y) = ∅. We obtain

0 =

∫

∂Ωr

G(x, z)
∂G(y, ·)

∂n
(z)−G(y, z)

∂G(x, ·)

∂n
(z)dσ(z)

=

∫

∂Ω

G(x, z)
∂G(y, ·)

∂n
(z)−G(y, z)

∂G(x, ·)

∂n
(z)dσ(z)

+

∫

∂Br(x)c
G(x, z)

∂G(y, ·)

∂n
(z)−G(y, z)

∂G(x, ·)

∂n
(z)dσ(z)

+

∫

∂Br(y)c
G(x, z)

∂G(y, ·)

∂n
(z)−G(y, z)

∂G(x, ·)

∂n
(z)dσ(z)

= −

∫

∂Br(x)

G(x, z)
∂G(y, ·)

∂n
(z)−G(y, z)

∂G(x, ·)

∂n
(z)dσ(z)

−

∫

∂Br(y)

G(x, z)
∂G(y, ·)

∂n
(z)−G(y, z)

∂G(x, ·)

∂n
(z)dσ(z).

since G(x, z) = G(y, z) = 0 for z ∈ ∂Ω.

ii. Since we know that z 7→ G(x, z) − Φ(z − x) has a C2(Ω) extension, we know that
z 7→ G(x, z)−Φ(z−x) is bounded near x. We also know that ∂G(y, ·)/∂n is bounded
near x, since x 6= y. This means that the integrand in

∫

∂Br(x)

(G(x, z)− Φ(z− x))
∂G(y, ·)

∂n
(z)dσ(z)

is bounded. This fact together with the fact that the measure of ∂Br(x) tends to
zero as r → 0, means the integral above tends to zero as r → 0. By the same logic

∫

∂Br(x)

G(y, z)
∂(G(x, ·)− Φ(· − x))

∂n
(z)dσ(z) → 0

as r → 0.

iii. Since Φ is a radial function, we can write Φ(z − x) = φ(r) when z ∈ ∂Br(x). This
fact and the divergence theorem give

∫

∂Br(x)

Φ(z− x)
∂G(y, ·)

∂n
(z)dσ(z)

= φ(r)

∫

∂Br(x)

∂G(y, ·)

∂n
(z)dσ(z)

= φ(r)

∫

∂Br(x)

∆(G(y, ·))(z)dσ(z) = 0.



By (5.12) (homework question 6.1) we can compute

∫

∂Br(x)

G(y, z)
∂Φ

∂n
(z− x)dσ(z)

=

∫

∂Br(x)

G(y, z)
−1

nα(n)

1

|z− x|n−1
dσ(z)

=
−1

nα(n)

1

rn−1

∫

∂Br(x)

G(y, z)dσ(z)

= −G(y,x)

by the mean value property for harmonic functions (Theorem 5.6).

iv. We can compute

∫

∂Br(x)

G(x, z)
∂G(y, ·)

∂n
(z)−G(y, z)

∂G(x, ·)

∂n
(z)dσ(z)

=

∫

∂Br(x)

(G(x, z)− Φ(z− x))
∂G(y, ·)

∂n
(z)dσ(z) +

∫

∂Br(x)

Φ(z− x)
∂G(y, ·)

∂n
(z)dσ(z)

−

∫

∂Br(x)

G(y, z)

(

∂G(x, ·)

∂n
(z)−

∂Φ

∂n
(z− x)

)

dσ(z)−

∫

∂Br(x)

G(y, z)
∂Φ

∂n
(z− x)dσ(z)

→ 0 + 0− 0 +G(y,x)

as r → 0 by our work above.

v. The statement we obtain is
∫

∂Br(y)

G(y, z)
∂G(x, ·)

∂n
(z)−G(x, z)

∂G(y, ·)

∂n
(z)dσ(z) → G(x,y).

which is the negative of the second term on the right-hand side of (†). Thus, in the
limit r → 0, (†) becomes 0 = G(y,x)−G(x,y).
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Homework 7

Review of previous seminar

In seminars 8 and 9 we covered section 6.1, 6.2 and 6.3. After checking through the notes to see
that you are somewhat familiar with the material, try the following exercises.

7.1 Solve (6.1) with:

(a) g(x) = ex and h(x) = sinx;

(b) g(x) = log(1 + x2) and h(x) = 4 + x.

7.2 Suppose both g and h are odd functions and u is the solution of (6.1). Show that u(·, t) is also
odd for each t > 0.

7.3 By factorising the operator as we did in Section 6.1, solve the following initial value problems.

(a)
{

∂ttu(x, t)− 3∂xtu(x, t)− 4∂xxu(x, t) = 0 for x ∈ R and t > 0,
u(x, 0) = x2 and ∂tu(x, 0) = ex for x ∈ R.

(b)
{

∂ttu(x, t) + ∂xtu(x, t)− 20∂xxu(x, t) = 0 for x ∈ R and t > 0,
u(x, 0) = x2 and ∂tu(x, 0) = ex for x ∈ R.

