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1 Warmup problems

Here are some exercises to get you started. Hopefully, you should be able to tackle
them using only what you know from previous courses (mainly multivariable
calculus – in fact, if you’ve taken that course here at LiU you might recognize
some of the problems from there).

1.1 The second derivative test. (Answer.)

(a) Prove the second derivative test from single-variable calculus:

If f is twice differentiable at a, with f ′(a) = 0 and f ′′(a) > 0, then
f has a strict local minimum at a.

(And, of course, a strict local maximum if f ′′(a) < 0 instead.)

(Note that there is no assumption about continuity of f ′′ at a, or existence of
f ′′(x) for x ̸= 0. However, we only talk about differentiability on open sets, so
the assumption that f is twice differentiable at a, i.e., that f ′ is differentiable
at a, means that f ′ exists in some neighbourhood of a.)

(b) Prove this simple corollary:

If f ′′(a) > 0, then f cannot have a local maximum at a.

1.2 Discontinuous function whose pure second partials exist. Give an exam- (Answer.)

ple of a function u : R2 → R which is not continuous everywhere, but is such that
the pure second partial derivatives uxx and uy y nevertheless exist everywhere.

1.3 No local maxima. Let D be an open set in R2, and let u : D → R be a (Answer.)

function such that uxx +uy y > 0 at every point in D . (In particular, it is assumed
that the pure second partial derivatives uxx and uy y exist at every point in D . But
it is not assumed that u is continuous, for instance.) Show that u cannot have a
local maximum at any point in D .

1.4 The chain rule. If a quantity z is described in two coordinate systems (x, y) (Answer.)

and (u, v), then the chain rule says that

∂z

∂x
= ∂z

∂u

∂u

∂x
+ ∂z

∂v

∂v

∂x
,

∂z

∂y
= ∂z

∂u

∂u

∂y
+ ∂z

∂v

∂v

∂y
,

or, in synonymous notation,

zx = zuux + zv vx ,

zy = zuuy + zv vy .
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This way of writing is often convenient (and we will use it all the time), but it is a
bit imprecise.

Your task here is to write down a precise formulation of the chain rule, in
terms of the functions f , g , α, β that describe the relationships between the
various quantities:

u =α(x, y),

v =β(x, y),

z = f (x, y) = g (u, v) = g
(
α(x, y),β(x, y)

)
.

(We assume these functions to be differentiable, of course.) Include the points
where the derivatives are supposed to be evaluated, so that your answer looks
something like this:

∂ f

∂x
(a,b) = ·· · ,

∂ f

∂y
(a,b) = ·· · .

Discuss some advantages and disadvantages with these two ways of writing the
chain rule.

1.5 Notational weirdness. Consider the coordinate systems (x, y) and (u, v), (Answer.)

related via the change of variables u = x2 −3y , v = x.

(a) Compute ∂u/∂x and ∂x/∂u. Is it true that (∂u/∂x) · (∂x/∂u) = 1?

(b) Compute all possible partial derivatives of the quantities involved here, i.e.,
compute the Jacobian matrices

∂(u, v)

∂(x, y)
=

(
ux uy

vx vy

)
and

∂(x, y)

∂(u, v)
=

(
xu xv

yu yv

)
.

What’s the relationship between these two matrices?

(c) Let f (x, y) be a differentiable function. Use the chain rule to express ∂ f /∂x
in terms of ∂ f /∂u and ∂ f /∂v . How come ∂ f /∂x ̸= ∂ f /∂v although x = v?

1.6 Thermodynamics. Consider a system (such as a gas in a piston) of tem- (Answer.)

perature T , pressure p and volume V . Any two of these quantities determine the
third, so that the system’s energy E can be described as a function of (T, p), (T,V )
or (p,V ). Show that (

∂E

∂T

)
p
=

(
∂E

∂T

)
V
+

(
∂E

∂V

)
T

(
∂V

∂T

)
p

,

where the subscript indicates the quantity that is held constant when computing
the derivative. (For example, (∂E/∂T )p means that we consider E as a function of
T and p, and take the partial derivative of this function E (T, p) with respect to T ,
treating p as a constant.)
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1.7 A funny triple product. Suppose that the constraint F (x, y, z) = 0 defines (Answer.)

any of the three variables (x, y, z) as a differentiable function of the other two.

(a) What hypotheses should be fulfilled, in order for the implicit function theo-
rem to guarantee that this is the case (locally)?

(b) Show that
∂x

∂y
· ∂y

∂z
· ∂z

∂x
=−1.

1.8 Rotated coordinates. For a fixed angle α, consider the linear change of (Answer.)

variables (
x
y

)
=

(
cosα −sinα
sinα cosα

)(
ξ

η

)
.

(a) Draw a figure to illustrate how the (ξ,η) axes are situated in the (x, y) coordi-
nate system.

(b) Assuming that u is of class C 2, show that the Laplacian is rotationally invari-
ant, i.e.,

uξξ+uηη = uxx +uy y .

1.9 Transforming partial derivatives to polar coordinates. Consider polar (Answer.)

coordinates in R2, defined by x = r cosϕ and y = r sinϕ.

(a) Express the partial derivatives ur and uϕ in terms of ux and uy .

(b) Invert the relationship to obtain ux and uy in terms of ur and uϕ.

(c) Express uxx , ux y and uy y in terms of partial derivatives with respect to r
and ϕ. In particular, derive the expression for the Laplacian ∆u = uxx +uy y

in polar coordinates.

1.10 The Laplacian in polar coordinates again. Using some facts from vector (Answer.)

calculus, we can derive the expression for ∆u in polar coordinates with less effort
than in problem 1.9.

(a) Recall that the gradient of a function f (x, y) is defined as

∇ f = grad f =
(
∂ f

∂x
,
∂ f

∂y

)
= ( fx , fy ) = fx ex + fy ey ,

where ex = (1,0) and ey = (0,1) are the standard basis vectors for R2, and that
the divergence of a vector field

v(x, y) = (
X (x, y),Y (x, y)

)= X (x, y)ex +Y (x, y)ey
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is defined as

∇·v = div v = ∂X

∂x
+ ∂Y

∂y
= Xx +Yy .

Deduce that the Laplacian is the divergence of the gradient:

∆u = uxx +uy y =∇·∇u = div(gradu).

(b) Recall from vector calculus (or prove for yourself) that for a function f (r,ϕ)
expressed in polar coordinates, the gradient is

∇ f = fr
1
1

er + fϕ
1
r eϕ,

where the highlighted factors 1 and r are the scale factors associated with
the r and ϕ directions (as in the general theory for orthogonal curvilinear
coordinate systems).

Also recall (or prove) that for a vector field v(R,ϕ) = R(r,ϕ) er + Φ(r,ϕ) eϕ
expressed in polar coordinates, the divergence is

∇·v = 1

1 · r

(
∂
∂r

(
R(r,ϕ) · r

)
+ ∂
∂ϕ

(
1 · Φ(r,ϕ)

))
.

Use this to (again) derive the formula for ∆u, where u = u(r,ϕ).

1.11 The Laplacian in spherical coordinates. In a similar way as in prob- (Answer.)

lem 1.10, derive the expression for∆u =∇·∇u = uxx+uy y+uzz when u = u(x, y, z)
is expressed in spherical coordinates (r,θ,ϕ) defined by

x = r sinθcosϕ,

x = r sinθ sinϕ,

z = r cosθ.

You will need to remember that the scale factors associated with the r , θ and ϕ

directions are 1 , r and r sinθ , so that the gradient of the function f (r,θ,ϕ) is

∇ f = fr
1
1

er + fθ
1
r eθ+ fϕ

1
r sinθ

eϕ

and the divergence of the vector field

v(r,θ,ϕ) = R(r,θ,ϕ) er + Θ(r,θ,ϕ) eθ+ Φ(r,θ,ϕ) eϕ

is

∇·v = 1

1 · r · r sinθ

(
∂
∂r

(
R(r,θ,ϕ) · r · r sinθ

)
+ ∂
∂θ

(
1 · Θ(r,θ,ϕ) · r sinθ

)
+ ∂
∂ϕ

(
1 · r · Φ(r,θ,ϕ)

))
.
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1.12 A simple verification using the chain rule. Suppose that g is a differen- (Answer.)

tiable function of one variable. Verify that u(x, y) = g (xe y ) satisfies xux −uy = 0
identically (i.e., for all x and y).

1.13 Solving a PDE by changing variables. (Answer.)

(a) Find all C 1-functions u(x, y) that satisfy the PDE

xux −uy = 2x2

in the right half-plane x > 0, by rewriting the PDE in terms of the new variables
ξ= x, η= xe y .

(b) Find all the functions from part (a) that satisfy the additional condition
u(1, y) = e−y for all y ∈ R.

(c) More generally, find all the functions from part (a) that satisfy u(1, y) = f (y)
for all y ∈ R, where f is some given C 1-function. (The answer will of course
be expressed in terms of f .)
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2 The method of characteristics

2.1 Déjà vu all over again. Pretend that you don’t know about problem 1.13, (Answer.)

and use the method of characteristics to determine all C 1-functions u(x, y), x > 0,
such that

xux −uy = 2x2, u(1, y) = f (y).

2.2 Mixed problems. Use the method of characteristics to find all solutions (Answer.)

of class C 1 to the following equations (assuming that the given data are also of
class C 1). Are the solutions globally defined? Do your calculations suggest some
suitable changes of variables that could be employed for solving these equations
in another way?

(a) (1+x2)ux +uy = 0, with u(0, y) = f (y).

(b) ux +uy +u = ex+2y , with u(x,0) = 0.

(c) xuy − yux = u, with u(x,0) = h(x) (for x ≥ 0).

(d) xux + yuy +uz = u, with u(x, y,0) = f (x, y).

(e) ux +uy = u2, with u(x,0) = f (x). (This equation is not linear, but it is “semi-
linear”, meaning that it’s only u that appears nonlinearly, not any of the
derivatives; in other words, it’s of the form

a(x, y) ux +b(x, y) uy = c(x, y, u ).

The method of characteristics works just the same way for first-order semi-
linear PDEs as for linear ones, except that you will get nonlinear ODEs along
the characteristic curves instead of linear ones.)

(f) x yux + (1+ y2)uy = y , with u(x,0) = f (x).

(g) e y ux +2xuy = 0, with u(0, y) = y . And the same, but with u(0, y) = e y .

Remark. The method of characteristics also works for first-order “quasilinear” equations,
where the derivatives appear linearly but with coefficients that are allowed to be u-
dependent:

a(x, y, u ) ux +b(x, y, u ) uy = c(x, y, u ).

The difference in this case is that one cannot first solve for characteristic curves in the x y-
plane, and then solve an ODE for u along each such curve; instead there is a simultaneous
system of ODEs for characteristic curves in x yu-space.

In fact, the method can also be extended to general, fully nonlinear, first-order PDEs
F (x, y,u,ux ,uy ) = 0, but then things become quite a lot more complicated.
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3 Physical origins of some PDEs

3.1 Heat conduction in a rod. Consider heat conduction in a rod on the (Answer.)

interval x ∈ [0,1], described by the heat equation ut = uxx in the interior 0 < x < 1.
Various types of boundary conditions can be given at the endpoints. In each
of the following cases, interpret what the boundary conditions mean physically.
Also determine the steady-state (i.e., time-independent) solution or solutions
satisfying these conditions. (Based on physical intuition, we may expect u(x, t )
to approach such an equilibrium state as t →∞.)

(a) Boundary conditions of Dirichlet type, where the value of the sought function
is prescribed on the boundary:

u(0, t ) = A, u(1, t ) = B.

(b) Boundary conditions of Neumann type, where the value of the derivative of
the sought function is prescribed on the boundary:

−ux (0, t ) = A, ux (1, t ) = B.

In particular, what do the conditions

ux (0, t ) = 0, ux (1, t ) = 0

mean physically?

Why would we expect
∫ 1

0 u(x, t )d x to be independent of t if B =−A? Can you
prove that it’s true?

(A remark: For the heat equation ut =α∆u on some domainΩ⊂ Rn with n ≥ 2, the
terminology “Neumann boundary conditions” means that the value of the normal
derivative ∂u/∂n, the directional derivative in the direction of the outward normal
unit vector, is prescribed at each boundary point x ∈ ∂Ω. For the one-dimensional
rod, the normal derivative is −ux at the left endpoint and ux at the right endpoint.)

(c) Mixed boundary conditions, where different types of conditions are pre-
scribed on different parts of the boundary:

u(0, t ) = A, ux (1, t ) = B.

3.2 More heat conduction in a rod. Consider heat conduction in a rod on (Answer.)

the interval x ∈ [0,π], described by the heat equation ut = uxx in the interior
0 < x <π, and with Dirichlet boundary conditions u(0, t ) = u(π, t ) = 0.

(a) For a given positive integer n, determine the function T (t ) such that

u(x, t ) = T (t ) sin(nx)

is a solution, satisfying the initial condition u(x,0) = sin(nx).
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(b) Determine the solution u(x, t ) if the initial condition is

u(x,0) = 17sin x −5sin(3x).

3.3 Vibrations of a string. Consider small vibrations of a string on the interval (Answer.)

x ∈ [0,π], described by the wave equation ut t = uxx in the interior 0 < x < π,
and with boundary conditions u(0, t) = u(π, t) = 0 describing that the string is
attached at its endpoints.

(a) For a given positive integer n, determine the function T (t ) such that

u(x, t ) = T (t ) sin(nx)

is a solution, satisfying the initial conditions u(x,0) = sin(nx) and ut (x,0) = 0.

(b) Determine the solution u(x, t ) if the initial conditions are

u(x,0) = 17sin x −5sin(3x), ut (x,0) = 0.

(The musicians in the audience may want to think a little about the musical
meaning of this. How would you demonstrate it on a guitar or a bass guitar?
Piano strings are not very accurately described by this model – why is that, and
what are the implications for piano tuning?)

3.4 General solution of the one-dimensional wave equation. Use the change (Answer.)

of variables ξ= x +ct , η= x −ct to determine all functions u(x, t ) of class C 2(R2)
that satisfy the wave equation ut t = c2uxx .

3.5 The fundamental solution of the one-dimensional heat equation. Verify (Answer.)

that

u(x, t ) = 1p
4παt

exp

(
− x2

4αt

)
satisfies the heat equation ut =αuxx (where α> 0) for x ∈ R, t > 0. What is the
limit of this function as t → 0+?

3.6 A reaction–advection problem. Let c and r be positive constants, and (Answer.)

consider the initial value problem

ut + cux =−r u, for x ∈ R and t > 0,

u(x,0) = f (x), for x ∈ R.

What kind of physical situation might this describe? Use the physical intuition
to find a change of variables that allows you to solve the system. (Hint: Moving
coordinate system. “Go with the flow!”)
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4 The Laplace equation

The weak maximum principle

4.1 Multivariable calculus. (Answer.)

(a) Make sure you remember the second partial derivative test from multi-
variable calculus:

LetΩ be an open set in Rn , let f : Ω→ R be a function of class C 2,
and let H(x) denote the Hessian matrix of f , i.e., the symmetric
n ×n matrix of second-order partial derivatives:

Hi j (x) =
(

fxi x j (x)
)n

i , j=1
.

Assume that a ∈Ω is a stationary point for f , i.e., ∇ f (a) = 0.

• If H(a) is positive definite, then f has a strict local minimum
at the point a.

• If H(a) is negative definite, then f has a strict local maximum
at the point a.

• If H(a) is indefinite, then f has a saddle at a (neither a local
minimum nor a local maximum).

(b) Prove it!

(c) Give examples with n = 2 and a = (0,0) to show that the test is inconclusive if
H(a) is positive semidefinite or negative semidefinite. (Or if it’s both at the
same time! Yes, this can happen, but only for a very particular matrix. Which
one?)

4.2 Harmonic functions on an unbounded domain. Consider the unbounded (Answer.)

domain
Ω= {(x, y) ∈ R2 : x > 0},

i.e., the open right half-plane in R2. Then, of course, the closure

Ω= {(x, y) ∈ R2 : x ≥ 0}

is the closed right half-plane, and the boundary ∂Ω is the y-axis.

Your task, in each part below, is to try to construct an example of a continuous
function u : Ω→ R which is harmonic onΩ and satisfies the given condition. (If
you can’t find any examples of your own, at least verify that the examples in the
answer key have the claimed properties.)

Hint: For parts (a)–(c), there are very simple examples. The other parts are
considerably more difficult; see problem 4.3 below for a possible approach.

(a) u is unbounded both from above and from below (and consequently has no
maximum or minimum).
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(b) u is unbounded from above (and consequently has no maximum), and attains
its minimum on the boundary ∂Ω.

(c) u = 0 on ∂Ω. (Find at least two different examples, showing that the Dirichlet
problem for the Laplace equation does not have a unique solution for this
domainΩ.)

(d) u is bounded from above, but has no maximum, and attains its minimum on
the boundary ∂Ω.

(e) u is non-constant and attains a maximum and a minimum on ∂Ω.

(f ) u is bounded from above and from below, but has no maximum or minimum.

4.3 Complex analysis. For those of you who know some complex analysis: (Answer.)

(a) Let u and v be the real and imaginary parts of the analytic function f :

f (x + i y) = u(x, y)+ i v(x, y), with u and v real-valued.

Use the Cauchy–Riemann equations ux = vy and uy = −vx to prove that
∆u = 0 and ∆v = 0.

(b) Show that the Möbius transformation w = f (z) = (z −1)/(z +1) maps the
closed right half-plane {z ∈ C : Re z ≥ 0} to the closed unit disk minus a point,
{w ∈ C : |w | ≤ 1, w ̸= 1}. Calculate u(x, y) = Re f (x+ i y) and v(x, y) = Im f (x+
i y), and explain why they solve problems 4.2(d) and (e) above, respectively.

(c) Consider the mapping w = f (z) = Log(z+1), where Log denotes the principal
branch of the complex logarithm, with imaginary part in the interval (−π,π].
What’s the image of the closed right half-plane? Calculate v(x, y) = Im f (x +
i y), and explain why it is a solution to problem 4.2(f) above.