7.4 For a smooth solution u of the wave equation ∂ttu(x, t)− ∂xxu(x, t) = 0 (with ρ = T = c = 1,
x ∈ R and t > 0), the energy density is defined to be

e(x, t) =
1

2
((∂tu(x, t))

2 + (∂xu(x, t))
2)

and the momentum density
p(x, t) = ∂tu(x, t)∂xu(x, t).

(a) Show that ∂e/∂t = ∂p/∂x and ∂p/∂t = ∂e/∂x.

(b) Show that e and p also satsify the wave equation.

7.5 Suppose that u is a solution of the wave equation ∂ttu(x, t)− c2∂xxu(x, t) = 0 (x ∈ R, t > 0).

(a) Show that for a fixed y ∈ R, v defined by v(x, t) = u(x − y, t) is also a solution of the
wave equation.

(b) Show that for a fixed a ∈ R, w defined by w(x, t) = u(ax, at) is also a solution of the
wave equation.

Group work

Now try this exercise. Please try to discuss your solution with others taking the course.

7.6 Consider a solution u to the damped string equation

∂ttu(x, t)− c2∂xxu(x, t) + r∂tu(x, t) = 0 (x ∈ R, t > 0)

for c2 = T/ρ and T, ρ, r > 0. Define the energy by the same formula we used in class:

E[u](t) =
1

2

∫

∞

−∞

ρ(∂tu(x, t))
2 + T (∂xu(x, t))

2dx.

Assuming u and its derivatives are sufficiently smooth and decay as x → ±∞, show that the
energy E[u] is a non-increasing function.
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7.1 Recall that the solution to (6.1) is given by (6.3):

u(x, t) =
1

2
(g(x+ ct) + g(x− ct)) +

1

2c

∫ x+ct

x−ct

h(y)dy.

(a) If we take g(x) = ex and h(x) = sinx then

u(x, t) =
1

2

(

ex+ct + ex−ct
)

−
1

2c
(cos(x+ ct)− cos(x− ct)) .

(b) If we take g(x) = log(1 + x2) and h(x) = 4 + x then

u(x, t) =
1

2
(log(x+ ct) + log(x− ct)) +

4ct+ xct

c
.

7.2 Using (6.3), we have

u(−x, t) =
1

2
(g(−x+ ct) + g(−x− ct)) +

1

2c

∫

−x+ct

−x−ct

h(y)dy

But if g and h are odd functions then

u(−x, t) = −
1

2
(g(x− ct) + g(x+ ct))−

1

2c

∫

−x+ct

−x−ct

h(−y)dy

= −
1

2
(g(x+ ct) + g(x− ct)) +

1

2c

∫ x−ct

x+ct

h(z)dz

= −
1

2
(g(x+ ct) + g(x− ct))−

1

2c

∫ x+ct

x−ct

h(z)dz

= −u(x, t),

so u(·, t) is an odd function for each t.

7.3 (a) We can factorise the differential equation as (∂t + ∂x)(∂t − 4∂x)u(x, t) = 0 and so can
then view it as the system

{

(∂t + ∂x)v(x, t) = 0;
(∂t − 4∂x)u(x, t) = v(x, t).

Using the method of characteristics, we can see that the general solution to the first
equation is v(x, t) = f(x− t) where f is any differentiable function.

To solve the second equation we first solve the homogeneous equation associated to it.
Again, the method of characteristics shows the general solution to the homogeneous
equation (∂t − 4∂x)uh(x, t) = 0 is uh(x, t) = g(x + 4t) where g is any differentiable
function. It is easy to find a particular solution to the second equation by starting with
the anzats up(x, t) = V (x− t). Substituting this into the equation gives

−V ′(x− t)− 4V ′(x− t) = f(x− t),

so a particular solution is up(x, t) = V (x− t) where V (y) = −(1/5)
∫

f(y)dy. We add up

and uh together to obtain the general solution: u(x, t) = V (x− t) + g(x+ 4t).

Now we can make use of the initial conditions to choose g and V . We see that we require

{

u(x, 0) = V (x) + g(x) = x2;
∂tu(x, 0) = −V ′(x) + 4g′(x) = ex.

It is convenient to differentiate the first equation, so we obtain two conditions for V ′ and
g′:

{

V ′(x) + g′(x) = 2x;
−V ′(x) + 4g′(x) = ex.



This is easy to solve and tells us that V ′(x) = (8x− ex)/5 and g′(x) = (2x+ ex)/5. This
means that V (x, t) = (4x2 − ex)/5 + C1 and g(x) = (x2 + ex)/5 + C1 for some constants
C1 and C2, but the intial condition u(x, 0) = x2 tells us that C1 = −C2, so

u(x, t) =
4(x− t)2 − ex−t + (x+ 4t)2 + ex+4t

5

(b) We can factorise the differential equation as (∂t − 4∂x)(∂t + 5∂x)u(x, t) = 0 and so can
then view it as the system

{

(∂t − 4∂x)v(x, t) = 0;
(∂t + 5∂x)u(x, t) = v(x, t).

Using the method of characteristics just as before, we can see that the general solution
to the first equation is v(x, t) = f(x+ 4t) where f is any differentiable function.

To solve the second equation we first again solve the homogeneous equation associated
to it. The method of characteristics shows the general solution to the homogeneous
equation (∂t + 5∂x)uh(x, t) = 0 is uh(x, t) = g(x − 5t) where g is any differentiable
function. A particular solution to the second equation is found by starting with the
anzats up(x, t) = V (x+ 4t). Substituting this into the equation gives

4V ′(x+ 4t) + 5V ′(x+ 4t) = f(x+ 4t),

so a particular solution is up(x, t) = V (x+ 4t) where V (y) = (1/9)
∫

f(y)dy. We add up

and uh together to obtain the general solution: u(x, t) = V (x+ 4t) + g(x− 5t).

Now we can make use of the initial conditions to choose g and V . We see that we require

{

u(x, 0) = V (x) + g(x) = x2;
∂tu(x, 0) = 4V ′(x)− 5g′(x) = ex.

It is convenient to differentiate the first equation, so we obtain two conditions for V ′ and
g′:

{

V ′(x) + g′(x) = 2x;
4V ′(x)− 5g′(x) = ex.

This tells us that g′(x) = (8x − ex)/9 and V ′(x) = (10x + ex)/9. This means that
g(x, t) = (4x2 − ex)/9+C1 and V (x) = (5x2 + ex)/9+C2 for some constants C1 and C2,
but the intial condition u(x, 0) = x2 tells us that C1 = −C2, so

u(x, t) =
4(x− 5t)2 − ex−5t + 5(x+ 4t)2 + ex+4t

9

7.4 For a solution u of the wave equation ∂ttu−∂xxu = 0 (with ρ = T = c = 1), the energy density
is defined to be

e(x, t) =
1

2
((∂tu(x, t))

2 + (∂xu(x, t))
2)

and the momentum density
p(x, t) = ∂tu(x, t)∂xu(x, t).

(a) We compute

∂e

∂t
(x, t) = ∂tu(x, t)∂ttu(x, t) + ∂xu(x, t)∂xtu(x, t)

∂e

∂x
(x, t) = ∂tu(x, t)∂txu(x, t) + ∂xu(x, t)∂xxu(x, t)

∂p

∂t
(x, t) = ∂ttu(x, t)∂xu(x, t) + ∂tu(x, t)∂xtu(x, t)

∂p

∂x
(x, t) = ∂txu(x, t)∂xu(x, t) + ∂tu(x, t)∂xxu(x, t)

So clearly if ∂ttu− ∂xxu = 0 then ∂e/∂t = ∂p/∂x and ∂p/∂t = ∂e/∂x.



(b) Furthermore, using the above results, if ∂ttu− ∂xxu = 0 we have

∂2e

∂t2
(x, t) =

∂2p

∂t∂x
(x, t) =

∂2p

∂x∂t
(x, t) =

∂2e

∂x2
(x, t) and

∂2p

∂t2
(x, t) =

∂2e

∂t∂x
(x, t) =

∂2e

∂x∂t
(x, t) =

∂2p

∂x2
(x, t).

7.5 Suppose that u is a solution of the wave equation, so ∂2
2u− c2∂2

1u = 0.

(a) For a fixed y ∈ R, ∂xv(x, t) = ∂1u(x − y, t), ∂xxv(x, t) = ∂2
1u(x − y, t), ∂tv(x, t) =

∂2u(x− y, t) and ∂ttv(x, t) = ∂2
2u(x− y, t), Thus

∂ttv(x, t)− c2∂xxv(x, t) = ∂2
2u(x− y, t)− c2∂2

1u(x− y, t) = (∂2
2u− c2∂2

1u)(x− y, t) = 0.

(b) For a fixed a ∈ R, ∂xw(x, t) = a∂1u(ax, at), ∂xxw(x, t) = a2∂2
1u(ax, at), ∂tw(x, t) =

a∂2u(ax, at) and ∂ttw(x, t) = a2∂2
2u(ax, at), Thus

∂ttw(x, t)−c2∂xxw(x, t) = a2∂2
2u(ax, at)−c2a2∂2

1u(ax, at) = a2(∂2
2u−c2∂2

1u)(ax, at) = 0.

7.6 Consider a solution u to the damped string equation

∂ttu(x, t)− c2∂xxu(x, t) + r∂tu(x, t) = 0

for c2 = T/ρ and T, ρ, r > 0. Define the energy by the same formula we used in class:

E[u](t) =
1

2

∫

∞

−∞

ρ(∂tu(x, t))
2 + T (∂xu(x, t))

2dx.

We have

d

dt

(

1

2

∫

∞

−∞

ρ(∂tu(x, t))
2dx

)

=
1

2

∫

∞

−∞

ρ∂tu(x, t)∂ttu(x, t)dx

=
1

2

∫

∞

−∞

∂tu(x, t)(T∂xxu(x, t)− rρ∂tu(x, t))dx

= −
1

2

∫

∞

−∞

T∂txu(x, t)∂xu(x, t)dx−
1

2

∫

∞

−∞

rρ(∂tu(x, t))
2dx

= −
d

dt

(

1

2

∫

∞

−∞

T (∂xu(x, t))
2dx

)

−
1

2

∫

∞

−∞

rρ(∂tu(x, t))
2dx.