4.4 Bounds at the origin. Let u be a continuous solution to the problem (Answer.)

∆u =−1, if |x| < 1 and
∣∣y

∣∣< 1,

u = 0, if |x| = 1 or
∣∣y

∣∣= 1.

By considering the function v(x, y) = u(x, y)+ 1
4 (x2 + y2), determine an interval

that u(0,0) must belong to.

4.5 Another weak maximum principle. Let Ω be a bounded open set in Rn . (Answer.)

Prove that any continuous function u : Ω→ R such that ∆u(x)+x ·∇u(x) ≥ 0 for
all x ∈Ω attains its maximum on ∂Ω.
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Poisson’s formula (for a disk)

If u is harmonic on the disk x2+y2 < a2, with boundary values u(a cosϕ, a sinϕ) =
h(ϕ), then u is given by Poisson’s formula

u(r cosθ,r sinθ) = a2 − r 2

2π

∫ 2π

0

h(ϕ)dϕ

r 2 −2ar cos(θ−ϕ)+a2

for 0 ≤ r < a.

4.6 A bit of algebra. If x = (r cosθ,r sinθ) and y = (a cosϕ, a sinϕ), show that (Answer.)∣∣x−y
∣∣2 = r 2 −2ar cos(θ−ϕ)+a2,

and deduce that the following two ways of writing Poisson’s formula are the same:

u(x) = a2 − r 2

2π

∫ 2π

0

h(ϕ)dϕ

r 2 −2ar cos(θ−ϕ)+a2 = a2 −|x|2
2πa

∫
|y|=a

h̃(y)dσ(y)∣∣x−y
∣∣2 .

4.7 Harnack’s inequality for a disk. Let u be harmonic on the disk x2+ y2 < a2, (Answer.)

with boundary values u(a cosϕ, a sinϕ) = h(ϕ).

(a) Put r = 0 in Poisson’s formula, to obtain an expression for u(0,0) in terms of
the boundary values.

(b) Use the fact that −1 ≤ cos t ≤ 1 for all t ∈ R to show that

1

2π

a − r

a + r
≤ a2 − r 2

2π
· 1

r 2 −2ar cos(θ−ϕ)+a2 ≤ 1

2π

a + r

a − r
, for 0 ≤ r < a.

(c) Suppose that u is nonnegative. Use Poisson’s formula together with parts (a)
and (b) to prove Harnack’s inequality:

a − r

a + r
u(0,0) ≤ u(r cosθ,r sinθ) ≤ a + r

a − r
u(0,0), for 0 ≤ r < a.

4.8 The Laplace equation in a wedge. Let Ω be the wedge in R2 described (Answer.)

in polar coordinates by 0 < r < a and 0 < θ < β (where β< 2π). Use separation
of variables u(r,θ) = R(r )Θ(θ) to find a continuous function u : Ω→ R which is
harmonic onΩ and satisfies the boundary conditions given in polar coordinates
by

u(r,0) = u(r,β) = 0 for 0 < r < a,

u(a,θ) = h(θ) for 0 < θ <β.
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4.9 More separation of variables. Let Ω be the square in R2 described by (Answer.)

0 < x <π and 0 < y <π. Use separation of variables u(x, y) = X (x)Y (y) to find a
continuous function u : Ω→ R which is harmonic onΩ and satisfies the boundary
conditions

uy (x,0) = uy (x,π) for 0 < x <π,

u(0, y) = 0, u(π, y) = cos2 y for 0 < y <π.

4.10 Discontinuity. (Answer.)

(a) Show that

u(x, y) =
{

17, if x = 0 or y = 0,

43, otherwise,

satisfies uxx +uy y = 0 at the origin, even though it’s not even continuous
there.

(Moral: The mere existence of the pure second partial derivatives doesn’t
imply much about niceness for u as a whole. See also problem 1.2.)

(b) Think a moment about why most sources define a function to be harmonic
on an open setΩ if it satisfies the Laplace equation at every point inΩ and
belongs to the class C 2(Ω). (Or, more generally, why a “classical solution” of a
PDE of order k is usually assumed to belong to the class C k (Ω).)

(c) When deriving the weak maximum principle and the Poisson formula (with
the corollary “harmonic functions are smooth”), we didn’t use the full strength
of the assumption u ∈C 2(Ω), but we did use that u ∈C (Ω), in order to be able
to apply the extreme value theorem. Here’s an example to show what can go
wrong otherwise:

Let f (z) = e−1/z4
for z ̸= 0, and let

u(x, y) =
{

Re f (x + i y), (x, y) ̸= (0,0),

0, (x, y) = (0,0)

=
{

exp
(−x4+6x2 y2−y4

(x2+y2)4

)
cos

(
4x3 y−4x y3

(x2+y2)4

)
, (x, y) ̸= (0,0),

0, (x, y) = (0,0).

Show that uxx +uy y = 0 everywhere (including at the origin), but that u is not
continuous at the origin.

(d) If we were to take the values on the unit circle x2 + y2 = 1 of the function u
from part (c) and plug them into Poisson’s formula, what harmonic function v
on the unit disk would we obtain?

(Hint: Use some indirect reasoning. Trying to compute the Poisson integral
directly would be horrible!)
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4.11 A Poisson integral computation + some complex trickery. The goal of (Answer.)

this exercise is to solve the Dirichlet problem for the Laplace equation ∆u = 0 in
the unit disk x2 + y2 < 1, with boundary values given by the restriction to the unit
circle x2 + y2 = 1 of the function

g (x, y) =
{

y, y > 0,

0, y ≤ 0.

(a) Compute u(x,0) for 0 ≤ x < 1 directly from Poisson’s formula for the unit disk,

u(r cosθ,r sinθ) = 1− r 2

2π

∫ 2π

0

h(ϕ)

1−2r cos(θ−ϕ)+ r 2 dϕ,

where h(ϕ) is the function giving the boundary data:

h(ϕ) = g (cosϕ, sinϕ) =
{

sinϕ, 0 ≤ϕ≤π,

0, π<ϕ< 2π.

Argue by symmetry to obtain u(x,0) for −1 < x < 1.

(b) Consider the analytic function f (z) obtained by replacing x with z in u(x,0).
The function Re f (x + i y) is harmonic on the unit disk; what are its boundary
values? Modify this function suitably to obtain the sought solution u(x, y) on
the whole unit disk.

5 The Laplace equation (cont.)

The mean value property & the strong maximum principle

5.1 Absolute value. Suppose u is harmonic on the bounded open setΩ and (Answer.)

continuous onΩ. Show that its absolute value |u| satisfies the weak maximum
principle:

max
Ω

|u| = max
∂Ω

|u| .

What about the strong maximum principle?

5.2 Unbounded domain. Let Ω be a connected open set, not necessarily (Answer.)

bounded. Show that if u ∈ C 2(Ω) satisfies ∆u ≥ 0 and attains its maximum at
some point inΩ, then u is constant onΩ.

5.3 Local extrema. Use the mean value property to show that a harmonic (Answer.)

function on an open setΩ cannot have any strict local extrema inΩ. (Can you
say something about non-strict local extrema?)
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5.4 Converse to the mean value property. Assume that u ∈C 2(Ω) and that (Answer.)

u(x) =−
∫
∂B(x,r )

u dS

for each ball B(x,r ) ⊂U . Show that u is harmonic onΩ.

6 The Laplace equation (cont.)

Dirichlet’s principle

6.1 A variational problem with no solution. Consider the class of functions (Answer.)

that are continuous on [−1,1], continuously differentiable on (−1,1), and satisfy
the boundary conditions f (−1) = −1 and f (1) = 1. Show that the problem of
minimizing the integral ∫ 1

−1

(
x f ′(x)

)2
d x

over all such f has no solution.
(This was the example given by Weierstrass in 1870 as a general objection

to the assumption that the variational problem in Dirichlet’s principle has a
solution.)

6.2 A minimizing sequence that doesn’t converge. (Answer.)

(a) Let Ω be the unit disk x2 + y2 < 1. Compute the Dirichlet energy integral
E(u) = ∫

Ω |∇u|2 d xd y for the continuous and piecewise differentiable func-
tion

u(x, y) = u(r cosθ,r sinθ) =


C lnR, 0 ≤ r ≤ R2,

C ln(r /R), R2 ≤ r ≤ R,

0, R ≤ r ≤ 1,

where C ∈ R and R ∈ (0,1) are constants.

(b) Determine sequences Cn and Rn , with corresponding functions un(x, y) as in
part (a), such that E(un) → 0 as n →∞ (so that un is a minimizing sequence
for the energy integral), but un(0,0) →−∞ as n →∞ (so that the sequence
doesn’t converge to a limiting function onΩ).

6.3 Infinite energy. (Answer.)

(a) Go back to the derivation of Poisson’s formula using separation of variables,
to recall that if h(θ) is a continuous 2π-periodic function with (not necessarily
convergent) Fourier series

h(θ) ∼ a0

2
+

∞∑
k=1

(
ak coskθ+bk sinkθ

)
,
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then the unique solution of the Dirichlet problem for the Laplace equation
on the unit disk with boundary values u(cosθ, sinθ) = h(θ) is given for r < 1
by the convergent Fourier series

u(r cosθ,r sinθ) = a0

2
+

∞∑
k=1

(
ak r k coskθ+bk r k sinkθ

)
︸ ︷︷ ︸

call this U (r,θ)

.

(b) Also remind yourself about Parseval’s identity for Fourier series (with notation
as above):

1

2π

∫ 2π

0
h(θ)2dθ = a2

0

4
+ 1

2

∞∑
k=1

(
a2

k +b2
k

)
.

(c) Show that the Dirichlet energy integral in polar coordinates is

E(u) =
Ï

x2+y2<1

(
u2

x +u2
y

)
d xd y =

Ï
0<r<1

0≤θ<2π

(
U 2

r + r−2 U 2
θ

)
r dr dθ.

(d) Compute the Fourier series for Ur and Uθ by termwise differentiation in the
series for U (r,θ), and use Parseval’s identity to show that

ER (u) =
Ï

0<r<R
0≤θ<2π

(
U 2

r + r−2 U 2
θ

)
r dr dθ =π

∞∑
k=1

k
(
a2

k +b2
k

)
R2k

for 0 ≤ R < 1.

(e) Deduce that the following holds for N ≥ 1 and 0 ≤ R < 1:

π
N∑

k=1
k
(
a2

k +b2
k

)
R2k ≤ ER (u) ≤π

∞∑
k=1

k
(
a2

k +b2
k

)
,

where the series on the right-hand side may be convergent or divergent (to∞).
Let R → 1, and then N →∞, to show that E(u) equals that series (so that the
energy of u is finite if and only if the series converges.)

(f) Consider the boundary values

h(θ) =
∞∑

m=1

sin(m!θ)

m2 .

Show that h is continuous, and that the corresponding solution u has infinite
energy.

(This example was given by Hadamard.)

6.4 A nonlinear problem involving the Laplacian. LetΩ be the open unit ball (Answer.)

in Rn , and consider the problem of finding u ∈C 2(Ω)∩C (Ω) satisfying ∆u = u3

on Ω and u = 0 on the boundary. Show that u = 0 is the only solution. Hint:
Consider the flux of u∇u through the unit sphere.

16



The fundamental solution

6.5 Gradient of a radially symmetric function.

(a) Let r (x) = |x| =
√

x2
1 +·· ·+x2

n , for x ∈ Rn . By considering the level sets of the
function r in the cases n = 2 and n = 3, convince yourself geometrically that
it is reasonable to expect that

∇r (x) = x

|x| (x ̸= 0),

or, written more shortly using the notation er (x) or r̂(x) for the vector field x
|x| ,

∇r = er = r̂.

Verify this by direct computation of the derivatives ∂r /∂xk .

(b) Deduce using the chain rule that if u(x) = R(|x|) = R(r (x)) is a radially sym-
metric function, then

∇u(x) = R ′(r (x))er (x),

or, written more shortly,
∇u = R ′(r )er .

Verify that this agrees with the general expressions for the gradient in polar
and spherical coordinates (see problems 1.10 and 1.11).

6.6 One-dimensional fundamental solution. (Answer.)

(a) Recall that the fundamental solution for the operator −∆ in Rn is a radially
symmetric function Φ(x) = R(r ) such that R ′(r ) = −1

An r n−1 , where An is the
(n −1)-dimensional “surface area” of the unit sphere in Rn . So what is the
fundamental solution Φ(x) in the case n = 1? How do you interpret the
quantity A1?

(b) Verify that the fundamental solution in R1 indeed satisfies −Φ′′(x) = δ(x),
where δ is the Dirac delta distribution. (You can use that H ′ = δ in the sense
of distributions, where H (x) is the Heaviside step function, H (x) = 0 for x < 0
and H(x) = 1 for x > 0.)

6.7 Computing a normal derivative. LetΦ(x) =− 1
2π ln |x| be the fundamental (Answer.)

solution for −∆ in R2. LetΩ be the open disk of radius R > 0 centered at the origin,
and let a = (r cosθ,r sinθ) (with 0 ≤ r < R) be an interior point. IfΦa(x) =Φ(x−a)
denotes the shifted fundamental solution centered at a, compute the normal
derivative ∂Φa

∂n (x) at the boundary point x = (R cosϕ,R sinϕ), in terms of r , θ, R
and ϕ.
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6.8 Surface area of the unit sphere. This exercise outlines a slick way of directly (Answer.)

obtaining the surface area of the unit sphere in Rn in terms of Euler’s gamma
function:

An = 2πn/2

Γ(n/2)
.

(a) Derive the Gaussian integral

I =
∫

R
e−πx2

d x = 1

by computing the double integral
∫

R2
e−π(x2

1+x2
2 )d x1d x2 = 1 using polar coor-

dinates on the one hand, and showing that it equals I 2 on the other hand.
Deduce that ∫

Rn
e−π(x2

1+···+x2
n )dx = I n = 1.

(b) The gamma function is defined by the integral

Γ(z) =
∫ ∞

0
t z−1e−t d t

for all complex numbers z such that Re(z) > 0, so that the integral converges.
Use integration by parts to show that

Γ(z +1) = zΓ(z).

(This formula can be used to extend the gamma function to the whole com-
plex plane, except for simple poles at the nonnegative integers.) Compute
Γ(1) = 1, and deduce that Γ(n +1) = n! for all integers n ≥ 0. Also compute
Γ( 1

2 ) =p
π, with the help of the substitution t = u2 and part (a), and deduce

that Γ(n + 1
2 ) = 2−n(2n −1)!!

p
π for all integers n ≥ 0.

(c) Next, recall the method of spherical shells:∫
Rn

f (x)dx =
∫ ∞

r=0

(∫
|x|=r

f (x)dS

)
dr,

where dS is surface area measure, so that in particular
∫
|x|=r dS = Anr n−1.

Apply this to the integral I n from part (a), substitute t =πr 2 to get the result
in terms of the gamma function, and deduce the claimed formula for An .

(d) In the lecture video we derived nVn = An and Vn =πn/2/Γ( n
2 +1), where Vn is

the volume of the unit ball in Rn . Verify that this agrees with An = 2πn/2

Γ(n/2) .
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7 The Laplace equation (cont.)

Green’s functions

7.1 Green’s function in one dimension. Compute Green’s function Ga(x) for (Answer.)

the operator −∆ = −d 2/d x2 on the interval (0,1), and verify that the property
Ga(x) =Gx (a) holds.

7.2 Normal derivative of Green’s function for the unit ball. Recall that Green’s (Answer.)

function for the operator −∆ on the unit ball in Rn , at the interior point a, is

Ga(x) =Φ(
x−a

)−Φ(|a| (x−b)
)
,

where Φ is the fundamental solution for −∆ in Rn and where b = a/ |a|2 is the
image of a under inversion in the unit sphere. Compute the Poisson kernel, i.e.,
the value of

−∂Ga

∂n
(x)

for |x| = 1, where the normal derivative ∂/∂n refers to the normal vector pointing
out of the ball.

7.3 Green’s function for a half-ball. Determine Green’s function Ha(x) for the (Answer.)

upper half of the unit ball in Rn ,{
x ∈ Rn : |x| < 1, xn > 0

}
,

in terms of Green’s function Ga(x) for the whole unit ball.

7.4 A reflection principle. LetΩ be the half-space Rn+ = {xn > 0} in Rn . Suppose (Answer.)

that u is harmonic on Ω and continuous on Ω with u = 0 on ∂Ω. Extend u
to a function v on the whole space Rn which is odd with respect to the last
coordinate xn , as follows:

v(x1, . . . , xn−1, xn) =
{

u(x1, . . . , xn−1, xn), xn ≥ 0,

−u(x1, . . . , xn−1,−xn), xn < 0.

(a) Obviously, v is harmonic for xn > 0 and continuous on Rn . Show that v is
also harmonic for xn < 0.

(b) Show that v is harmonic everywhere. Hint: Given a point a on the hyperplane
xn = 0, use the Poisson formula for a ball in Rn to produce a function w which
is harmonic on the ball B(a,r ) and agrees with v on the boundary. Show that
w must agree with v on the ball (argue separately for the upper and lower
halves).
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7.5 Uniqueness for the Dirichlet problem on a half-space. Like in exercise 7.4, (Answer.)

letΩ= Rn+. Use the results from that exercise, together with Liouville’s theorem, to
prove that there can exist at most one bounded solution to the Dirichlet problem
∆u = f onΩ, u = g on ∂Ω.

7.6 Green’s function for the positive quadrant. (Answer.)

(a) Determine Green’s function G(a,b)(x, y) for −∆ in the quadrant {x > 0, y > 0}
in R2.

(b) Use it to write down a solution (the unique bounded one) to the Laplace
equation ∆u = 0 in the quadrant, with boundary data u(x,0) = g (x) for x > 0
and u(0, y) = h(y) for y > 0, where g and h are continuous and bounded.

8 The wave equation in one dimension

8.1 Initial conditions. In each part, find the solution (Answer.)

u(x, t ) = f (x + ct )+ g (x − ct )

of the wave equation ut t = c2uxx satisfying the given initial conditions. What
does the the solution look like? Try to illustrate it graphically. (The solutions in
parts (c) and (d) will only satisfy the PDE in a weak sense.)

(a) u(x,0) = e−x2
and ut (x,0) = 1

1+x2 .

(b) u(x,0) = 0 and ut (x,0) = cos x.

(c) u(x,0) =
{

1−|x| , |x| < 1,

0, |x| ≥ 1,
and ut (x,0) = 0.

(d) u(x,0) = 0 and ut (x,0) =
{

1, |x| < 1,

0, |x| > 1.

8.2 Wave equation with source. (Answer.)

(a) Solve ut t − c2uxx = 1 with u(x,0) = 0 and ut (x,0) = 0.

(b) Solve ut t − c2uxx = cos x with u(x,0) = sin x and ut (x,0) = 0.

(c) Solve ut t −uxx = sin(ωt )sin x (where ω> 0) with u(x,0) = 0 and ut (x,0) = 0.

8.3 Alternative derivation. Your task here is to fill in the steps below to give (Answer.)

another derivation of the solution to ut t − c2uxx = f (x, t ) with initial conditions
u(x,0) =ϕ(x), ut (x,0) =ψ(x), namely

u(x0, t0) = ϕ(x + ct )+ϕ(x − ct )

2
+ 1

2c

∫ x0+ct0

x0−ct0

ψ(x)d x + 1

2c

Ï
D

f (x, t )d xd t ,
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where D = D(x0,t0) is the triangle with corners at (x0, t0) and (x0 ± ct0,0).

(a) Begin with Ï
D

f (x, t )d xd t =
Ï

D
(ut t − c2uxx )d xd t ,

and rewrite the right-hand side as a line integral over ∂D using Green’s the-
orem from vector calculus; this line integral splits into three integrals, one
over each edge of the triangle.

(b) Show that the contribution from the edge on the x-axis is

−
∫ x0+ct0

x0−ct0

ψ(x)d x.

(c) Show that the edge from (x0 + ct0,0) to (x0, t0) contributes

c u(x0, t0)− cϕ(x0 + ct0).

(d) Similarly, show that the edge from (x0, t0) to (x0 − ct0,0) contributes

c u(x0, t0)− cϕ(x0 − ct0).

(e) Add it all up!

8.4 Energy. Let e(x, t ) = 1
2 (u2

t + c2u2
x ) be the energy density for the wave equa- (Answer.)

tion ut t = c2uxx .

(a) Show by direct differentiation that e(x, t ) satisfies the wave equation if u(x, t )
does (assuming u ∈C 3).

(b) Express e(x, t) in terms of the function f and g in the general solution
u(x, t ) = f (x + ct )+ g (x − ct ).

(c) Meditate upon the results.

8.5 Damped wave equation. For the damped wave equation ut t + r ut = c2uxx , (Answer.)

where r > 0, show that the energy E(t ) = 1
2

∫ ∞
−∞(u2

t + c2u2
x )d x is a nonincreasing

function of t (assuming that all functions in sight are sufficiently nice and decay
as |x|→∞).

9 The wave equation in one dimension (cont.)

9.1 Wave equation on a half-line with Neumann condition. Solve ut t = c2uxx (Answer.)

for x > 0 and t > 0 with initial conditions u(x,0) =ϕ(x) and ut (x,0) =ψ(x) for x >
0 and the Neumann boundary condition ux (0, t ) = 0 for t > 0. What assumptions
on ϕ and ψ are needed in order to obtain a classical solution (class C 2)?
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9.2 Series solution on a finite interval. Solve ut t = c2uxx for 0 < x < π and (Answer.)

t > 0, with boundary conditions for t > 0 and initial conditions for 0 < x < π as
specified. (The answer will be given in terms of a series. It might be useful to look
back at exercise 3.3.)

(a) Dirichlet conditions u(0, t) = u(π, t) = 0, initial data u(x,0) = x(π− x) and
ut (x,0) = 0.

(b) Neumann conditions ux (0, t) = ux (π, t) = 0, initial data u(x,0) = cos2 x and
ut (x,0) = 1−cos3x.

(c) Mixed boundary conditions ux (0, t ) = u(π, t ) = 0, initial data u(x,0) = 0 and
ut (x,0) =π2 −x2.

9.3 Reflections on a finite interval. Use reflections and d’Alembert’s formula (Answer.)

to solve ut t = c2uxx for 0 < x <π and t > 0, with u(0, t ) = u(π, t ) = 0 and u(x,0) =
sin(nx) (for some integer n > 0), ut (x,0) = 0. Does the result agree with what you
would expect?

9.4 Odd solution. Show that if u is a (classical) solution to the wave equation (Answer.)

(on the whole real line) with odd initial data u(x,0) = ϕ(x) and ut (x,0) =ψ(x),
then u is an odd function of x for any t > 0.

10 The wave equation in higher dimensions

10.1 Maxwell’s equations. In electromagnetism, Maxwell’s equations for the (Answer.)

electric field E(x, t ) and the magnetic field B(x, t ) are

∇·E = ρ

ε0
, ∇×E =−∂B

∂t
,

∇·B = 0, ∇×B =µ0

(
J+ε0

∂E

∂t

)
,

where ε0 and µ0 are physical constants (“vacuum permittivity” and “vacuum
permeability”), ρ(x, t) is electric charge density per unit volume, and J(x, t) is
electric current density per unit area.

Show that in empty space, where ρ = 0 and J = 0, each component of the
vector fields E and B satisfies the wave equation, with c = (ε0µ0)−1/2 (the speed of
light).

10.2 Spherical waves. (Answer.)

(a) A spherical solution to the wave equation ut t = ∆u is a solution which is
radial with respect to the spatial variables x ∈ Rn , i.e., it takes the form

u(x, t ) =U (|x| , t )

22



for some function U (r, t ) (which we can think of as being defined for r ≥ 0, or
as being defined for all r ∈ R with the requirement that it’s an even function
of r ).

Derive the PDE that U must satisfy in order for u to be spherical solution.
(Does it look familiar?)

(b) What’s the general form of a spherical solution in the case n = 3?

(c) For n = 3, use part (b) to solve ut t =∆u with initial conditions

u(x,0) = e−|x|
2
, ut (x,0) = 0.

(d) Similarly, for n = 3, solve ut t =∆u with initial conditions

u(x,0) =
{

1, |x| ≤ 1,

0, |x| > 1,
ut (x,0) = 0.

(The solution will obviously only satisfy the PDE in a weak sense.)

10.3 Time derivative of a solution is a solution. (Answer.)

(a) Show that if u is a C 3-solution of the wave equation ut t = c2∆u, then ut is a
C 2-solution.

(b) If the initial conditions for u are u(x,0) = 0 and ut (x,0) =ψ(x), what are the
initial conditions for ut ?

(c) Compare the explicit solution formulas for the wave equation in R, R2 and R3,
in terms of given initial data u =ϕ and ut =ψ at time t = 0. These formulas
have a common feature which is explained by parts (a) and (b) above – what
is it?

10.4 Duhamel’s principle for the inhomogeneous wave equation. (Answer.)

(a) Consider the wave equation with a source term,

ut t − c2∆u = f (x, t ),

with zero initial conditions u = ut = 0 at t = 0. Prove that the solution is

u(x, t ) =
∫ t

0
v(x, t ; s)d s,

where v(x, t ; s) is the solution of the following initial value problem (starting
at time s) for the usual homogeneous wave equation, with the source term f
appearing in the initial conditions instead:

vt t (x, t ; s) = c2∆v(x, t ; s) for t > s,

v(x, s; s) = 0,

vt (x, s; s) = f (x, s).
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(b) Explain the physical intuition behind this!

(c) Using the known solution formulas for the homogeneous wave equation,
write down explicitly what the resulting solution formulas for the inhomoge-
neous problem above look like for n = 1 and n = 3.

11 The heat equation on a bounded domain

11.1 Fourier series solutions. Solve the heat equation ut = uxx on the in- (Answer.)

terval 0 < x < π, with the given initial and boundary conditions. (As usual, it
is understood that the solutions should be continuous on the whole domain
[0,π]× [0,∞).)

(a) ux (0, t ) = ux (π, t ) = 0 for t > 0, u(x,0) = x for 0 ≤ x ≤π.

(b) u(0, t ) = 0 and u(π, t ) = 1 for t > 0, u(x,0) = sin(x/2) for 0 ≤ x ≤π.

(Hint: Consider the difference between u and the equilibrium solution that
you expect to see in the limit as t →∞.)

(c) u(0, t ) = 0 and u(π, t ) = e−t for t > 0, u(x,0) = x/π for 0 ≤ x ≤π.

(Hint: Consider the difference between u and some (not too complicated)
function that satisfies the boundary conditions. That will give you homoge-
neous boundary conditions, but now with an inhomogeneous heat equation
instead. Solve it by expanding the sought function, and also the source term
in the equation, in the same type of series that you would use for the standard
heat equation, but with unknown time-dependent coefficients.)

11.2 A comparison principle. Notation: Let Ω ⊂ Rn be open and bounded, (Answer.)

writeΩT =Ω× (0,T ) for 0 < T ≤∞, and let

ΓT = {
(x, t ) ∈ ∂ΩT : x ∈ ∂Ω or t = 0

}
be the parabolic boundary ofΩT .

(a) Suppose that f and g are functions such that f ≤ g onΩ∞, that u and v are
continuous onΩ∞ and satisfy ut =∆u+ f and vt =∆u+g onΩ∞. Show that
if u ≤ v on ΓT , then u ≤ v onΩT .

(b) If v is continuous onΩ∞, satisfies vt = vxx +sin x for 0 < x <π and t > 0, and
if v(0, t) ≥ 0, v(π, t) ≥ 0 and v(x,0) ≥ sin x, show that v(x, t) ≥ (1− e−t )sin x
for 0 ≤ x ≤π and t ≥ 0.

11.3 Backwards heat equation. Consider the heat equation ut = uxx on the (Answer.)

interval 0 < x < π for negative time t < 0, with boundary conditions u(0, t) =
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u(π, t ) = 0 and “initial” (or maybe rather “final”) condition u(x,0) =C sin(nx) for
some positive integer n.

(a) Show that the problem has a solution (by finding one explicitly).

(b) This type of problem is ill-posed (i.e., not well-posed). Why?

11.4 Another maximum principle. (Answer.)

(a) Show that if u ≥ 0 and ut ≤∆u − cu, where c ≥ 0 is a constant, then

max
ΩT

u = max
ΓT

u.

(b) Can you find a counterexample with the condition u ≥ 0 removed?

12 The heat equation on Rn

12.1 Symmetries of the heat equation. If u(x, y) = f (x, t) is a solution of the (Answer.)

heat equation ut = uxx , show that so are the following:

(a) u(x, y) = f (x − c, t )

(b) u(x, y) = f (x, t − c)

(c) u(x, y) = f (cx,c2t )

(d) u(x, y) = e−cx+c2t f (x −2ct , t )

(e) u(x, y) = 1p
1+4ct

exp

( −cx2

1+4ct

)
f

(
x

1+4ct
,

t

1+4ct

)

(f) u(x, y) = 1p
4πt

exp

(
−x2

4t

)
f

(
x

t
,
−1

t

)

12.2 Heat polynomials. (Answer.)

(a) Check that the function u(x, t ) = exz+t z2
satisfies ut = uxx for every z ∈ R (or

z ∈ C, if you like).

(b) The heat polynomials pn(x, t ) are defined by the power series expansion

exz+t z2 =
∞∑

n=0
pn(x, t )

zn

n!
.

Compute the first few heat polynomials, for example by multiplying the
power series for exz and e t z2

, and check that they satisfy the heat equation.

(c) Play around with the transformations in exercise 12.1, with some heat polyno-
mial as a starting point, to generate some more impressive-looking solutions.
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12.3 Duhamel’s principle for the inhomogeneous heat equation. From exer- (Answer.)

cise 10.4, recall Duhamel’s principle for the wave equation ut t − c2∆u = f (x, t)
with zero initial conditions u(x, t) = ut (x,0) = 0. What do you think the corre-
sponding statement would be for the heat equation ut −D∆u = f (x, t ) with zero
initial condition u(x, t ) = 0? Formulate a conjecture, and prove it!

12.4 Heaviside initial data. The goal of this exercise is to solve the heat equa- (Answer.)

tion ut = uxx with initial values given by the Heaviside function H ,

u(x,0) = H(x) =


0, x < 0,

1/2, x = 0,

1, x > 0.

(Since H is discontinuous, we obviously cannot require the solution u to be
continuous on the whole closed domain (x, t) ∈ R× [0,∞), but let’s require it to
be continuous except at the origin, and to satisfy lim

t→0+ u(0, t ) = 1/2.)

(a) Since the PDE and the initial data on the x-axis are unchanged when doing the
transformation v(x, t ) = u(cx,ct 2), let’s seek a solution of the form u(x, t) =
g (x/

p
t) (for t > 0) which is also invariant under this transformation. What

ODE does g have to satisfy, in order for u to solve the heat equation?

(b) Find the general solution of that ODE, and use the initial data to pick out the
particular function that we want. Write down the resulting solution u(x, t),
and check that the initial condition really is satisfied in the sense specified
above.

(c) Compute ux (x, t ). Does the result look familiar?

12.5 Heat equation on a half-line. (Answer.)

(a) How would you solve the heat equation ut = uxx for x > 0 and t > 0 with
initial condition u(x,0) =ϕ(x) (a bounded function) for x > 0 and with the
Dirichlet boundary condition u(0, t ) = 0 for t > 0?

(b) The same question, but with the Neumann boundary condition ux (0, t ) = 0
for t > 0.

(c) Show that

v(x, t ) = x

t
p

t
e−

x2

4t

satisfies vt = vxx for x > 0 and t > 0 and that v(x, t) → 0 as x → 0+ with t > 0
fixed and also as t → 0+ with x > 0 fixed. What does that say about uniqueness
of the solution in part (a)? Is v bounded?
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13 Classification of second-order linear PDEs

13.1 Transformation to new variables. (Answer.)

(a) Consider the general second-order linear PDE in two variables:

A(x, y)uxx +2B(x, y)ux y +C (x, y)uy y

+D(x, y)ux +E(x, y)uy +F (x, y)u +G(x, y) = 0.

Transform this equation to new variables r = r (x, y), s = s(x, y), i.e., write out
the expressions for the coefficients in the transformed equation

Ã(r, s)ur r +2B̃(r, s)ur s + C̃ (r, s)uss

+ D̃(r, s)ur + Ẽ(r, s)us + F̃ (r, s)u +G̃(r, s) = 0

in terms of the original coefficients and of partial derivatives of r (x, y) and s(x, y).
(It is assumed that the change of variables is of class C 2 and invertible, and
that the inverse is also of class C 2.)

(b) Show that the type of the PDE (elliptic/parabolic/elliptic) at a given point
does not depend on the coordinate system. That is, show that the sign of
ÃC̃ − B̃ 2 at the point (r (x, y), s(x, y)) is the same as the sign of AC −B 2 at the
point (x, y).

(c) Suppose that the PDE is parabolic (AC −B 2 = 0, but not A = B = C = 0) in
some domain in R2. Explain how to find a change of variables which makes
B̃ = C̃ = 0.

13.2 Some hyperbolic PDEs. (Answer.)

(a) Show that the equation

y2 uy y −2x y ux y +2x ux = 0

is hyperbolic away from the coordinate axes, and compute the general C 2-
solution (say in the first quadrant x > 0, y > 0) by changing to characteristic
coordinates.

(b) Show that the equation

x y uxx + (x2 − y2)ux y −x y uy y +
(y3 −3x2 y)ux + (3x y2 −x3)uy

x2 + y2 = 8x y

is hyperbolic away from the origin, and compute the general C 2-solution (say
in the right half-plane x > 0) by changing to characteristic coordinates.

13.3 A parabolic PDE. (Answer.)
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(a) Show that the equation

4y2uxx −4yux y +uy y −2ux = 6y

is parabolic, and compute the general C 2-solution by changing to character-
istic coordinates (as in part (c) of exercise 13.1 above).

(b) Find the particular solution satisfying the conditions u(x,0) = x2 and uy (x,0) =
sin x.

13.4 A mixed-type PDE. (Answer.)

(a) Determine the type of the Tricomi equation1

y uxx +uy y = 0,

at each point (x, y) ∈ R2.

(b) In the region where the equation is hyperbolic, determine the characteristic
curves, and express the equation in characteristic coordinates.

(c) In the region where the equation is elliptic, express it in terms of the new
variables (w, z) = (x, 2

3 y3/2).

(For an idea of where the inspiration for this change of variables comes from,
see the remark in the answer for part (b).)

14 Generalized solutions

14.1 Distributions (on R). (Answer.)

(a) Show that H ′ = δ in the sense of distributions, where H is the Heaviside
function: H(x) = 0 if x < 0 and H(x) = 1 if x > 0. (Opinions vary regarding
what the value H(0) should be, but this value is irrelevant here.)

(b) Let f be a smooth function. Show that f δ = f (0)δ, and derive analogous
expressions for f δ′ and f δ′′.

(c) If u(x) = e−|x|, compute u′ and u′′ in the sense of distributions.

(d) Show that ( f T )′ = f ′T + f T ′ if f is a smooth function and T is a distribution.

(e) It can be shown that if T is a distribution such that T ′ = 0, then T =C (i.e., T
equals the distribution T f associated with the constant function f (x) =C )
for some C . Use this to find all distributions that satisfy the ODE T ′−3T = δ.

1This equation arises in the study of so-called transonic flow, like air flow around the wings of
a plane flying close to the speed of sound, where there are regions with subsonic flow as well as
regions with supersonic flow.
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(f) Consider the heat kernel S(x, t ) = 1p
4πt

exp
(
− x2

4t

)
, x ∈ R, t > 0. For each t > 0,

the function S(·, t) defines a distribution on R. Show that S(·, t) → δ in the
sense of distributions as t → 0+, i.e., that

∫
R S(x, t)ϕ(x)d x →ϕ(0) for every

test function ϕ.

14.2 Formal adjoint. For Lu as given below, write down L∗ϕ, where L∗ is the (Answer.)

formal adjoint of L, defined such that 〈Lu,ϕ〉 = 〈u,L∗ϕ〉 for test functions ϕ.

(a) Lu = ut −uxx .