Therefore

E[u]′(t) =
d

dt

(

1

2

∫

∞

−∞

ρ(∂tu(x, t))
2 + T (∂xu(x, t))

2dx

)

= −
1

2

∫

∞

−∞

rρ(∂tu(x, t))
2dx ≤ 0,

hence the energy E[u] is a non-increasing function.
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Homework 8

Review of previous seminars

In seminars 10 and 11 we covered section 6.5. After checking through the notes to see that you are
familiar with the material, try the following exercises.

8.1 Use (6.14) to find a solution to the wave equation (6.10) in three dimensions with initial
conditions given by:

(a) φ(x, y, z) = 0 and ψ(x, y, z) = 1 for all (x, y, z) ∈ R3; and

(b) φ(x, y, z) = 0 and ψ(x, y, z) = y for all (x, y, z) ∈ R3.

8.2 Use (6.16) to find a solution to the wave equation (6.15) in two dimensions with initial condi-
tions given by φ(x, y) = 0 and ψ(x, y) = A for all (x, y) ∈ R2 and some constant A ∈ R.

8.3 Given a function u : R3 → R we can define a new function u : R3 → R via the formula

u(x) =
1

4πr2

∫

|y|=r

u(y)dσ(y)

where r = |x|. (The function u is said to be radial because u(x) depends only on |x|.) Prove
that ∆u = ∆u. [Hint: Here it is easier to compute ∆ using spherical polar coordinates.]

8.4 Show that formula (6.8) can be rewritten as

v(x, t) =
∂

∂t

(

1

2c

∫

ct+x

ct−x

godd(y)dy

)

+
1

2c

∫

ct+x

ct−x

hodd(y)dy

when 0 ≤ x ≤ ct.

Group work

8.5 A solution u : R3 × [0,∞) → R to the wave equation (6.10) in three dimensions is called
spherical if u(x, t) = u0(|x|, t) for some function u0 : R × [0,∞) → R (that is, if it is radial
in its spatial variables). This question investigates what form spherical solutions to the wave
equation must take.

(a) By arguing similarly to how we proved d’Alembert’s formula (6.3) show that an arbitrary
solution to the wave equation

∂2
t
v(r, t)− ∂2

r
v(r, t) = 0 for r ∈ R and t > 0

in one dimension has the form

v(r, t) = f(x− t) + g(x+ t)

for some functions f : R → R and g : R → R.

(b) By making use of (6.12), show that spherical solutions of the wave equation (6.10) have
the form

u(x, t) =
f(|x| − t) + g(|x|+ t)

|x|
. (∗)

(c) Comment on the smoothness of (∗) in relation to the smoothness of f and g. Is there
any difference between the one and three dimensional cases?



Partial Differential Equations (TATA27)
Spring Semester 2019

Solutions 8

8.1 We recall that in lectures we claimed

u(x, t) =
∂

∂t

(

1

4πt

∫

|y−x|=t

φ(y)dσ(y)

)

+
1

4πt

∫

|y−x|=t

ψ(y)dσ(y), (6.14)

is a solution to (6.10).

(a) We compute that if φ(x, y, z) = 0 and ψ(x, y, z) = 1 for all (x, y, z) ∈ R3, then according
to (6.14)

u(x, t) =
∂

∂t

(

1

4πt

∫

|y−x|=t

0 dσ(y)

)

+
1

4πt

∫

|y−x|=t

1 dσ(y)

= 0 +
4πt2

4πt
= t.

(b) Equally, we compute that if φ(x) = 0 and ψ(x) = y for all x = (x, y, z) ∈ R3, then
according to (6.14)

u(x, t) =
∂

∂t

(

1

4πt

∫

|y−x|=t

0 dσ(y)

)

+
1

4πt

∫

|y−x|=t

v dσ(y) = frac14πt

∫

|y−x|=t

v dσ(y)

where we write y = (u, v, w) ∈ R3. To simplify the integral above we observe that y 7→ v

is harmonic, so Theorem 5.6 gives that

1

4πt

∫

|y−x|=t

v dσ(y) = t

(

1

4πt2

∫

|y−x|=t

v dσ(y)

)

= ty,

so u(x, t) = ty for x = (x, y, z) ∈ R3.

8.2 The formula

u(x, y, t) =
∂

∂t

(

1

2π

∫

a2+b2≤t2

φ(a+ x, b+ y)√
t2 − a2 − b2

dadb

)

+
1

2π

∫

a2+b2≤t2

ψ(a+ x, b+ y)√
t2 − a2 − b2

dadb

(6.16)

with φ(x, y) = 0 and ψ(x, y) = A for all (x, y) ∈ R2 reads

u(x, y, t) =
1

2π

∫

a2+b2≤t2

A√
t2 − a2 − b2

dadb =
t2

2πt

∫

a2+b2≤1

A√
1− a2 − b2

dadb

=
1

2π

∫ 1

0

∫ 2π

0

A√
1− r2

rdθdr = t

∫ 1

0

Ar√
1− r2

dr = −At
√

1− r2
∣

∣

∣

1

0
= At

8.3 We apply the change of variables y = rz to obtain

u(x) =
1

4πr2

∫

|y|=r

u(y)dσ(y) =
1

4π

∫

|z|=1

u(rz)dσ(z)

where r = |x|. Therefore, recalling that the Laplacian in spherical coordinates is