(b) Lu = uxx +uy y .

(c) Lu = x y uxx +ux y y

14.3 The wave equation. Verify that u = f (x − ct) is a weak solution of the (Answer.)

wave equation ut t = c2uxx if f is locally integrable. (A similar argument works
for u = g (x +ct ), and by linearity it follows that u = f (x −ct )+ g (x +ct ) is a weak
solution.)

14.4 The inviscid Burgers equation. Find weak solutions (for t > 0) of the (Answer.)

inviscid Burgers equation
ut +uux = 0

with the following initial conditions u(x,0) = u0(x) :

(a)

u0(x) =


1, x ≤ 0,

1−x, 0 < x < 1,

0, x ≥ 1.

(b)

u0(x) =
{

0, x < 0,

x −1, x > 0.

14.5 Inviscid Burgers with damping. Consider the equation ut +uux +au = 0, (Answer.)

where a > 0 is a constant.

(a) Define what we should mean by a weak solutions of this PDE.

(b) Go through the derivation of the Rankine–Hugoniot jump condition to check
that the extra term au doesn’t make any difference; the velocity of a shock
must still be the average of the values of u to the left and to the right of the
jump, just like for the equation ut +uux = 0.

(c) In order to study the initial value problem with u(x,0) = u0(x), compute the
characteristic curve starting at (x, t , z) = (x0,0,u0(x0)).
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(d) Find a continuous weak solution with
0, x ≤ 0,

x, 0 < x < 1,

1, x ≥ 1.

(e) Find a shock wave solution with{
1, x < 0,

0, x > 0.

(f) Can you give a condition for u0(x) which will guarantee that no shocks are
formed?

14.6 The Cole–Hopf transformation. (Answer.)

(a) Let µ> 0. Show that positive solutions v(x, t ) of the heat equation vt =µuxx

are in one-to-one correspondence with solutions ϕ(x, t) of the potential
Burgers equation

ϕt + 1
2ϕ

2
x =µϕxx

via the change of variables

v(x, t ) = exp

(
− 1

2µ
ϕ(x, t )

)
⇐⇒ ϕ(x, t ) =−2µ ln v(x, t ).

(b) Show that if ϕ satisfies the potential Burgers equation from part (a), then

u(x, t ) =ϕx (x, t )

satisfies the Burgers equation

ut +uux =µuxx .

(c) Conversely, show that if u satisfies the Burgers equation, then there is a
function ϕ such that u =ϕx and ϕ satisfies the potential Burgers equation.

(d) Combine these results to deduce the Cole–Hopf transformation: If v is a
positive solution of the heat equation, then

u = ∂x (−2µ ln v) =−2µvx /v

satisfies the Burgers equation ut +uux = µuxx , and every solution of the
Burgers equation arises in this way for some positive solution v of the heat
equation.
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15 Numerical methods

15.1 Explicit finite difference scheme. Consider the heat equation ut = uxx (Answer.)

for 0 < x < 1 and t > 0, with zero boundary values u(0, t) = u(1, t) = 0 and initial
condition u(x,0) = sin(πx).

(a) Compute the exact solution u(x, t ).

(b) Recall the standard explicit finite difference scheme for the heat equation,

U (k,m +1)−U (k,m)

τ
= U (k +1,m)−2U (k,m)+U (k −1,m)

h2 ,

where U (k,m) is the approximation to the solution u(x, t) at the grid point
(x, t ) = (kh,mτ). For a very crude approximation, take h = 1/2, so that there
are just two subintervals (0, 1

2 ) and ( 1
2 ,1) and one interior grid point (1,m)

at each time step m. (The boundary values are U (0,m) = 0 = U (2,m) for
all m ≥ 0, of course.) What’s the appropriate initial value U (1,0)? Compute
U (1,m) exactly in terms of τ, for m ≥ 0.

(c) For a slightly better approximation, take h = 1/4, so that there are three
internal grid points (1,m), (2,m) and (3,m) at each time step. What are
the appropriate initial values U (1,0), U (2,0) and U (3,0)? Compute U (1,m),
U (2,m) and U (3,m) exactly in terms of τ, for m ≥ 0.

(d) The same as in part (c), but with u(x,0) = sin(3πx).

(e) The same as in part (c), but with u(x,0) = sin(4πx).

(f) The same as in part (c), but with u(x,0) = sin(5πx).

15.2 Crank–Nicolson scheme. Repeat exercise 15.1 with the Crank–Nicolson (Answer.)

scheme

U (k,m +1)−U (k,m)

τ
= 1

2

U (k +1,m)−2U (k,m)+U (k −1,m)

h2

+ 1

2

U (k +1,m +1)−2U (k,m +1)+U (k −1,m +1)

h2 .

15.3 Neumann condition. In the explicit finite difference scheme for the heat (Answer.)

equation, how would you handle a Neumann-type boundary condition such as
ux (0, t ) = g (t )?

15.4 Solving tridiagonal linear systems. Show how to factor a tridiagonal n×n (Answer.)

matrix A into a product of two bidiagonal n×n matrices L and R , as follows (with
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n = 5, for example; omitted matrix entries are understood to be zero):
a1 b1

c1 a2 b2

c2 a3 b3

c3 a4 b4

c4 a5


︸ ︷︷ ︸

A

=


1
l1 1

l2 1
l3 1

l4 1


︸ ︷︷ ︸

L


m1 r1

m2 r2

m3 r3

m4 r4

m5


︸ ︷︷ ︸

R

.

Explain how to use this to solve the tridiagonal linear system Ax = d with an
amount of work proportional to n.

15.5 FEM solution of Poisson’s equation in one dimension. (Answer.)

(a) Consider the ODE −u′′(x) = f (x) for 0 < x < 1, with Dirichlet boundary con-
ditions u(0) = u(1) = 0. Write down the equations that determine the FEM
solution with regularly space mesh points at x = {0, 1

3 , 2
3 ,1}.

(b) Compare the equations in part (a) with those that you would get if you instead
used a finite-difference approximation of u′′.

(c) Do the same as in part (a), but with mixed boundary conditions u(0) = 0 and
u′(1) = 0.

(d) Repeat the previous parts with an irregularly spaced mesh, x = {0, 1
3 , 1

2 ,1}.

15.6 Element stiffnesses. For a triangulation of a domain in R2, consider a (Answer.)

particular triangle T with vertices at nodes number a, b and c, and angles α, β
and γ, respectively, at these nodes. Show that the element stiffnesses, which are
defined as

K T
i j =

∫
T
∇ϕi (x, y) ·∇ϕ j (x, y)d xd y

where ϕi (x, y) is the standard “tent” basis function at node i , are given by

K T
aa = 1

2 (cotβ+cotγ), K T
bc =−1

2 cotα,

and similarly for the other vertices (by symmetry).

16 Separation of variables in higher dimensions

16.1 Some properties of the Laplace operator. LetΩ be a (sufficiently nice) (Answer.)

bounded domain in Rn , and consider the eigenvalue problem −∆u = λu in Ω,
with boundary values u = 0.

(a) Show that the operator −∆ is symmetric when acting on functions that are
zero on the boundary:

∫
Ω(−∆u) v dV = ∫

Ωu (−∆v)dV .
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(b) Show that the operator −∆ is also positive definite, that is,
∫
Ω(−∆u)u dV > 0

for all u that are zero on the boundary but not identically zero inΩ.

(c) Show that eigenfunctions corresponding to different eigenvalues are orthog-
onal:

∫
Ωui u j dV = 0 if λi ̸=λ j .

(d) Show using positive definiteness that the eigenvalues λ are positive. (You
may assume that the eigenvalues are real to begin with; this follows from
symmetry, as was shown in the lecture.)

(e) What changes in the questions above if we replace the Dirichlet boundary
condition u = 0 with the Neumann boundary condition ∂u/∂n = 0?

16.2 The heat equation on a square. Solve (in the form of a double Fourier se- (Answer.)

ries) the heat equation ut =∆u on the squareΩ= (0,π)2 with boundary condition
u(x, y, t) = 0 for (x, y) ∈ ∂Ω and initial condition u(x, y,0) = x(π− x)sin2 y . (You
may save a bit of work if you reuse some of the calculations from exercise 9.2.)

16.3 Circular sector. (Answer.)

(a) Let 0 < β < 2π. Use separation of variables in polar coordinates (r,ϕ) to
determine the eigenvalues and eigenfunctions of the problem −∆u =λu on
the sector r < a, 0 <ϕ<β, with u = 0 on the boundary.

(b) Next, read the text The MathWorks Logo is an Eigenfunction of the Wave
Equation and see how much you are able to understand.

16.4 Eigenfunctions as minimizers. Consider the integral (Answer.)

I (w) =
∫ 1

0
w ′(x)2d x,

where

w ∈C 2,
∫ 1

0
w(x)2d x = 1, w(0) = w(1) = 0.

What’s the smallest value that I (w) can take, and for which function(s) w(x) does
that happen?

16.5 Eigenfunctions in a ball. (Answer.)

(a) Consider the eigenvalue problem −∆u = λu for the origin-centered ball
in R3 of radius a, with u = 0 on the boundary. Separate the variables in
spherical coordinates, u = R(r )Θ(θ)Φ(ϕ). (See exercise 1.11 for the Laplacian
expressed in spherical coordinates.)

(b) In the equation for R(r ), make the substitution R(r ) =Q(
p
λr )/

p
r and show

that this leads to a Bessel ODE (with what parameter?) for Q(ρ).

(c) In the equation forΘ(θ), derive the ODE that results from making the substi-
tution z = cosθ.
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17 Dispersive waves and solitons

17.1 Dispersion relations. Determine whether the following PDEs are disper- (Answer.)

sive, by investigating the dispersion relation ω=ω(k) for harmonic waves

u(x, t ) = e i (kx−ωt ).

For those that are, compute the phase and group velocities:

cphase =
ω(k)

k
, cgroup =ω′(k).

(All parameters appearing in the equations are assumed to be positive.)

(a) The heat equation, ut = uxx .

(b) The advection equation, ut + cux = 0.

(c) The wave equation, ut t − c2uxx = 0.

(d) The linearized Korteweg–de Vries equation, ut + cux +buxxx = 0.

(e) The linearized Boussinesq equation, ut t − c2uxx = b2uxxt t .

(f) The Klein–Gordon equation, ut t − c2uxx +m2u = 0.

(g) The telegraph equation, ut t − c2uxx +αut +m2u = 0.

17.2 Definition of “dispersive”. For a PDE (linear, constant-coefficient) to be (Answer.)

counted as dispersive, we require that the dispersion relation ω=ω(k) satisfies
ω′′(k) ̸≡ 0; in other words, it’s not of the form ω = ck +d . The case ω = ck is
clearly non-dispersive, since the phase velocity and the group velocity are both
equal to c , so that wave packets travel undistorted. But why do you think the case
ω= ck +d with d ̸= 0 is excluded too?

17.3 Interference. Given the dispersion relation ω=ω(k), consider the super- (Answer.)

position of two harmonic waves with equal amplitude but slightly different wave
numbers k −δ and k +δ, where δ is small (0 < δ≪ k):

u(x, t ) = cos
(
(k −δ)x −ω(k −δ)t

)
+cos

(
(k +δ)x −ω(k +δ)t

)
.

Approximate ω(k ± δ) with ω(k) ± δω′(k), and use cos(A − B) + cos(A + B) =
2cos A cosB to rewrite the sum as a product. Conclusions? What does the wave
u(x, t ) look like?

17.4 Solution involving Airy functions. Similarly to what we did with the heat (Answer.)

equation in exercise 12.4, consider the dispersive wave equation ut +uxxx = 0
with initial condition u(x,0) = H(x) (the Heaviside function). Since the PDE and
the initial data on the x-axis are invariant under the transformation v(x, t) =
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u(cx,ct 3), let’s seek a solution of the form u(x, t ) = g (x/(3t )1/3) for t > 0. (Writing
3t instead of t here is just to make life a little simple later on.) Derive an ODE
for the function g and try to find the general solution, as well as the particular
solution that matches the given initial data as t → 0+.

17.5 Dispersion relation for water surface waves. Consider the equations (Answer.)

from linear water wave theory, modelling surface gravity waves over a flat bottom
at depth h:

∆ϕ= 0, −h < z < 0,

∂ϕ

∂z
= 0, z =−h,

∂2ϕ

∂t 2 + g
∂ϕ

∂z
= 0, z = 0,

where ϕ(x, y, z, t) is the velocity potential (i.e., u =∇ϕ is the fluid velocity), and
the shape of the surface wave is given by

z = ζ(x, y, t ) =− 1

g

∂ϕ

∂t
(x, y,0, t ).

Determine the dispersion relation ω=ω(k) for harmonic wave solutions of the
form ϕ(x, y, z, t) = Z (z)e i (kx−ωt ). What approximations do you obtain in the
limiting cases 0 < k ≪ h (long wavelength compared to the depth, or equiva-
lently shallow water compared to the wavelength) and k →∞ (very short waves
compared to the depth, or equivalently very deep water)?

17.6 KdV solitary wave. Show that in order for u(x, t) = f (x − ct) to be a (Answer.)

travelling wave solution to the Korteweg–de Vries equation ut +uux +uxxx = 0,
the function f (ξ) must satisfy the ODE

−c f ′(ξ)+ f (ξ) f ′(ξ)+ f ′′′(ξ) = 0.

Solve this ODE under the assumption that f (ξ), f ′(ξ) and f ′′(ξ) tend to zero as
ξ→±∞, to find the solitary wave solution

u(x, t ) = 3c

cosh2
(p

c
2 (x − ct −x0)

) ,

where x0 ∈ R is an arbitrary constant (the location of the wave crest at t = 0), and
the wave velocity c must be positive.

17.7 The sine–Gordon equation. (Answer.)

(a) The sine–Gordon equation,

ut t −uxx + sinu = 0,

is another nonlinear PDE which, like the KdV equation, is an integrable
system. Find all solutions of the form u(x, t ) = f (x −ct ) such that u(x, t ) → 0
as x →−∞ and u(x, t ) → 2π as x →+∞.
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(The quantity u in this equation represents an angle in applications – after all,
we are taking the sine of it – so going from 0 to 2π takes you back to where you
started. This type of solution, known as a kink, can therefore be considered
as a type of solitary wave solution.

(b) Show that u(x, t) = 4arctan
T (t )

X (x)
satisfies the sine–Gordon equation if and

only if

X
(
(X 2 +T 2)Tt t −2T T 2

t

)+T
(
(X 2 +T 2)Xxx −2X X 2

x

)+T X (X 2 −T 2) = 0,

or equivalently

X 2 Tt t

T
+ (X Xxx −2X 2

x +X 2)+T 2 Xxx

X
+ (T Tt t −2T 2

t −T 2) = 0.

(c) Using part (b), verify that

u(x, t ) = 4arctan

p
1−ω2 cos(ωt )

ωcosh
(p

1−ω2 x
) , 0 <ω< 1,

satisfies the sine–Gordon equation.

(This type of solution is called a breather – why?)

18 TODO: Some additional topic

19 TODO: Some additional topic
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Hints, comments, answers

1.1

(a) By assumption, f ′(x) exists for all x in some open interval around a, and the
limit

f ′′(a) = lim
h→0

f ′(a +h)− f ′(a)

h

exists, as a positive real number (not +∞). We also have f ′(a) = 0 by assump-
tion, so we know that

0 < f ′′(a) = lim
h→0

f ′(a +h)

h
.

If we (for example) take ε= 1
3 f ′′(a) > 0 in the ε-δ definition of limit, we get a

δ> 0 such that
2
3 f ′′(a) < f ′(a +h)

h
,

for all h in the punctured interval 0 < |h| < d , and hence (for the same h) also

0 < f ′(a +h)

h
.

This implies that f ′(a +h) < 0 for −δ< h < 0 and f ′(a +h) > 0 for 0 < h < δ,
which shows that f has a strict local minimum at a, as claimed:

x a −δ a a +δ
f ′(x) − 0 +

f (x) ↘ strict
local
min.

↗

For the case f ′′(a) < 0, go through a similar argument, or simply apply the
above result to the function − f .

(b) If f ′(a) ̸= 0 then f cannot have a local extremum at a, no matter what f ′′(a)
is. And if f ′(a) = 0, then since f ′′(a) > 0 by assumption, f has a strict local
minimum at a by the second derivative test. In neither case does f have a
local maximum at a.

1.2 One such example is

u(x, y) =


x y

x2 + y2 , (x, y) ̸= (0,0),

0, (x, y) = (0,0).

For (x, y) ̸= (0,0) we can simply compute

uxx (x, y) = ∂2

∂x2

(
x y

x2 + y2

)
= ·· · , uy y (x, y) = ∂2

∂y2

(
x y

x2 + y2

)
= ·· ·
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using the quotient rule for derivatives, so uxx and uy y (and all other partial
derivatives of all orders too, for that matter) exist away from the origin. And at
the origin, we have uxx (0,0) = 0 and uy y (0,0) = 0 for the simple reason that u is
constant (zero) along the x-axis and along the y-axis. But u is discontinuous at
the origin, since (for example) u(t , t ) = t 2

t 2+t 2 = 1
2 for all t ̸= 0, so that u(x, y) does

not tend to u(0,0) = 0 as (x, y) → (0,0).

1.3 Consider an arbitrary point (a,b) ∈ D . Since uxx+uy y is positive at that point
by assumption, at least one of the two terms uxx and uy y must be positive there.
Suppose it’s uxx (a,b) that’s positive. If the two-variable function u would have a
local maximum at (a,b), then the one-variable function f (x) = u(x,b) would have
a local maximum at a. But f ′′(x) = uxx (x,b), and in particular f ′′(a) = uxx (a,b) >
0, so by exercise 1.1(b) f cannot have a local maximum at a, and hence u cannot
have a local maximum at (a,b). Similarly if uy y (a,b) > 0.

1.4

∂ f

∂x
(a,b) = ∂g

∂u

(
α(a,b),β(a,b)

) ∂α
∂x

(a,b)+ ∂g

∂v

(
α(a,b),β(a,b)

) ∂β
∂x

(a,b),

∂ f

∂y
(a,b) = ∂g

∂u

(
α(a,b),β(a,b)

) ∂α
∂y

(a,b)+ ∂g

∂v

(
α(a,b),β(a,b)

) ∂β
∂y

(a,b).

1.5

(a) ∂u/∂x = 2x and ∂x/∂u = 0, so the product is not equal to 1. See part (b) for
an explanation.

(b) The important thing to understand here is that when we speak of (x, y) and
(u, v) forming coordinate systems, we establish a context which is needed in
order to interpret the notation correctly, namely that y is the “partner variable”
of x, the quantity which is supposed to be held constant when computing
∂u/∂x; this “hidden information” is not visible in the notation, since y isn’t
mentioned there. And likewise v is the “partner variable” of u, so when you
are asked to compute ∂x/∂u, it is understood that it is v that is supposed to
be held constant.

So from the given formulas u = x2 −3y and v = x, we find directly (treating y
as a constant when computing the x-derivatives, and vice versa) that

∂(u, v)

∂(x, y)
=

(
ux uy

vx vy

)
=

(
2x −3
1 0

)
,

and in particular ux = ∂u/∂x = 2x.

For the other derivatives, we invert the change of variables to express x and y
as functions of u and v :

x = v, y = v2 −u

3
.
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Using these formulas, we find (treating v as a constant when computing the
u-derivatives, and vice versa) that

∂(x, y)

∂(u, v)
=

(
xu xv

yu yv

)
=

(
0 1

−1/3 2v/3

)
,

and in particular xu = ∂x/∂u = 0.

A general fact in this situation, where we have a mapping from (u, v) to (x, y),
and the inverse mapping from (x, y) back to (u, v), is that their Jacobian
matrices must be each other’s matrix inverses (this follows from the chain
rule). In other words, their matrix product must be the identity matrix. And
it’s easy to verify that this indeed holds here:

∂(u, v)

∂(x, y)

∂(x, y)

∂(u, v)
=

(
2x −3
1 0

)(
0 1

−1/3 2v/3

)
=

(
1 2x −2v
0 1

)
= [

v = x
]= (

1 0
0 1

)
.

(c) The chain rule gives

∂ f

∂x
= ∂ f

∂u

∂u

∂x
+ ∂ f

∂v

∂v

∂x
= 2x

∂ f

∂u
+ ∂ f

∂v
,

which is obviously different from ∂ f
∂v , because of the extra term 2x ∂ f

∂u . Expla-
nation: Changing x (or v) keeping y fixed is not the same as doing it keeping
u fixed.

1.6 Here it’s helpful to use the idea from problem 1.4, and introduce named
functions that describe some of the relations between the physical quantities. If

E = f (T,V ) and V = g (T, p),

then
E = f

(
T, g (T, p)

)= h(T, p),

so the chain rule gives

∂h

∂T
(T, p) = ∂ f

∂T

(
T, g (T, p)

)+ ∂ f

∂V

(
T, g (T, p)

) ∂g

∂T
(T, p),

which is exactly what it means when one writes(
∂E

∂T

)
p
=

(
∂E

∂T

)
V
+

(
∂E

∂V

)
T

(
∂V

∂T

)
p

.

1.7

(a) Suppose that F is of class C 1, and that (a,b,c) ∈ R3 is a point that satisfies the
equation F = 0. Then, if Fx (a,b,c) ̸= 0, the implicit function says that there
is a neighbourhood U of the point (b,c) ∈ R2 and a neighbourhood V of the
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point a ∈ R, such that for each (y, z) ∈U , there is exactly one x ∈V such that
F (x, y, z) = 0; in other words, there is a function which given the input (y, z) ∈
U outputs that value x ∈V . Moreover, this function x = f (x, y), with U as its
domain of definition, is of class C 1. Similarly, if Fy (a,b,c) ̸= 0 there is such a
function y = g (x, z), and if Fz (a,b,c) ̸= 0 there is such a function z = h(x, y).
So we should assume that F ∈C 1 and that all three partial derivatives Fx , Fy

and Fz are nonzero at any point (a,b,c) such that F (a,b,c) = 0.

(b) Using the notation from part (a) above, implicit differentiation with respect
to y of the identity F ( f (y, z), y, z) = 0, (y, z) ∈U , shows that

fy (b,c) =−Fy (a,b,c)

Fx (a,b,c)
,

and (as you should be able to infer from the context) this is what is meant by
the somewhat imprecise notation “∂x/∂y” in the question. Similarly for the
other factors. Thus,

∂x

∂y
· ∂y

∂z
· ∂z

∂x
= fy (b,c) · gz (a,c) ·hx (a,b)

=
(
−Fy (a,b,c)

Fx (a,b,c)

)(
−Fz (a,b,c)

Fy (a,b,c)

)(
−Fx (a,b,c)

Fz (a,b,c)

)
=−1,

as was to be shown.

1.8 According to the given formulas, the values (ξ,η) = (1,0) correspond to
(x, y) = (cosα, sinα) (the red dot in the picture), and the values (ξ,η) = (0,1)
correspond to (x, y) = (−sinα,cosα) = (

cos(α+ π
2 ),sin(α+ π

2 )
)

(the blue dot). So
the (ξ,η) coordinate system lies rotated by the angle α with respect to the (x, y)
coordinate system:

x

y
ξ

η

α

The chain rule gives uξ = ux xξ+uy yξ = ux cosα+uy sinα and uη = ux xη+uy yη =
−ux sinα+uy cosα, and then

uξξ = uxx cos2α+2ux y sinαcosα+uy y sin2α,

uηη = uxx sin2α−2ux y sinαcosα+uy y cos2α,
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which implies

uξξ+uηη = uxx ·1+ux y ·0+uy y ·1 = uxx +uy y ,

since cos2α+ sin2α= 1.

1.9

(a) The chain rule gives ur = ux xr +uy yr = ux cosϕ+uy sinϕ and uϕ = ux xϕ+
uy yϕ = ux (−r sinϕ)+uy r cosϕ, which can be written with a rotation matrix
as (

ur

uϕ/r

)
=

(
cosϕ sinϕ
−sinϕ cosϕ

)(
ux

uy

)
.

(b) Inverting the rotation matrix gives(
ux

uy

)
=

(
cosϕ −sinϕ
sinϕ cosϕ

)(
ur

uϕ/r

)
,

so that ux = cosϕur − sinϕ
r uϕ and uy = sinϕur + cosϕ

r uϕ. Written in terms
of differential operators, this takes the form

∂
∂x = cosϕ ∂

∂r −
sinϕ

r
∂
∂ϕ ,

∂
∂y = sinϕ ∂

∂r +
cosϕ

r
∂
∂ϕ .

Remark. One may notice that the relationship of the differential operators ∂
∂r and

1
r
∂
∂ϕ to the operators ∂

∂x and ∂
∂y is the same as the relationship of the unit vector

fields er and eϕ (sometimes denoted by r̂ and ϕ̂) to the constant unit vector fields
ex and ey (or x̂ and ŷ, if you prefer). This is because these differential operators
represent directional derivatives in the directions of the respective vector fields. The
reason for the factor 1/r before ∂/∂ϕ here is that a change of dϕ in the value of the
coordinate ϕ makes the point with polar coordinates (r,ϕ) move a distance of r dϕ
(rather than just dϕ) in the x y-plane, so that the derivative ∂/∂ϕ, which measures
sensitivity to changes in the value of θ, gives a value which is r times greater than the
physically relevant directional derivative, which measures sensitivity to movements
of the point by a certain distance in the angular direction.

(c) Using part (b), we find

uxx = (
∂
∂x

)2u = (
cosϕ ∂

∂r −
sinϕ

r
∂
∂ϕ

)2u

= (
cosϕ ∂

∂r −
sinϕ

r
∂
∂ϕ

)(
cosϕ ∂u

∂r − sinϕ
r

∂u
∂ϕ

)
= cos2ϕ ∂2u

∂r 2 − 2sinϕcosϕ
r

∂2u
∂r∂ϕ + sin2ϕ

r 2
∂2u
∂ϕ2 + sin2ϕ

r
∂u
∂r + 2sinϕcosϕ

r 2
∂u
∂ϕ

= cos2ϕur r − 2sinϕcosϕ
r urϕ+ sin2ϕ

r 2 uϕϕ+ sin2ϕ
r ur + 2sinϕcosϕ

r 2 uϕ,

and similarly

uy y = sin2ϕur r + 2sinϕcosϕ
r urϕ+ cos2ϕ

r 2 uϕϕ+ cos2ϕ
r ur − 2sinϕcosϕ

r 2 uϕ,

ux y = sinϕcosϕur r + cos2ϕ−sin2ϕ
r urϕ− sinϕcosϕ

r 2 uϕϕ

− sinϕcosϕ
r ur − cos2ϕ−sin2ϕ

r 2 uϕ.
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In particular, since cos2ϕ+ sin2ϕ= 1, the Laplacian becomes

∆u = uxx +uy y = ur r + 1
r 2 uϕϕ+ 1

r ur .

1.10

(a) Easy, it’s just X = ux and Y = uy in the formula for the divergence.

(b) We have ∇u = (ur / 1 )er + (uϕ/ r )eϕ to begin with, so we take R = ur and
Φ= uϕ/r in the formula for the divergence to obtain

∇·∇u = 1

1 · r

(
∂
∂r

(
ur · r

)
+ ∂
∂ϕ

(
1 ·uϕ/r

))
=

∂
∂r (r ·ur )

r
+uϕϕ

r 2 = ur r+ 1
r 2 uϕϕ+ 1

r ur .

(Derivations of the formulas for gradient and divergence in orthogonal coordinates
can be found in most vector calculus textbook. The proof for the divergence is
based on computing the flux of the vector field through a ”curvilinear box” using the
divergence theorem, and then letting the side lengths of the box tend to zero.)

1.11 With R = ur / 1 ,Θ= uθ/ r andΦ= uϕ/ r sinθ in the formula for the diver-
gence, we find

∇·∇u = 1

1 · r · r sinθ

(
∂
∂r

(
ur · r · r sinθ

)
+ ∂
∂θ

(
1 · uθ

r · r sinθ
)
+ ∂
∂ϕ

(
1 · r · uϕ

r sinθ

))

=
∂
∂r (r 2 ·ur )

r 2 +
∂
∂θ (sinθ ·uθ)

r 2 sinθ
+ uϕϕ

r 2 sin2θ

= ur r + 1
r 2 uθθ+ 1

r 2 sin2 θ
uϕϕ+ 2

r ur + cosθ
r 2 sinθ uθ.

1.12 The chain rule gives ux (x, y) = g ′(xe y )e y and uy (x, y) = g ′(xe y ) xe y , so

xux −uy = x · g ′(xe y )e y − g ′(xe y ) xe y = 0,

since the two terms cancel.

Remark. It’s very important here to write the derivative of g simply as g ′, and not as g ′
x or

g ′
y or something like that. The function g is, in itself, a function of just one variable, say

something like g (t) = sin t . The two-variable function u(x, y) is formed by composing
this one-variable function g (t) with the two-variable function t = T (x, y) = xe y , and

what the chain rule says is that ∂u
∂x = d g

d t
∂T
∂x . For example, if u(x, y) = sin(xe y ), then

ux (x, y) = cos(xe y )e y , where g (t) = sin t and g ′(t) = cos t (the ordinary one-variable
derivative).
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1.13

(a) Since u is assumed to be of of class C 1, it is differentiable, so we can use the
chain rule to get ux = uξξx +uηηx = uξ+e y uη and uy = uξξy +uηηy = xe y uξ.
So we find

xux −uy = 2x2

⇐⇒ x(uξ+e y uη)−xe y uξ = 2x2

⇐⇒ xuξ = 2x2

⇐⇒ uξ = 2x (we can cancel x, since x > 0)

⇐⇒ uξ = 2ξ

⇐⇒ u = ξ2 + g (η),

where g (η) is a completely arbitrary function of η as far as the last step is
concerned. But in order to make u(x, y) a C 1-function of two variables, we
need to require that g (η) be a C 1-function of one variable. Since x > 0, we also
have η = xe y > 0, so only the values g (η) for η > 0 are relevant here. Going
back to the original variables, we thus obtain the general solution

u(x, y) = x2 + g (xe y ), x > 0,

where g is an arbitrary C 1-function of one (positive) variable.

(Remark. Note that since the PDE is linear, the solution has the structure
“one particular solution to the PDE”, namely upart(x, y) = x2, plus “the general
solution to the homogeneous PDE xux −uy = 0”, namely uhom(x, y) = g (xe y ),
g ∈C 1; cf. problem 1.12.)

(b) We need to determine what the function g (η) must be (for all η> 0) in order
for the given condition u(1, y) = e−y to be satisfied identically (i.e., for all
y ∈ R). Plugging x = 1 into the general solution u(x, y) = x2+g (xe y ) from part
(a), we see that the condition becomes

u(1, y) = 12 + g (1 ·e y ) = e−y ⇐⇒ g (e y ) = 1

e y −1,

which means that we must have

g (η) = 1

η
−1, η> 0.

Plugging this function g back into the general solution u(x, y) = x2 + g (xe y )
from part (a), we find the answer

u(x, y) = x2 + 1

xe y −1, x > 0.
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(c) Now the condition is u(1, y) = 1+g (e y ) = f (y), so g (e y ) = f (y)−1, and hence

g (η) = f (lnη)−1, η> 0.

Plugging this function g back into the general solution u(x, y) = x2 + g (xe y )
from part (a), we find the answer

u(x, y) = x2 + f
(
ln(xe y )

)−1 = x2 + f (y + ln x)−1, x > 0.

2.1 The characteristic curve
(
x(t ), y(t )

)
starting at the point (x, y) = (1, s) (where

u = f (s) is known) is determined by the ODEs

ẋ = x,

ẏ =−1,

x(0) = 1,

y(0) = s,

with the solution
x(t ) = e t , y(t ) = s − t .

The PDE xux −uy = 2x2 now turns into an ODE along the characteristic curve:

d
d t u

(
x(t ), y(t )

)= 2(e t )2, u
(
x(0), y(0)

)= f (s),

with the solution
u

(
x(t ), y(t )

)= e2t + f (s)−1,

i.e.,
u(e t , s − t ) = e2t + f (s)−1.

From (x, y) = (e t , s − t ) we get (t , s) = (ln x, y + ln x), and thus the answer is

u(x, y) = x2 + f (y + ln x)−1, x > 0.

2.2

(a) The characteristic curve (x(t), y(t)) starting at (x, y) = (0, s) is given by the
ODEs ẋ = 1+ x2 and ẏ = 1, with x(0) = 0 and y(0) = s. We can solve them
separately, to obtain x(t) = tan t (for |t | < π/2) and y(t) = t + s. Along that
characteristic, z(t ) = u(x(t ), y(t )) satisfies ż = 0 and z(0) = f (s), so z(t ) = f (s).
The values of t and s corresponding to a given point (x, y) are t = arctan x and
s = y−arctan x, so the value of u at that point is given by f (s) = f (y−arctan x).

Answer: u(x, y) = f (y −arctan x).

(b) Answer: u(x, y) = 1
4 ex (e2y −e−2y ).

(c) Answer, in terms of polar coordinates: u(r cosϕ,r sinϕ) = f (r )eϕ (not glob-
ally defined).
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(d) Answer: u(x, y, z) = f (xe−z , ye−z )ez .

(e) Answer: u(x, y) = f (x − y)

1− y f (x − y)
(not globally defined).

(f) Answer: u(x, y) = f
(
x/

√
1+ y2

)+ 1
2 ln(1+ y2).

(g) Answer in the first case: u(x, y) = ln(e y − x2), for y > ln(x2) (not globally
defined).

Answer in the second case: u(x, y) = g1(e y −x2) for x ≥ 0 and u(x, y) = g2(e y −
x2) for x < 0, where g1 and g2 are any C 1-functions on R such that g1(s) =
g2(s) = s for s ≥ 0.

In this problem, the characteristic curves in general have the form e y −x2 =C ,
but only the ones with C > 0 pass through the y-axis, so the given initial
values u(0, y) only propagate into the region e y −x2 > 0, i.e., the region above
the curve y = 2ln |x|. In the first case, the solution u tends to −∞ as (x, y)
approaches that curve, and therefore cannot be extended past that singularity.
But in the second case, u tends to zero, so we can extend the solution to
the whole plane as we like, as long as it’s of class C 1 and constant on each
characteristic. (Note that for each C ≤ 0, there are actually two characteristics
x =±pe y −C , one in the right half-plane x > 0 and one in the left half-plane
x < 0.)

3.1

(a) The boundary conditions obviously mean that the temperature is prescribed
at the ends of the rod. One can imagine the rod being connected to “infinite
heat reservoirs” of temperature A and B , respectively. Steady-state solution:
u(x, t ) = A+ (B − A)x, for 0 ≤ x ≤ 1.

(b) The heat equation is a conservation law ut +∂x (−ux ) = 0, where the term J =
−ux describes the heat flux (Fick’s law). A positive/negative value of J means
that heat is flowing in the positive/negative x direction. So the boundary
conditions, with the signs chosen in that particular way, mean that the flux
into the rod is prescribed to be A at x = 0 and B at x = 1. (Of course, negative
values of A or B mean that the flux is actually going out of the rod.)

In particular, the case A = B = 0 means that the ends of the rod are insulated
(no heat flows into or out of the rod). In this case, the total amount of heat
energy in the rod should be conserved over time, and the same thing if B =−A,
so that heat leaves the rod at one endpoint at the same rate as it enters the
rod at the other endpoint. Indeed,

d

d t

∫ 1

0
u(x, t )d x =

∫ 1

0
ut (x, t )d x =

∫ 1

0
uxx (x, t )d x = [ux (x, t )]1

x=0 = B − (−A),

so the integral is time-independent if (and only if) A+B = 0. And in this case,
the steady-state solution is u(x, t ) = B x +C for 0 ≤ x ≤ 1, where the value of C
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can be determined from the constant value of
∫ 1

0 u(x, t)d x. If A+B ̸= 0, no
steady-state solution exists (the total amount of heat energy in the rod tends
to ∞ or −∞ as t →∞).