∆ = ∆(r,θ,φ) =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
,

we see that

∆u(x) =
1

4π

∫

|z|=1

∆(r,θ,φ)u(rz)dσ(z) =
1

4π

∫

|z|=1

(

∂2

∂r2
+

2

r

∂

∂r

)

u(rz)dσ(z). (1)



Writing (s, ϕ, ϑ) as the spherical coordinates of z, we have

(

∂2

∂r2
+

2

r

∂

∂r

)

u(rz) =

(

∂2

∂r2
+

2

r

∂

∂r

)

u(rs, ϕ, ϑ) = s2
(

∂21u(rs, ϕ, ϑ) +
2

rs
∂1u(rs, ϕ, ϑ)

)

.

Since we are integrating on the unit sphere, s = 1, and so

1

4π

∫

|z|=1

(

∂2

∂r2
+

2

r

∂

∂r

)

u(rz)dσ(z)

=
1

4π

∫ 2π

0

∫ π

0

(

∂21u(rs, ϕ, ϑ) +
2

rs
∂1u(rs, ϕ, ϑ)

)

sinϑdϕdϑ

=
1

4π

∫ 2π

0

∫ π

0

(

∂2u(r, φ, θ)

∂r2
+

2

r

∂u(r, φ, θ)

∂r

)

sin θdφdθ

=
1

4πr2

∫

|y|=r

(

∂2

∂r2
+

2

r

∂

∂r

)

u(y)dσ(y).

(2)

Moreover

1

4πr2

∫

|y|=r

(

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

)

u(y)dσ(y)

=
1

4πr2

∫ 2π

0

∫ π

0

r2 sin θ

(

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

)

u(r, φ, θ) dφdθ

=
1

4πr2

∫ 2π

0

∫ π

0

(

∂

∂θ
sin θ

∂

∂θ
+

∂2

∂φ2

)

u(r, φ, θ) dφdθ = 0,

since u(r, φ, θ) is 2π-periodic in φ and sin 0 = sinπ = 0. Combining this with (1) and (2) we
find that ∆u = ∆u.

8.4 Since godd and hodd are odd, we can write (6.8) as

v(x, t) =
1

2
(godd(x+ ct) + godd(x− ct)) +

1

2c

∫ x+ct

x−ct

hodd(y)dy

=
1

2
(godd(ct+ x)− godd(ct− x)) +

1

2c

(
∫ ct−x

x−ct

hodd(y)dy +

∫ ct+x

ct−x

hodd(y)dy

)

=
∂

∂t

(

1

2c

∫ ct+x

ct−x

godd(y)dy

)

+
1

2c

∫ ct+x

ct−x

hodd(y)dy

when 0 ≤ x ≤ ct.

8.5 (a) We can rewrite the wave equation

∂2t v(r, t)− ∂2rv(r, t) = 0 for r ∈ R and t > 0 (3)

as the system
{

∂tu(x, t) + ∂xu(x, t) = 0
∂tv(x, t)− ∂xv(x, t) = u(x, t)

Via the method of characteristics, we see that a general solution to the first equation is
u(r, t) = h(r − t). We observe that v(r, t) = g(r − t) is a solution to the second equation
with u(r, t) = h(r − t) provided −2g′(r − t) = h(r − t). Since h was arbitrary, this says
nothing more that g is differentiable. To find a general solution to the second equation
we must add an arbitrary solution to the homogeneous equation ∂tv(x, t)− ∂xv(x, t) = 0,
which again via the method of characteristics can be seen to be v(r, t) = f(r − t). Thus
a general solution to (3) is

v(r, t) = f(r − t) + g(r + t) (4)

for arbitrary differentiable functions f : R → R and g : R → R.



(b) We can write a radial solution u as u(x, t) = u0(|x|, t) for some u0 : [0,∞)2 → R. Fur-
thermore u0(r, t) = u0(r, t) for all r, t > 0, where u0 is the spherical mean of u about the
origin. Therefore u0 = u0 satisfies (6.12) (with x = 0). By the same argument as in the
notes,

v(r, t) := ru0(r, t) (5)

satisfies the wave equation (6.13) and v(0, t) = 0. Therefore v has the form (4) for some
f and g. In order to ensure v(0, t) = 0 we choose f and g so that r 7→ v(r, t) is odd. One
way to do this is by choosing f and g so that f(−x) = −g(x) for all x ∈ R. By (5) we
have

u(x, t) = u0(|x|, t) =
f(|x| − t) + g(|x|+ t)

|x| . (∗)

(c) At first sight it appears that (∗) may develop a singularity at the origin, as we divide by
|x|. However the requirement that v(0, t) = 0 above has the potential to mitigates this
problem.

It is instructive to test a few sensible examples of f and g to see if it is possible to create
a singularity at the origin. Remember we must make sure r 7→ f(r− t) + g(r+ t) is odd!
You should find your attempts to create a singularity are always thwarted.

Try, for example, g(s) = sm for s ≥ 0 and m = 2, 3.

This is a hard problem to answer rigorously, but is a nice exercise to play with to inves-
tigate what the truth might be.

Section 2.4.1 of Evans Partial Differetial Equations makes concrete statements about the
regularity of solutions to the wave equation. See Theorems 1 and 2 there. They state
that if the initial data is sufficiently smooth, then the u will be correspondingly smooth.
In broad terms there is no difference between one and three dimensions.
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Homework 9

Review of previous seminars

In Seminar 12 we sudied Sections 7.1 and 7.2. Questions 9.1 and 9.2 are directly related to these
sections. Even question 9.5 is good preparation for the next seminar, although all the remaining
questions are most closely connected to Section 7.3.

9.1 Consider the initial boundary value problem







∂ttv(x, t)− ∂xxv(x, t) = 0 for x ∈ (0, ℓ) and t ∈ (0, T ],
v(x, 0) = g(x) and ∂tv(x, 0) = h(x) for x ∈ [0, ℓ], and
v(0, t) = 0 and v(ℓ, t) = 0 for t ∈ (0, T ].

(1)

If v solved the heat equation instead of the wave equation, then v would satify a weak maximum
principle:

The maximum value of v over the set [0, ℓ] × [0, T ] is attained on the set D =
([0, ℓ]× {0}) ∪ ({0} × [0, T )) ∪ ({ℓ} × [0, T )).

(a) Draw a picture of the set D.

(b) Find a specific choice of functions g and h, and T > 0, together with a solution v to (1),
which prove that such a weak maximum principle for the wave equation is false.

9.2 (a) Write down Theorem 7.1 with the words ‘maximum value’ replaced by ‘minimum value’.
Now prove this reformulation. You may use Theorem 7.1 in its original form to help you
do this.

(b) Prove Theorem 7.3 using only Theorem 7.1 and 9.2(a).

(c) Use Theorem 7.1 and 9.2(a) to prove the following stability result: If u1 and u2 both
solve (7.1) with the initial conditions φ1 and φ2 and boundary conditions g1 and g2,
respectively, then

max
x∈Ω,t∈[0,T ]

|u2(x, t)− u1(x, t)| ≤ max
x∈Ω

|φ2(x)− φ1(x)|+ sup
x∈∂Ω,t∈(0,T ]

|g2(x, t)− g1(x, t)|.

9.3 Recall that the heat kernel S : R× (0,∞) → R is defined by the formula

S(x, t) =
1

2
√
πt

e−x2/4t.

If I =
∫

∞

−∞
S(x, t)dx we can write

I2 =

(
∫

∞

−∞

S(x, t)dx

)(
∫

∞

−∞

S(y, t)dy

)

=

∫

∞

−∞

∫

∞

−∞

S(x, t)S(y, t)dxdy

Evaluate the repeated integral on the right by changing to polar coordinates. What is the
value of

∫

∞

0
S(x, t)dx and why?

9.4 (a) Show that the heat equation is a linear equation.

(b) Show that if u is a solution to the heat equation ∂tu(x, t)− ∂xxu(x, t) = 0 then v(x, t) =
u(
√
αx, αt) is also a solution to the heat equation for any fixed α > 0.

Group work

9.5 The aim of this question is to solve the initial value problem (7.2) with initial data

φ(x) =







1 if x > 0;
1
2 if x = 0;
0 if x < 0.



(a) Since the initial data φ is invariant under the transformation in (9.4b), we look for a
solution which would also be unchanged by this transformation. Namely we look for a
solution of the form

u(x, t) = g(x/(2
√
t))

for some g : R → R. (We have inserted a 2 here just to make the following calculation
neater1.) Show that g solves the ordinary differential equation

g′′(p) + 2pg′(p) = 0.

(b) Find the general formula for solutions to the ordinary differential equation above, then
use the initial data φ to find the particular solution we are looking for.

(c) Observe that ∂xu(x, t) is equal to S(x, t), the heat kernel. Can you justify this in any
way?

1If you don’t like it, you are welcome to repeat the question with u(x, t) = g(x/
√

t).
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9.1 (a) See Figure 1.

Figure 1: Here is a picture of the set D.

(b) The motivation behind why the wave equation does not satisfy a maximum principle is
that wave profiles travelling in opposite directions may collide with one another and thus
be larger in value that the initial data — in physics this is called constructive interference.
We want to take this idea and apply it to construct a specific example.

We want our solution to be two waves which travel towards each other. Let φ ∈ C∞(R)
be a function such that |φ(x)| ≤ 1 and

φ(x) =

{

0 for x ∈ (−∞, 0) ∪ (ℓ/2,∞),
1 for x ∈ (ℓ/6, 2ℓ/6).