(c) The temperature at the left endpoint is prescribed to be A, and the heat flux
into the rod at the right endpoint is prescribed to be B . Steady-state solution:
u(x, t ) = A+B x for 0 ≤ x ≤ 1.

3.2

(a) T (t ) = e−n2t .

(b) u(x, t ) = 17e−t sin x −5e−9t sin(3x).

3.3

(a) T (t ) = cos(nt ).

(b) u(x, t ) = 17cos t sin x −5cos(3t )sin(3x).

3.4 In the new variables, the PDE becomes uξη = 0. The general solution is
u(x, t ) = f (x+ct )+g (x−ct ), where f ∈C 2(R) and g ∈C 2(R), so it’s a superposition
of two travelling waves with speed c, one moving to the left and the other to the
right.

3.5 The verification is just computation. Regarding the limit, letting t → 0+

with x fixed, we find that u(x, t) tends to 0 if x ̸= 0 and to ∞ if x = 0. (And it
does it in such a way that

∫ ∞
−∞ u(x, t) = 1 for all t > 0, so the limit in the sense of

distributions is the Dirac delta δ(x), for those of you who are familiar with that
already. So this solution describes how an “infinite concentration of heat energy
at a point” would spread out over time, in an infinitely long rod.)

3.6 A more detailed hint: (ξ,τ) = (x − ct , t ). Answer: u(x, t ) = f (x − ct )e−r t .

4.1

(a) —

(b) Proof sketch: For a given vector h, let g (t ) = f (a+ th). Maclaurin expansion
of g with second-order remainder term on Lagrange’s form gives

g (1) = g (0)+ g ′(0)+ 1
2 g ′′(θ),

for some θ ∈ (0,1). By the chain rule, this is the same as

f (a+h) = f (a)+∇ f (a)︸ ︷︷ ︸
=0

·h+ 1
2 hT H(a+θh)h.

Since f ∈C 2 by assumption, all entries of the Hessian matrix H(x) are con-
tinuous functions, so if H(a) is positive definite, then so is H(a+θh) if |h| is
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sufficiently small. And then, for all nonzero h of sufficiently small length, we
have

f (a+h)− f (a) = 1
2 hT H(a+θh)h > 0,

i.e., f has a strict local minimum at a. The proof for the negative definite case
is extremely similar. And the proof for the indefinite case is rather similar –
can you see how to do it?

(c) f (x, y) = 0, f (x, y) =±x2, f (x, y) = x3, f (x, y) = x2 ± y4, f (x, y) = x4 ± y4, etc.

4.2 For example (where it is understood that x ≥ 0 and y ∈ R in all cases):

(a) u(x, y) = y .

(b) u(x, y) = x.

(c) u(x, y) = kx works, for any k ∈ R. Or u(x, y) = x y .

(d) u(x, y) = x2 + y2 −1

(x +1)2 + y2 .

(e) u(x, y) = y

(x +1)2 + y2 .

(f ) u(x, y) = arctan
y

x +1
.

4.3

(a) Straightforward, using the equality of mixed derivatives ux y = uy x and vx y =
vy x . (Analytic functions are infinitely differentiable, so u and v are smooth.)

(b) One can use that the points z =±1, which are symmetric with respect to the
imaginary axis, are mapped to w = 0 and w =∞, which are symmetric with
respect to the unit circle.

We have f (x + i y) = x−1+i y
x+1+i y = (x−1+i y)(x+1−i y)

(x+1)2+y2 = x2+y2−1+2yi
(x+1)2+y2 , so

u(x, y) = Re f (x + i y) = x2 + y2 −1

(x +1)2 + y2 (for x ≥ 0, y ∈ R)

has the half-open interval [−1,1) as its range, and

v(x, y) = Im f (x + i y) = 2y

(x +1)2 + y2 (for x ≥ 0, y ∈ R)

has the closed interval [−1,1] as its range.

(c) v(x, y) = ImLog(x+1+i y) = arctan y
x+1 (for x ≥ 0, y ∈ R) has the open interval

(−π
2 , π2 ) as its range.
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4.4 The function v is continuous and satisfies

∆v = 0, if |x| < 1 and
∣∣y

∣∣< 1,

v = 1
4 (x2 + y2), if |x| = 1 or

∣∣y
∣∣= 1.

Moreover, u(0,0) = v(0,0), and by the maximum principle (for the harmonic
function v) this value lies between the minimum and the maximum of v on
the boundary, which is easily seen to be v(1,0) = 1

4 and v(1,1) = 1
2 , respectively.

Answer: u(0,0) ∈ [ 1
4 , 1

2 ].

4.5 Hint: For ε> 0, let v(x) = u(x)+ε |x|2 and show that the maximum of v onΩ
must be attained on the boundary ∂Ω, and not onΩ. (Assume that the maximum
is attained at the point a ∈Ω, so that ∇v(a) = 0 and ∆v(a) ≤ 0, and consequently
∆v(x)+x ·∇v(x) ≤ 0 for x = a. On the other hand, show that the hypotheses imply
that ∆v(x)+x ·∇v(x) > 0 for all x ∈Ω, a contradiction.) Then continue exactly as
in the proof of the weak maximum principle for (sub)harmonic functions.

4.6 Hint: For example, use that
∣∣x−y

∣∣2 = (x−y) ·(x−y) = x ·x−2 x ·y+y ·y. What’s
the angle between x and y?

4.7

(a)

u(0,0) = 1

2π

∫ 2π

0
h(ϕ)dϕ.

(b) Let 0 ≤ r < a. From −1 ≤ cos t ≤ 1 we get

r 2 −2ar +a2 ≤ r 2 −2ar cos(θ−ϕ)+a2 ≤ r 2 +2ar +a2,

which can be written as

(a − r )2 ≤ r 2 −2ar cos(θ−ϕ)+a2 ≤ (a + r )2.

Since all expressions are positive, their reciprocal values satisfy the reversed
inequalities:

1

(a + r )2 ≤ 1

r 2 −2ar cos(θ−ϕ)+a2 ≤ 1

(a − r )2 .

Now multiply this by the positive expression a2−r 2

2π = (a+r )(a−r )
2π and cancel

common factors, and the result follows.

(c) Since u is nonnegative (by assumption), so is h, so we can multiply the double
inequality from part (b) by h(ϕ). Next we integrate over 0 ≤ ϕ ≤ 2π; in the
middle we then have Poisson’s formula, and on the outsides we get constants
times the expression for u(0,0) from part (a).
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4.8 We getΘ′′(θ) =−λΘ(θ) and r 2R ′′(r )+r R ′(r )−λR(r ) = 0, where the boundary
conditions Θ(0) = Θ(β) = 0 imply that λ = (mπ/β)2 for m = 1,2,3, . . . , and that
Θ(θ) equals a constant times sin(mπθ/β). Then R(r ) = Ar mπ/β+Br−mπ/β, where
we must take B = 0 since we need R(r ) to be nice at r = 0. Our solution u will be a
linear combination of such separated solutions:

u(r,θ) =
∞∑

m=1
Amr mπ/β sin(mπθ/β),

where we want to have u(a,θ) = h(θ), i.e.,

∞∑
m=1

Am amπ/β sin(mπθ/β) = h(θ), 0 < θ <β.

Multiply both sides by sin(nπθ/β) and integrate over θ ∈ [0,β] to get

An anπ/β β

2
=

∫ β

0
h(θ)sin(nπθ/β).

So the answer is

u(r,θ) = 2

β

∞∑
m=1

(∫ β

0
h(ϕ)sin(mπϕ/β)dϕ

)( r

a

)mπ/β
sin(mπθ/β).

4.9 Separated solutions satisfying the conditions along the top, bottom and left
edges:

u0(x, y) = x ·1,

un(x, y) = sinh(nx) ·cos(ny), for integers n ≥ 1.

The condition at the right edge is

u(π, y) = cos2 y = 1

2
+ 1

2
cos(2y) = 1

2π
u0(π, y)+ 1

2sinh(2π)
u2(π, y),

so the answer is

u(x, y) = 1

2π
u0(x, y)+ 1

2sinh(2π)
u2(x, y) = x

2π
+ sinh(2x)cos(2y)

2sinh(2π)
.

4.10

(a) This shouldn’t be too hard – after all, the functions x 7→ u(x,0) and y 7→ u(0, y)
are constant!

(b) One reason is that we don’t want the property of being harmonic to depend on
which coordinate system we use for describing the function. The condition
u ∈ C 2 is a simple condition which justifies using the chain rule to show
that uξξ+uηη = uxx +uy y when the (x, y) and (ξ,η) coordinate systems are
rotated relative to each other, as in problem 1.8. In contrast, for the function
in part (a), uξξ and uηη will be undefined at the origin in a rotated coordinate
system (unless the rotation angle is an integer times π/2).

49



(c) The function u is harmonic away from the origin, by exercise 4.3. Regarding
what happens at the origin, consider

g (x) = u(x,0) =
{

e−1/x4
, x ̸= 0,

0, x = 0,

which is a typical example of a one-variable function which is smooth but
not analytic at the origin (its derivatives of all orders can be shown to exist at
the origin, and they are all zero, so that the Maclaurin expansion is identically
zero and therefore does not converge to the function). In particular we have
g ′′(0) = 0, which is the same thing as uxx (0,0) = 0. And along the y-axis, it’s
just the same, so uy y (0,0) = 0 too. Thus,∆u(0,0) = 0, but u is discontinuous at

the origin, since u(t , t ) = Ree−1/(t+i t )4 = e1/(4t 4) →∞ as t → 0. (The function
f (z) has an essential singularity at z = 0.)

(d) Because of the identity zz = |z|2, we have z = 1/z when |z| = 1, and thus also

f (z) = f (1/z) = e−z4 = e−z4 when |z| = 1.

The real part isn’t affected by complex conjugation, so

u(x, y) = Re f (x + i y) = Ree−(x+i y)4 = Ree−(x+i y)4
when x2 + y2 = 1.

Thus, letting

v(x, y) = Ree−(x+i y)4 = e−x4+6x2 y2−y4
cos(4x3 y −4x y3)

we obtain a function which agrees with u on the unit circle, and which is
harmonic on the unit disk (and in fact everywhere).

Uniqueness of the Dirichlet problem for the Laplace equation shows that this
function is what Poisson’s formula would produce if we supplied it with the
values of u(x, y) for x2 + y2 = 1.

Below are the graphs of u (left) and v (right):
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4.11

(a) With h(ϕ) as in the problem, Poisson’s formula becomes

u(r cosθ,r sinθ) = 1− r 2

2π

∫ π

0

sinϕ

1−2r cos(θ−ϕ)+ r 2 dϕ.

To get the values of u on the positive x-axis, take θ = 0 and r = x ∈ [0,1):

u(x,0) = 1−x2

2π

∫ π

0

sinϕ

1−2x cosϕ+x2 dϕ

= 1−x2

2π

[
ln |1−2x cosϕ+x2|

2x

]π
0

= 1−x2

4πx

(
ln |1+2x +x2|− ln |1−2x +x2|

)
= 1−x2

4πx
ln

|1+x|2
|1−x|2

= 1−x2

2πx
ln

1+x

1−x
.

Since this turned out to be an even function, u(−x,0) =−u(x,0), it gives the
correct values also for −1 < x < 0. (The solution must be even with respect to
x, since the boundary values are.)

The expression for u(x,0) above is undefined when x =±1, but note [exercise]
that it tends to zero as x → ±1 from inside the interval (−1,1), so we can
extend u(x,0) to a continuous function on the closed interval x ∈ [−1,1] by
letting u(±1,0) = 0.

(b) As suggested, we extend the function u(x,0) to an analytic function f (z) in
the unit disk |z| < 1:

f (z) = 1− z2

2πz
Log

1+ z

1− z
= 1

2π

(
1

z
− z

)
Log

1+ z

1− z
,

where Log is the principal logarithm with imaginary part in (−π,π]. On the
unit circle (away from z =±1), f takes the boundary values

f (e iθ) = 1

2π

(
e−iθ−e iθ

)
Log

1+e iθ

1−e iθ
= −2i sinθ

2π
Log

1+cosθ+ i sinθ

1−cosθ− i sinθ

= −i sinθ

π
Log

(1+ i sinθ)2 −cos2θ

(1−cosθ)2 + sin2θ

= −i sinθ

π
Log

1+2i sinθ− sin2θ−cos2θ

1−2cosθ+cos2θ+ sin2θ

= −i sinθ

π
Log

i sinθ

1−cosθ
= −i sinθ

π

(
ln

∣∣∣∣ sinθ

1−cosθ

∣∣∣∣+ i
π

2
sgn(sinθ)

)
,
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and in particular

Re f (e iθ) = sinθ

π
· π

2
sgn(sinθ) =

{
1
2 sinθ, 0 < θ <π,

−1
2 sinθ, π< θ < 2π.

(As in part (a), this extends continuously to f (±1) = 0.) So the real part of f (x+
i y) is a harmonic function with those boundary values, while the harmonic
function u(x, y) that we seek is supposed to have the boundary values sinθ
and 0 on the upper and lower semicircle, respectively. The discrepancy here
is nothing but 1

2 sinθ, which happens to be the boundary contribution from
the harmonic function y/2, so we can obtain our sought solution by adding
y/2 to the real part of f (x + i y):

u(x, y) = y

2
+Re f (x + i y) = ·· ·

= y

2
+ x(1−x2 − y2)

4π(x2 + y2)
ln

(1+x)2 + y2

(1−x)2 + y2

+ y(1+x2 + y2)

2π(x2 + y2)
arctan

2y

1−x2 − y2 , x2 + y2 < 1.

5.1 Sketch of proof: The harmonic function u assumes its maximum A on
the boundary, and the harmonic function −u assumes its maximum B on the
boundary too. And the maximum of |u| is the largest of these two values, so it
must be assumed on the boundary as well.

And the strong maximum principle holds too, since if the maximum of |u| is
attained at some interior point, then either u or −u attains its maximum there,
and must therefore be constant (assuming thatΩ is connected), which means
that |u| is constant too.
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5.2 The proof is the same as in the bounded case: Let M be the maximum value,
and writeΩ as the disjoint union of the sets

Ω1 = {x ∈Ω : u(x) = M } and Ω2 = {x ∈Ω : u(x) < M }.

The mean value property of subharmonic function (the value at a point is less
than or equal to the average over spheres centered at that point) can be used to
show thatΩ1 is open, and the continuity of u implies thatΩ2 is open. The setΩ1

is nonempty, since u was assumed to assume its maximum inΩ, and sinceΩ is
connected this means thatΩ2 must be empty.

5.3 Assume that u has a strict local maximum at the point a ∈Ω. This means
that there is a ball centered at that point, such that u(x) < u(a) for all x in that ball
except x = a. But then the average of u over a sphere inside the ball would be less
than u(a), contradicting the mean value property. Similarly if u has a strict local
minimum.

If u has a non-strict local extremum at a, the mean value property implies
that u(x) must be constant (equal to u(a)) in some ball centered at a, but it’s
not completely obvious how to extend this to the whole domain Ω. However,
the theorem “harmonic functions are of class C∞” has a stronger version saying
“harmonic functions are real analytic” (i.e., they agree with their Taylor series),
and this implies an identity theorem saying that two harmonic functions agreeing
on a open subset of a connected open set Ω have to agree on all of Ω. So if u
is constant on a ball in Ω, it follows that u is constant on Ω. Conclusion: non-
constant harmonic functions cannot have any local extrema (strict or not).

5.4 Suppose, in order to derive a contradiction, that u is not harmonic. Then
there is some point in Ω where ∆u is nonzero, say ∆u(a) > 0. The assumption
that u ∈C 2(Ω) implies that ∆u is continuous, so we must have ∆u > 0 in some
ball centered at a. So for all sufficiently small r > 0 we have (using the divergence
theorem)

0 <
∫

B(a,r )
∆u dV =

∫
∂B(a,r )

∇u ·ndS.

Dividing by the area of the sphere, to turn the integral into a mean value integral,
and using the same calculation as in the proof of the mean value property, we
obtain

0 <−
∫
∂B(a,r )

∇u ·ndS = d

dr
−
∫
∂B(a,r )

u dS.

But because of the assumption on u in this exercise, the right-hand side here
equals d

dr u(a) = 0, and this is the desired contradiction.

6.1 Hint: Show that the integral can take arbitrarily small positive values, but not
the value zero. (Consider, for example, the function f (x) = arctan(x/ε)/arctan(1/ε)
for ε> 0.)
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More details: The integral is clearly nonnegative, and it’s zero if and only if
the integrand is identically zero, which can’t happen since then f would have to
be constant and at the same time satisfy the boundary conditions f (±1) = ±1.
With f as in the hint, we have f ′(x) = 1

arctan(1/ε) · ε
ε2+x2 , and the integral is

∫ 1

−1

(
x f ′(x)

)2
d x = 1

arctan2(1/ε)

∫ 1

−1

x2ε2 d x

(ε2 +x2)2

< 1

arctan2(1/ε)

∫ 1

−1

ε2 d x

ε2 +x2 (since 0 ≤ x2 < x2 +ε2)

= 1

arctan2(1/ε)

[
εarctan(x/ε)

]1

−1

= 2ε

arctan(1/ε)
,

which tends to zero as ε→ 0+.

6.2

(a) Hint: Write the energy integral in polar coordinates (don’t forget the Jacobian
determinant r ), and use that the gradient ∇u equals (C /r )er in the middle
region R2 < r < R (so that |∇u|2 =C 2/r 2 there) and is zero in the inner and
outer regions.

Answer: E(u) =−2πC 2 lnR.

(b) For example, Rn = e−n and Cn = n−2/3 will work. (Then un(0,0) =−n1/3 and
E(un) = 2πn−1/3.)

6.3

(a) —

(b) —

(c) This follows (for example) from the expression for the gradient in polar coor-
dinates; see exercise 1.10.

(d) Termwise differentiation gives

Ur (r,θ) =
∞∑

k=1

(
kak r k−1 coskθ+kbk r k−1 sinkθ

)
and

Uθ(r,θ) =
∞∑

k=1

(
−kak r k sinkθ+kbk r k coskθ

)
,

so that (by Parseval’s identity)

1

2π

∫ 2π

0
Ur (r,θ)2dθ = 02

4
+ 1

2

∞∑
k=1

(
(kak r k−1)2 + (kbk r k−1)2)
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and
1

2π

∫ 2π

0
Uθ(r,θ)2dθ = 02

4
+ 1

2

∞∑
k=1

(
(−kak r k )2 + (kbk r k )2).