Then set φ+(x) = φ(x) and φ−(x) = φ(x− ℓ/2). Clearly u(x, t) = φ+(x− t) + φ−(x+ t)
solves the heat equation, so to check whether or not it solves (1) we must check the
initial and boundary conditions. We have u(x, 0) = φ+(x) + φ−(x) and ∂tu(x, t) =
−φ′

+(x) + φ′
−(x), so we choose

g(x) = φ+(x) + φ−(x) and h(x) = −φ′
+(x) + φ′

−(x). (‡)

We also have u(0, t) = φ+(−t) + φ−(t), which is zero provided t− ℓ/2 ≤ 0 ⇐⇒ t ≤ ℓ/2.
Finally, u(ℓ, t) = φ+(ℓ− t) + φ−(ℓ+ t), which is zero provided ℓ− t ≥ ℓ/2 ⇐⇒ t ≤ ℓ/2.
Therefore, u solves (1) with g and h as in (‡) and T = ℓ/2.

9.2 (a) Theorem. Suppose Ω ⊂ Rn is an open bounded connected set and T > 0. Let
u : Ω× [0, T ] → R be a continuous function which is also a solution to the heat equation
∂tu(x, t)−∆u(x, t) = 0 for (x, t) ∈ Ω× (0, T ]. Then the minimum value of u is attained
at a point (x, t) ∈ Ω× [0, T ] such that either t = 0 or x ∈ ∂Ω.

Proof. Observe that if u satisfies the hypothesis of Theorem 7.1, then so does −u. Since
the maximum value of −u is the minimum value of u we can apply Theorem 7.1 to −u
and conclude that u attains its minimum value at a point (x, t) ∈ Ω × [0, T ] such that
either t = 0 or x ∈ ∂Ω.

(b) Suppose we have two solutions u1 and u2 to (7.1). Then v = u2 − u1 solves







∂tv(x, t)−∆v(x, t) = 0 for x ∈ Ω and t ∈ (0, T ];
u(x, 0) = 0 for x ∈ Ω; and
u(y, t) = 0 for y ∈ ∂Ω and t ∈ (0, T ].

Theorem 7.1 and 9.2(a) say that

max
(x,t)∈Ω×[0,T ]

|v(x, t)| = max
D

|v(x, t)|

where D = (Ω × {0}) ∪ (Ω × (0, T ]). But clearly maxD |v(x, t)| = 0, so v ≡ 0 and so
u1 ≡ u2.



(c) Now the difference u2 − u1 = v solves






∂tv(x, t)−∆v(x, t) = 0 for x ∈ Ω and t ∈ (0, T ];
u(x, 0) = φ2(x)− φ1(x) for x ∈ Ω; and
u(y, t) = g2(y, t)− g1(y, t) for y ∈ ∂Ω and t ∈ (0, T ].

and again Theorem 7.1 and 9.2(a) say

max
x∈Ω,t∈[0,T ]

|u2(x, t)− u1(x, t)| = max
(x,t)∈Ω×[0,T ]

|v(x, t)| = max
D

|v(x, t)|

But

max
D

|v(x, t)| ≤ max
x∈Ω

|v(x, t)|+ sup
x∈∂Ω,t∈(0,T ]

|v(x, t)|

= max
x∈Ω

|φ2(x)− φ1(x)|+ sup
x∈∂Ω,t∈(0,T ]

|g2(x, t)− g1(x, t)|.

Use Theorem 7.1 and 9.2(a) to prove the following stability result: If u1 and u2 both
solve (7.1) with the initial conditions φ1 and φ2 and boundary conditions g1 and g2,
respectively, then

max
x∈Ω,t∈[0,T ]

|u2(x, t)− u1(x, t)| ≤ max
x∈Ω

|φ2(x)− φ1(x)|+ sup
x∈∂Ω,t∈(0,T ]

|g2(x, t)− g1(x, t)|.

Putting these estimates together gives us the required stability result.

9.3 We have

I2 =

∫ ∞

−∞

∫ ∞

−∞

1

2
√
πt

e−x2/4t 1

2
√
πt

e−y2/4tdxdy

=

∫ ∞

−∞

∫ ∞

−∞

1

4πt
e−(x2+y2)/4tdxdy

=

∫ 2π

0

∫ ∞

0

r

4πt
e−r2/4tdrdθ

=

∫ ∞

0

r

2t
e−r2/4tdr = −e−r2/4t

∣

∣

∣

∞

0
= 1.

Therefore I = 1 and, since x 7→ S(x, t) is even
∫∞
0

S(x, t)dx = 1/2.

9.4 (a) Recall the definitions from Section 1.2. We need to check that the operator ∂t −∆ is a
linear operator. Take two functions u and v and two constants α and β. Then,

(∂t −∆)(αu+ βv) = (∂t −
n
∑

j=1

∂xjxj
)(αu+ βv)

= ∂t(αu+ βv)− (

n
∑

j=1

∂xjxj
)(αu+ βv)

= ∂t(αu+ βv)−
n
∑

j=1

∂xjxj
(αu+ βv)

= (α∂tu+ β∂tv)−
n
∑

j=1

∂xj
(α∂xj

u+ β∂xj
v)

= (α∂tu+ β∂tv)−
n
∑

j=1

(α∂xjxj
u+ β∂xjxj

v)

= α



∂tu−
n
∑

j=1

∂xjxj
u



+ β



∂tv −
n
∑

j=1

∂xjxj
v





Thus L(αu + βv) = αLu + βLv where L = (αu + βv), so the operator L is linear and
hence the heat equation is linear.