So the energy integral over the disk with radius R becomes

ER (u) =
Ï

0<r<R
0≤θ<2π

(
U 2

r + r−2 U 2
θ

)
r dr dθ

=
∫ R

0
2π

(
1

2

∞∑
k=1

k2r 2k−2(a2
k +b2

k

)+ r−2

2

∞∑
k=1

k2r 2k(
a2

k +b2
k

))
r dr

= 2π
∞∑

k=1

(
k2(a2

k +b2
k

)∫ R

0
r 2k−1dr

)

= 2π
∞∑

k=1

(
k2(a2

k +b2
k

)[r 2k

2k

]R

0

)
=π

∞∑
k=1

k
(
a2

k +b2
k

)
R2k ,

as claimed.

(e) The double inequality should be obvious from the result in part (d). Since it
holds for all R ∈ [0,1), and the inequalities are non-strict, it holds also in the
limit as R → 1 on the left-hand side and in the middle:

π
N∑

k=1
k
(
a2

k +b2
k

)≤ E(u) ≤π
∞∑

k=1
k
(
a2

k +b2
k

)
.

And since this double inequality holds for all N ≥ 1, it holds also in the limit
as N →∞ on the left-hand side:

π
∞∑

k=1
k
(
a2

k +b2
k

)≤ E(u) ≤π
∞∑

k=1
k
(
a2

k +b2
k

)
.

And here the outer expressions are the same, so in fact the inequalities are
equalities.

(f) The series for h(θ) is majorized by the convergent series
∑∞

m=1
1

m2 , so it con-
verges uniformly by the Weierstrass M-test. And a uniformly convergent sum
of continuous functions is continuous.

Note that this series is a very “sparse” Fourier series, the only nonzero coeffi-
cients being bm! = 1/m2 for m ≥ 1:

h(θ) = 1

12 sin(θ)

+ 1

22 sin(2θ)+0sin(3θ)+0sin(4θ)+0sin(5θ)

+ 1

32 sin(6θ)+0sin(7θ)+0sin(8θ)+·· ·+0sin(23θ)

+ 1

42 sin(24θ)+0sin(25θ)+0sin(26θ)+·· ·
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The series derived in part (d) for the energy E(u) of the corresponding solu-
tion u thus becomes

π
∞∑

k=1
k
(
a2

k +b2
k

)=π ∞∑
k=1

k
(
02 +b2

k

)
=π(

1 ·b2
1 +2 ·b2

2 +0+0+0+6 ·b2
6 +0+·· ·+0+24 ·b2

24 +·· ·)
=π

(
1 ·

(
1

12

)2

+2 ·
(

1

22

)2

+6 ·
(

1

32

)2

+24 ·
(

1

42

)2

+·· ·
)

=π
∞∑

m=1

m!

m4 ,

which is clearly divergent, since the terms don’t even tend to zero. And thus
that solution has infinite energy. The pictures below show approximations to
the graphs of h(θ) and u(x, y) obtained from the partial sums

∑20
m=1:

6.4 Compute the flux, as suggested:

0 = [
u = 0 on ∂Ω

]= ∫
∂Ω

u∇u ·ndS =
∫
Ω
∇· (u∇u)dV =

∫
Ω

(∇u ·∇u +u∆u
)
dV

= [
∆u = u3]= ∫

Ω
|∇u|2 dV +

∫
Ω

u4dV.

Since both integrals on the right-hand side are nonnegative, they have to be zero,
and this is only possible if u = 0.

6.6

(a) Φ(x) =−1
2 |x|. The unit sphere in R1 is the set {±1}, and A1 = 2 simply means

that this set contains two points.

(b) Φ′(x) =−1
2 sgn x = 1

2 −H(x), soΦ′′(x) =−δ(x).
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6.7 From

Φa(x, y) =− 1

2π
ln

√
(x − r cosθ)2 + (y − r sinθ)2

=− 1

4π
ln

(
(x − r cosθ)2 + (y − r sinθ)2

)
we obtain

∇Φa(x, y) =− 1

4π
· 1

(x − r cosθ)2 + (y − r sinθ)2

(
2(x − r cosθ)
2(y − r sinθ)

)
and hence

∂Φa

∂n
(R cosϕ,R sinϕ) =∇Φa(R cosϕ,R sinϕ) ·n

=− 1

2π
·

(
R cosϕ− r cosθ
R sinϕ− r sinθ

)
·
(
cosϕ
sinϕ

)
(R cosϕ− r cosθ)2 + (R sinϕ− r sinθ)2

=− 1

2π
· R − r cos(ϕ−θ)

R2 −2Rr cos(ϕ−θ)+ r 2 .

6.8

(a) —

(b) —

(c) We compute

1 =
∫

Rn
e−π|x|

2
dx =

∫ ∞

r=0

(∫
|x|=r

e−π|x|
2

dS

)
dr =

∫ ∞

r=0

(
e−πr 2

∫
|x|=r

dS

)
dr

=
∫ ∞

0
Anr n−1e−πr 2

dr =
[

t =πr 2, r = (t/π)1/2, dr = 1
2 (t/π)−1/2/π

]
= An

∫ ∞

0

(
t

π

) n−1
2

e−t · 1

2π

(
t

π

)− 1
2

d t = An

2πn/2

∫ ∞

0
t

n
2 −1e−t d t = An · Γ(n/2)

2πn/2
,

and the result follows.

(d) Use the formula Γ(z +1) = zΓ(z) from part (b).

7.1 From exercise 6.6, the fundamental solution for −∆ on R1 isΦ(x) =−1
2 |x|,

and Green’s function at the point a ∈ (0,1) is Ga(x) =Φ(x −a)+w(x), where the
harmonic function w(x) = C x +D is chosen such that Ga(0) = Ga(1) = 0. This
gives

Ga(x) =−1
2 |x −a|+ ( 1

2 −a)x + 1
2 a =

{
(1−a)x, 0 ≤ x ≤ a ≤ 1,

(1−x)a, 0 ≤ a ≤ x ≤ 1.
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(Remark: The symmetry lets us extend Ga(x) to be defined on the closed square
0 ≤ a ≤ 1, 0 ≤ x ≤ 1, instead of just for 0 < a < 1, 0 ≤ x ≤ 1.)

7.2 From

∇Φ(x) = −1

An |x|n−1

x

|x| =
−x

An |x|n
,

where An is the area of the unit sphere in Rn , the chain rule gives

∇Ga(x) = −(x−a)

An |x−a|n −|a| −|a| (x−b)

An ||a| (x−b)|n .

Now remember that the vectors x−a and |a| (x−b) have the same length when |x| =
1; this is the property used in the construction of Ga to ensure that Ga(x) = 0 when
|x| = 1. Then the two terms in the expression above have the same denominators,
and we can write

∇Ga(x) =− (x−a)−|a|2 (x−b)

An |x−a|n =− (1−|a|2)x

An |x−a|n when |x| = 1.

(Here we used that a−|a|2 b = 0 by the definition of b.) On the unit sphere, the
normal vector is simply n = x, and we also have x ·x = |x|2 = 1 there, so that

−∂Ga

∂n
(x) =−∇Ga(x) ·n =−∇Ga(x) ·x = (1−|a|2)x ·x

An |x−a|n = 1−|a|2
An |x−a|n when |x| = 1.

7.3 Answer: Ha =Ga −Gb, where b = (a1, . . . , an−1,−an) and an > 0.
Recall that Ga(x) =Φ(x−a)−Φ(|a| (x−a∗)), where a∗ is the inversion of a with

respect to the unit sphere. Since Gb has its singularities in the lower half-space,
our function Ha equals the fundamental solution Φa plus something which is
harmonic on the upper half-ball. On the unit sphere, both Ga and Gb are zero,
hence so is Ha. And if x is a point with xn = 0, then the distances from x to a
and to b will be equal, and likewise the distances from x to a∗ and to b∗ will be
equal, and this makes Ga(x) = Gb(x) since Φ is radially symmetric, and hence
Ha(x) = 0 when xn = 0. Thus Ha(x) is zero on the boundary of the upper half-ball,
as required.

7.4

(a) For xn < 0 a simple calculation gives

∆v(x1, . . . , xn−1, xn) =−∆u(x1, . . . , xn−1,−xn) = 0.

(The derivative ∂2/∂x2
n produces a factor (−1)2 from the chain rule.)

(b) For symmetry reasons, w is zero for all points in the ball with xn = 0, so
it agrees with v at those points too. Thus, w is the unique solution of the
Dirichlet problem where ∆w = 0 inside the upper half-ball and w = v on
its boundary, and therefore it agrees with v on the closed upper half-ball.
Similarly for the closed lower half-ball. So v = w on the whole ball, and since
w is harmonic there, so is v .
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7.5 Suppose u1 and u2 are solutions. Then u = u1 −u2 is a bounded function
which is harmonic onΩ and zero on ∂Ω. As in problem 7.4, extend u to a function
v which is bounded and harmonic on the whole space. By Liouville’s theorem, v
is constant, and therefore so is u. And this constant value is of course zero, since
u = 0 on ∂Ω. Hence, u1 = u2.

7.6

(a) The fundamental solution centered at (a,b) is

Φ(a,b)(x, y) =Φ(x −a, y −b)

= −1

2π
ln

√
(x −a)2 + (y −b)2 = −1

4π
ln

(
(x −a)2 + (y −b)2),

and using reflection arguments one finds that the following works:

G(a,b) =Φ(a,b) −Φ(−a,b) −Φ(a,−b) +Φ(−a,−b).

Indeed, it’s clear that G(a,b) equalsΦ(a,b) plus a function which is harmonic
in the first quadrant (since the other three terms have their singularities in
other quadrants), and it’s zero on the boundary since

G(a,b)(x,0) =Φ(a,b)(x,0)−Φ(a,−b)(x,0)︸ ︷︷ ︸
=0

+Φ(−a,−b)(x,0)−Φ(−a,b)(x,0)︸ ︷︷ ︸
=0

and

G(a,b)(0, y) =Φ(a,b)(0, y)−Φ(−a,b)(0, y)︸ ︷︷ ︸
=0

+Φ(−a,−b)(0, y)−Φ(a,−b)(0, y)︸ ︷︷ ︸
=0

.

(For example, the terms in the first of these four pairs cancel out since the
point (x,0) is equally far from the points (a,b) and (a,−b), andΦ is radially
symmetric. Similarly for the other pairs.)

(b) On the positive x-axis we have −∂/∂n = ∂/∂y , so

−∂G(a,b)

∂n
(x,0) = ∂G(a,b)

∂y
(x,0) = −1

2π

0−b

(x −a)2 + (0−b)2

− −1

2π

0−b

(x +a)2 + (0−b)2

− −1

2π

0+b

(x −a)2 + (0+b)2

+ −1

2π

0+b

(x +a)2 + (0+b)2

= b

π

(
1

(x −a)2 +b2 − 1

(x +a)2 +b2

)
.

A similar computation with −∂/∂n = ∂/∂x on the positive y-axis gives

−∂G(a,b)

∂n
(0, y) = ∂G(a,b)

∂x
(0, y) = a

π

(
1

a2 + (y −b)2 − 1

a2 + (y +b)2

)
.
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So the solution, for a > 0 and b > 0, is

u(a,b) = b

π

∫ ∞

0
g (x)

(
1

(x −a)2 +b2 − 1

(x +a)2 +b2

)
d x

+ a

π

∫ ∞

0
h(y)

(
1

a2 + (y −b)2 − 1

a2 + (y +b)2

)
d y.

8.1

(a) Answer: u(x, t ) = 1
2 e−(x+ct )2 + 1

2 e−(x−ct )2 + 1
2c arctan(x +ct )− 1

2c arctan(x −ct ).
The graph of u(x, t ), for c = 1:

(b) Answer: u(x, t) = 1
2c sin(x + ct)− 1

2c sin(x − ct ) = 1
c cos x sinct . The graph of

u(x, t ), for c = 1:

(c) Answer: If we denote the given function for u(x,0) by ϕ(x), the solution is
u(x, t ) = 1

2ϕ(x + ct )+ 1
2ϕ(x − ct ). More explicitly (for t ≥ 0):

u(x, t ) =



0, |x| ≥ 1+ ct ,

0, ct ≥ 1 and |x| ≤ −1+ ct ,

1−|x| , ct < 1
2 and ct ≤ |x| < 1− ct ,

1− ct , |x + ct | < 1 and |x − ct | < 1,
1
2 (1−|x − ct |), x + ct ≥ 1 and |x − ct | < 1,
1
2 (1−|x + ct |), x − ct ≤−1 and |x + ct | < 1,
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The graph of u(x, t ), for c = 1/2:

(d) One can use d’Alembert’s formula, but it’s perhaps just as easy to directly
determine f and g such that u(x, t ) = f (x + ct )+ g (x − ct ) satisfies the initial
conditions.

Answer: u(x, t ) = f (x + ct )− f (x − ct ), where

f (x) =


−1/c, x ≤−1,

x/c, −1 < x < 1,

1/c, 1 ≤ x.

More explicitly (for t ≥ 0):

u(x, t ) =



0, |x| ≥ 1+ ct ,

1/c, ct ≥ 1 and |x| ≤ −1+ ct ,

t , ct ≤ 1 and |x| ≤ 1− ct ,
1

2c (1−x + ct ), x + ct > 1 and |x − ct | < 1,
1

2c (1+x + ct ), x − ct <−1 and |x + ct | < 1.

The graph of u(x, t ), for c = 1/2:
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8.2

(a) Answer: u(x, t ) = 1
2 t 2.

(b) Answer: u(x, t ) = 1
2 sin(x+ct )+ 1

2 sin(x−ct )+ 1
2c2

(
2cos x−cos(x+ct )−cos(x−

ct )
)
.

(c) Answer: u(x, t) = 1
1−ω2 (sin(ωt)−ωsin t)sin x in the generic case ω ̸= 1, but

don’t forget the resonant case ω= 1 where the solution grows without bound:
u(x, t ) = 1

2 (sin t − t cos t )sin x.

8.3

(a) Recall that Green’s theorem is a special case of Stokes’s theoremÏ
Ω

(∇×v) ·ndS =
∫
∂Ω

v ·dr,

where the surfaceΩ lies in a coordinate plane, and the vector field v is parallel
to that plane too. If that plane is the (x, y)-plane, and v = (A(x, y),B(x, y),0),
this becomes Ï

Ω
(Bx − Ay )d xd y =

∫
∂Ω

(A d x +B d y),

with the boundary ∂Ω oriented so thatΩ lies on its left side.

In our case, with t instead of y , and with A =−ut and B =−c2ux , we getÏ
D

f (x, t )d xd t =
Ï

D
(ut t − c2uxx )d xd t =

∫
∂Ω

(−ut d x − c2ux d t ).

(b) Along the x-axis we have d t = 0, so the integral along that edge is∫
L0

(−ut d x − c2ux d t ) =
∫ x0+ct0

x0−ct0

(−ut (x,0))d x =−
∫ x0+ct0

x0−ct0

ψ(x)d x.

(c) The edge L1 from (x0 +ct0,0) to (x0, t0) can be parametrized as (x, t ) = (x0 +
c(t0 − s), s) where the parameter s runs from 0 to t0. This gives d x = −c d s
and d t = d s, so that∫

L1

(−ut d x − c2ux d t ) =
∫ t0

0

(
c ut (x0 + c(t0 − s), s)− c2 ux (x0 + c(t0 − s), s)

)
d s

= c
∫ t0

0

(
d

d s
u(x0 + c(t0 − s), s)

)
d s

= c
[

u(x0 + c(t0 − s), s)
]t0

s=0

= c u(x0, t0)− c u(x0 + ct0,0)

= c u(x0, t0)− cϕ(x0 + ct0).

(d) Very similar to part (c) above.
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(e) To obtain the final result, just computeÏ
D

f (x, t )d xd t =
∫

L0

+
∫

L1

+
∫

L2

= ·· · ,

divide by 2c, and move some terms over to the other side.

8.4

(a) Differentiation gives et = ut ut t + c2ux uxt and et t = u2
t t +ut ut t t + c2(u2

xt +
ux uxt t ), and similarly ex = ut ut x +c2ux uxx and exx = u2

t x +ut ut xx +c2(u2
xx +

ux uxxx ). Since we are assuming u ∈ C 3, all mixed partial derivatives up to
order three can be interchanged (uxxt = ut xx , etc.). Thus,

et t − c2exx

= u2
t t +ut ut t t + c2(u2

xt +ux uxt t )− c2(u2
t x +ut ut xx + c2(u2

xx +ux uxxx )
)

= (ut t + c2uxx )(ut t − c2uxx )+ut (ut t − c2uxx )t + c2ux (ut t − c2uxx )x ,

which is identically zero if ut t − c2uxx is.

(b) From the chain rule we have ux (x, t) = f ′(x + ct )+ g ′(x − ct ) and ut (x, t) =
c
(

f ′(x + ct )− g ′(x − ct )
)
, which gives e(x, t ) = 1

2 c2
(

f ′(x + ct )2 + g ′(x − ct )2
)
.

(c) The total energy is just the sum of the energy of the left-going wave and the
energy of the right-going wave; there is no interaction between the two parts.
Also note that part (b) gives an independent verification of part (a); the energy
density must be a solution of the wave equation, since it’s a sum of a function
of x + ct and a function of x − ct (both of class C 2, if f and g are of class C 3).

8.5 Differentiate under the integral sign and use the PDE:

dE

d t
=

∫ ∞

−∞
(ut ut t + c2ux uxt )d x

=
∫ ∞

−∞
(
ut (c2uxx − r ut )+ c2ux uxt

)
d x

=−r
∫ ∞

−∞
u2

t d x + c2
[

ut ux

]∞
−∞

=−r
∫ ∞

−∞
u2

t d x ≤ 0.