(b) We know that ∂2u− ∂11u = 0. By the chain rule

∂tu(
√
αx, αt) = α(∂2u)(

√
αx, αt),

∂xu(
√
αx, αt) =

√
α(∂1u)(

√
αx, αt) and

∂xxu(
√
αx, αt) = α(∂11u)(

√
αx, αt).

Thus

∂tu(
√
αx, αt)− ∂xxu(

√
αx, αt) = α(∂2u)(

√
αx, αt)− α(∂11u)(

√
αx, αt)

= α((∂2u)(
√
αx, αt)− (∂11u)(

√
αx, αt))

= α((∂2u)− (∂11u))(
√
αx, αt) = 0.

9.5 (a) By applying the chain rule, we see that

∂tu(x, t) = − x

4t3/2
g′(x/(2

√
t))

∂xu(x, t) =
1

2t1/2
g′(x/(2

√
t)) and

∂xxu(x, t) =
1

4t
g′′(x/(2

√
t)).

Therefore,

0 = ∂tu(x, t)− ∂tu(x, t) = − x

4t3/2
g′(x/(2

√
t))− 1

4t
g′′(x/(2

√
t)),

and hence
0 = 2

x

2
√
t
g′(x/(2

√
t)) + g′′(x/(2

√
t))

so
0 = 2pg′(p) + g′′(p).

(b) Set h = g′, then we can solve
h′(p) + 2ph(p) = 0

by multiplying by the integrating factor ep
2

:

0 = ep
2

h′(p) + 2pep
2

h(p) =
d

dp

(

ep
2

h(p)
)

.

Hence ep
2

h(p) = A and h(p) = Ae−p2

. It follows that

g(p) =

∫ p

0

Ae−q2dq +B

and hence

u(x, t) =

∫ x/(2
√
t)

0

Ae−q2dq +B

The initial condition tells us that

lim
t→0

u(x, t) = φ(x) =

{

1 if x ≥ 0;
0 if x < 0.

But

lim
t→0

u(x, t) =

{

∫∞
0

Ae−q2dq +B if x > 0;
∫ −∞
0

Ae−q2dq +B if x < 0.
=

{

A
√
π

2 +B if x > 0;

−A
√
π

2 +B if x < 0.

Solving the two equations (
√
π/2)A + B = 1 and −(

√
π/2)A + B = 0 gives A = 1/

√
π

and B = 1/2, so

u(x, t) =
1√
π

∫ x/(2
√
t)

0

e−q2dq +
1

2
.



(c) Observe that, by the First Fundamental Theorem of Calculus and the chain rule,

∂xu(x, t) =
1

2
√
πt

e−x2/4t = S(x, t).

We know that the heat kernel solves the heat equation. Moreover, looking at the graph
of x 7→ S(x, t) for smaller and smaller t we might guess that x 7→ S(x, t) tends towards
a Dirac delta distribution as t → 0. This means that it appears that S solves (7.2) with
initial data being the Dirac delta distribution. While our initial data φ is not differentiable
in the usual sense, we can differentiate it in the sense of distributions and its derivative
is the Dirac delta distribution. Thus it makes sense that ∂xu(x, t) = S(x, t) since they
both appear to solve the same initial value problems for the heat equations.
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Spring Semester 2019

Homework 10

10.1 (a) Suppose that φ : R → R is a bounded odd function. Show that if u is given by (7.3) (so
is a solution to (7.2)) then u(·, t) is also odd for each t > 0.

(b) Now suppose that φ is bounded and even. Prove that u(·, t) given by (7.3) is also even
for each t > 0.

10.2 (a) Use the ideas of reflections from Section 6.4.1 and 10.1(a) to solve the following boundary
and initial value problem on the half line:







∂tu(x, t)− ∂xxu(x, t) = 0 for x ∈ (0,∞) and t > 0,
u(x, 0) = φ(x) for x ∈ (0,∞), and
u(0, t) = 0 for t > 0.

(1)

(b) Further develop these ideas, just as we did in Section 6.4.2, to solve (7.4) via an alternative
method to the separation of variables we used in Section 7.5.

(c) Make use of 10.1(b) to help you solve a similar problem to (1):







∂tu(x, t)− ∂xxu(x, t) = 0 for x ∈ (0,∞) and t > 0,
u(x, 0) = φ(x) for x ∈ (0,∞), and
∂xu(0, t) = 0 for t > 0.

Here we replaced the Dirichlet boundary condition u(0, t) = 0 with ∂xu(0, t) = 0, which
is called a Neumann condition.

10.3 In Section 8.1 we estimated the error between derivatives and finite differences in terms of the
mesh size δx for a C4(R) function.

(a) If u is merely a C3(R) function, what is the error between its first derivative and its
centred difference?

(b) If u is merely a C2(R) function, what is the error between its first derivative and its
centred difference?

(c) If u is merely a C3(R) function, what is the error between its second derivative and its
centred second difference?

10.4 Suppose u ∈ C5(R). Can you approximate the first derivative u′(x) using a similar method
we used in lectures with an error of O((δx)4)? [Hint: Make use of the function u evaluated at
the points x+ k(δx) for k = −2,−1, 1, 2.]