9.1 Answer: u(x, t ) is given by d’Alembert’s formula, with ϕ and ψ extended to
even functions ϕeven and ψeven on R. In order to give a classical solution, these
extended functions need to be of class C 2(R) and C 1(R), respectively.

Remark. In more detail, the conditions for this to be the case are as follows. Consid-
ering the function ψ first, it needs to be of class C 1(R+) to begin with, where R+ = (0,∞),
and ψ and ψ′ must extend to continuous functions on [0,∞) with ψ′(0) = 0. That is,

lim
x→0+

ψ(x)
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must exist (as a finite number), and

lim
x→0+

ψ′(x)

must exist and be equal to zero. It then follows from the mean value theorem that the
one-sided derivative

ψ′
+(0) = lim

h→0+
ψ(h)−ψ(0)

h

exists and equals zero too, and by symmetry (the derivative ψ′
even(x) for x ̸= 0 is the odd

extension of ψ′(x) for x > 0) we get ψ′
even(0) = 0, so that ψ′

even is continuous on R, and
hence ψeven ∈ C 1(R), as desired. The same conditions must hold for the function ϕ,
which must in addition be of class C 2(R+) and such that ϕ′′ extends to a continuous
function on [0,∞), i.e.,

lim
x→0+

ϕ′′(x)

must exist (as a finite number).

(For comparison, the conditions for the odd extensions ϕodd and ψodd to be of class

C 2(R) and C 1(R), respectively, are that ϕ, ϕ′, ϕ′′, ψ and ψ′ are continuous on R+ and

extend to continuous functions on [0,∞) with ϕ(0) = ϕ′′(0) = ψ(0) = 0. Note that the

condition ϕ′′(0) = 0 is missing in Theorem 6.6 in David Rule’s lecture notes, but it is

needed. For a counterexample with that condition omitted, consider ϕ(x) = x2 for x > 0.

Then the odd extension is ϕodd(x) = sgn(x) x2 = x |x|, which does not have a second

derivative at the origin.)

9.2

(a) Answer: u(x, t ) =
∞∑

k=1
Ak sin(kx)cos(kct ), where

Ak = 2

π

∫ π

0
x(π−x)sin(kx)d x

= 2

π

[−cos(kx)

k
· x(π−x)− −sin(kx)

k2 · (π−2x)+ cos(kx)

k3 · (−2)

]π
0

= 4
(
1− (−1)k

)
πk3 , k = 1,2,3, . . .

(b) Answer: u(x, t ) = t + 1
2 + 1

2 cos(2x)cos(2ct )− 1
3c cos(3x)sin(3ct ).

(c) Answer: u(x, t ) =
∞∑

k=0
Bk cos(γk x)sin(γk ct ), where γk = k + 1

2 and

γk cBk = 2

π

∫ π

0
(π2 −x2)cos(γk x)d x

= 2

π

[
sin(γk x)

γk
· (π2 −x2)− −cos(γk x)

γ2
k

· (−2x)+ −sin(γk x)

γ3
k

· (−2)

]π
0

= 4(−1)k

πγ3
k

, k = 0,1,2, . . .
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9.3 The odd 2-periodic extensions of ϕ(x) = sin(nx) and ψ(x) = 0 (for 0 < x <π)
are simply ϕext(x) = sin(nx) and ψext(x) = 0 (for x ∈ R), so d’Alembert’s formula
gives

u(x, t ) = 1
2 sin(n(x + ct ))+ 1

2 sin(n(x − ct )).

And this is equal to
u(x, t ) = sin(nx)cos(nct ),

which is what one would get from separation of variables.

9.4 Let v(x, t) = u(x, t) + u(−x, t). Then vt t (x, t) = ut t (x, t) + ut t (−x, t) and
vxx (x, t ) = uxx (x, t )+ (−1)2uxx (−x, t ), so that v is a solution to the wave equation.
Moreover, the initial values are v(x,0) = 0 and vt (x,0) = 0, which implies that v is
identically zero (by d’Alembert’s formula).

10.1 We’ll need the formula for the curl of the curl of a vector field A = (Ax , Ay , Az ),
which can be obtained by brute force calculation (or looked up somewhere):

∇× (∇×A) =∇×
∂y Az −∂z Ay

∂z Ax −∂x Az

∂x Ay −∂y Ax


=

∂y (∂x Ay −∂y Ax )−∂z (∂z Ax −∂x Az )
∂z (∂y Az −∂z Ay )−∂x (∂x Ay −∂y Ax )
∂x (∂z Ax −∂x Az )−∂y (∂y Az −∂z Ay )



=

∂x (∂y Ay +∂z Az )− (∂2
y +∂2

z )Ax

. . .

. . .


=

∂x (∂x Ax +∂y Ay +∂z Az )− (∂2
x +∂2

y +∂2
z )Ax

. . .

. . .


=

∂x (∇·A)−∆Ax

∂y (∇·A)−∆Ay

∂z (∇·A)−∆Az

=∇(∇·A)−∆A,

where the Laplace operator in the final expression acts on each component
separately.

Then from Maxwell’s equations in vacuum,

∇·E = 0, ∇×E =−∂B

∂t
,

∇·B = 0, ∇×B =µ0ε0
∂E

∂t
,
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we find

∂2B

∂t 2 = ∂

∂t

(
∂B

∂t

)
= ∂

∂t

(−∇×E
)=−∇× ∂E

∂t
=−∇×

(
1

µ0ε0
∇×B

)
= −∇× (∇×B)

µ0ε0

= −(∇(∇·B)−∆B)

µ0ε0
= −(∇0−∆B)

µ0ε0
= ∆B

µ0ε0
= c2∆B,

and similarly ∂2E
∂t 2 = c2∆E, as was to be shown. (Note, however, that solving

Maxwell’s equations of course involves more than just solving the wave equation
for the fields E and B separately, since they are coupled to each other.)

10.2

(a) It’s the Euler–Poisson–Darboux equation Ut t =Ur r + n−1
r Ur .

(b) For n = 3 we get (rU )t t = (rU )r r , the one-dimensional wave equation for rU ,
so

rU (r, t ) = f (r + t )+ g (r − t )

for some functions f and g . If we want U to be an even function of r ∈ R, it
must take the form

U (r, t ) =


h(t + r )−h(t − r )

2r
, r ̸= 0,

h′(t ), r = 0,

for some function h.

Explanation: The function V (r, t) = rU (r, t) = f (r + t)+ g (r − t) is sup-
posed to be odd as a function of r , hence so is Vt (r, t ) = f ′(r +t )−g ′(r −t ).
Suppose V (r,0) = β(r ) and Vt (r,0) = γ(r ), where β and γ are odd func-
tions; this gives f (r ) + g (r ) = β(r ) and f ′(r ) − g ′(r ) = γ(r ), and thus
f (r )− g (r ) = Γ(r )+C , where Γ is some antiderivative of γ (which makes
Γ an even function). Solving for f and g , we get f (r ) = 1

2 (β(r )+Γ(r )+C )
and g (r ) = 1

2 (β(r )−Γ(r )−C ), and hence

V (r, t ) =
(
β(r + t )+Γ(r + t )+C

)+ (
β(r − t )−Γ(r − t )−C

)
2

= [
β is odd and Γ is even

]
= β(t + r )+Γ(t + r )−β(t − r )−Γ(t − r )

2

= h(t + r )−h(t − r )

2
,

where h(s) =β(s)+Γ(s). For r ̸= 0, division by r now gives the expression
for U (r, t) above. We automatically have V (0, t) = 1

2 (h(t) − h(t)) = 0,
which is consistent with V (0, t ) = 0 ·U (0, t ) for any finite value of U (0, t ),
but the natural value to assign to U (0, t ) is of course the one determined
by continuity: U (0, t ) = limr→0

V (r,t )
r = h′(t ).
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With initial data U (r,0) =ϕ(r ) and Ut (r,0) =ψ(r ) (both even functions of r ),
we get

h(s) = sϕ(s)+
∫

sψ(s)d s,

where the constant of integration can be chosen arbitrarily, since it cancels
in the expression for U anyway.

(c) Since the initial conditions are spherically symmetric, so is the solution. With
notation as in part (b), we find h(s) = sϕ(s) = s e−s2

, so u(x, t ) =U (|x| , t ) with

U (r, t ) =


(t + r )e−(t+r )2 − (t − r )e−(t−r )2

2r
, r ̸= 0,

(1−2t 2)e−t 2
, r = 0.

(Remark: Note that U is an even function of t as well, as it has to be when
ut (x,0) = 0.)

The graph of U , in the first quadrant:

(d) In this case, h(s) = s if |s| ≤ 1 and h(s) = 0 otherwise, so u(x, t ) =U (|x| , t ) with

67



U (r, t ) piecewise defined as follows:

r

t

t + r =−1

t + r = 1

t − r =−1

t − r = 1

U = 1

U = r−t
2r

U = r−t
2r

U = r+t
2r

U = r+t
2r

U = 0U = 0

U = 0

U = 0

(Remarks: Note that U is even with respect to r , and also with to t , so all
essential information is in the first quadrant. The discontinuity in the initial
condition travels to the right and to the left with speed 1, along the slanted
lines in the picture. At (r, t ) = (0,±1), the singularity of the solution becomes
nastier than that of the initial data, since U (r,±1) has a 1/r type singularity at
the origin. A similar focussing phenomenon lies behind the loss of regularity
for the wave equation in general, where the solution may be less smooth than
the initial data.)

Taking one last look at the behaviour of U in the strip in the first quadrant
where it’s nontrivial, we may note that U (r, t) = r−t

2r = 1
2 (1− t

r ) has the lines
t/r =C as level curves, with corresponding values U = (1−C )/2, from which
it is quite clear that U (r, t ) →−∞ as (r, t ) → (0,1) from within the strip:

r

t

U = 1

U = r−t
2r

U = 0

U = 0

U > 0

U < 0
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10.3

(a) Let v = ut . Then

vt = (ut )t t = (ut t )t
(1)= (c2∆u)t

(2)= c2∆(ut ) = c2∆v,

where equality (1) holds since u satisfies the wave equation, and equality (2)
holds since all third order partials commute if u ∈C 3 (ux1x1t = ut x1x1 , etc.). So
v = ut satisfies the wave equation too.

(b) Again let v = ut . Then vt = ut t = c2∆u, so v(x,0) = ut (x,0) = ψ(x) and
vt (x,0) = c2∆u(x,0) = c2∆0 = 0. (Note that taking partial derivatives with
respect to some xi and then letting t = 0 is the same thing as first letting t = 0
and then taking partials with respect to xi .) That is, the initial conditions
u = 0 and ut =ψ become v =ψ and vt = 0.

(c) If we know the solution formula for initial conditions (u,ut ) = (0,ψ), then –
according to part (b) – the time derivative of that expression gives the for-
mula for the solution satisfying the initial conditions (u,ut ) = (ψ,0). And
if we simply write ϕ instead of ψ, we get the solution satisfying the initial
conditions (u,ut ) = (ϕ,0). The solution formula for general initial conditions
(u,ut ) = (ϕ,ψ) is just the sum of the solution with (u,ut ) = (ϕ,0) and the
solution with (u,ut ) = (0,ψ), since the wave equation is linear. This explains
why the expression involving ϕ in the general solution formula is ∂/∂t of the
expression involving ψ (but with ϕ replacing ψ, of course).

This is obvious in the case n = 3, where the solution formula takes the form

u(x, t ) = ∂

∂t

(
t −
∫

S(x,t )
ϕdS︸ ︷︷ ︸

same expression

)
+ t −

∫
S(x,t )

ψdS︸ ︷︷ ︸
as here

,

and similarly for n = 2, but it also holds for n = 1, since d’Alembert’s formula
can be written as

u(x, t ) = ϕ(x + ct )+ϕ(x − ct )

2
+ 1

2c

∫ x+ct

x−ct
ψ(y)d y

= ∂

∂t

(
1

2c

∫ x+ct

x−ct
ϕ(y)d y︸ ︷︷ ︸

same expression

)
+ 1

2c

∫ x+ct

x−ct
ψ(y)d y︸ ︷︷ ︸

as here

.

10.4

(a) Since the solution is unique, it is enough to verify that the proposed solution
satisfies the PDE and the initial conditions. We will need to know how to
differentiate an integral with respect to a parameter appearing both in the
integrand and in the bounds of integration. Letting

G(a,b,c) =
∫ b

a
F (c, s)d s,

69



we have from the fundamental theorem of calculus and from the usual rule
for differentiating under the integral sign (assuming ∂F /∂c is continuous)
that

∂G

∂a
(a,b,c) =−F (a, s),

∂G

∂b
(a,b,c) = F (b, s),

∂G

∂c
(a,b,c) =

∫ b

a

∂F

∂c
(c, s)d s,

and then it follows from the multivariable chain rule that

d

d t

∫ β(t )

α(t )
F (t , s)d s = d

d t
G

(
α(t ),β(t ), t

)
= ∂G

∂a

(
α(t ),β(t ), t

) ·α′(t )+ ∂G

∂b

(
α(t ),β(t ), t

) ·β′(t )+ ∂G

∂c

(
α(t ),β(t ), t

)
= F (β(t ), s)β′(t )−F (α(t ), s)α′(t )+

∫ β(t )

α(t )

∂F

∂t
(t , s)d s.

Using this identity, we can differentiate the given expression

u(x, t ) =
∫ t

0
v(x, t ; s)d s

to obtain

ut (x, t ) = v(x, t ; t )︸ ︷︷ ︸
= 0 by def.

+
∫ t

0
vt (x, t ; s)d s =

∫ t

0
vt (x, t ; s)d s

and

ut t (x, t ) = vt (x, t ; t )︸ ︷︷ ︸
= f (x, t ) by def.

+
∫ t

0
vt t (x, t ; s)︸ ︷︷ ︸
=c2∆v(x,t ;s)

d s

= f (x, t )+ c2∆

∫ t

0
v(x, t ; s)d s

= f (x, t )+ c2∆u(x, t ),

so that u satisfies the inhomogeneous wave equation ut t − c2∆u = f . And
the initial conditions u(x,0) = ut (x,0) = 0 are also satisfied, since letting t = 0
in the expressions for u and ut above gives

∫ 0
0 = 0 in both cases.

(b) Think of the inhomogeneous wave equation (for a vibrating string or mem-
brane, for example) like this:

∂2u

∂t 2︸︷︷︸
acceleration

= c2∆u + f︸ ︷︷ ︸
force / mass

where the force terms on the right-hand side are what’s causing the accel-
eration; the term c2∆u comes from the internal tension, while the term f
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represents some external force. Now, applying an external force producing
the extra acceleration f (x, s) at the point x during an infinitesimal time in-
terval from s to s +d s ought to add an extra f (x, s)d s to the velocity ut (x, s),
so the contribution to the wave’s future caused by that external force (acting
at all points x during that time interval) ought to be simply d s times a wave
starting off from zero with initial velocity f (x, s) at time s. And integrating
these contributions for 0 ≤ s ≤ t should give the total wave at time t .

(c) For n = 1, d’Alembert’s formula (with ϕ= 0, ψ= f (·, s), and t − s instead of t )
gives

v(x, t ; s) = 1

2c

∫ x+c(t−s)

x−c(t−s)
f (y, s)d y,

so we get a result which should be familiar already:

u(x, t ) =
∫ t

0

(
1

2c

∫ x+c(t−s)

x−c(t−s)
f (y, s)d y

)
d s = 1

2c

Ï
D

f (y, s)d yd s,

where D is the triangle in the (y, s)-plane with corners at (x, t ) and (x ± ct ,0).

For n = 3, Kirchhoff’s formula (with ϕ= 0, ψ= f (·, s), and t − s instead of t)
gives

v(x, t ; s) = 1

4πc(t − s)

∫
S(x,c(t−s))

f (y, s)dS(y),

so that

u(x, t ) =
∫ t

0

(
1

4πc(t − s)

∫
S(x,c(t−s))

f (y, s)dS(y)

)
d s

=
[

r = c(t − s)

dr =−c d s

]
=−

∫ 0

ct

(
1

4πc2r

∫
S(x,r )

f (y, t − r
c )dS(y)

)
dr

= 1

4πc2

∫ ct

0

(∫
S(x,r )

f (y, t − r
c )

r
dS(y)

)
dr

= 1

4πc2

∫
B(x,ct )

f (y, t − 1
c

∣∣y−x
∣∣)∣∣y−x

∣∣ dV (y).

11.1

(a) Answer: u(x, t) = π

2
+

∞∑
k=1

Ak cos(kx)e−k2t (don’t forget the constant term!),

where

Ak = 2

π

∫ π

0
x cos(kx)d x

= 2

π

[
sin(kx)

k
· x − −cos(kx)

k2 ·1

]π
0

= 2
(
(−1)k −1

)
πk2 , k = 1,2,3, . . .
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(b) Let v(x, t) = u(x, t)− x/π. Then vt = vxx with v(0, t) = v(π, t) = 0 for t > 0,
v(x,0) = sin(x/2)−x/π for 0 ≤ x ≤π.

Answer: u(x, t ) = x

π
+

∞∑
k=1

Ak sin(kx)e−k2t , where

Ak = 2

π

∫ π

0

(
sin(x/2)− x

π

)
sin(kx)d x

= 2

π

∫ π

0

cos(kx −x/2)−cos(kx +x/2)

2
d x + 2

π2

∫ π

0
x · (−sin(kx))d x

= 1

π

[
sin(k − 1

2 )x

k − 1
2

− sin(k + 1
2 )x

k + 1
2

]π
0

+ 2

π2

[
cos(kx)

k
· x − sin(kx)

k2 ·1

]π
0

= 1

π

(
(−1)k−1

k − 1
2

− (−1)k

k + 1
2

)
+ 2

π2 · (−1)k

k
·π

= (−1)k−1

π

(
2k

k2 − 1
4

− 2

k

)
= (−1)k−1

2πk(k2 − 1
4 )

, k = 1,2,3, . . .

(c) Let v(x, t ) = u(x, t )−e−t x/π. Then vt = vxx +e−t x/πwith v(0, t ) = v(π, t ) = 0
for t > 0, v(x,0) = 0 for 0 ≤ x ≤π. We seek a solution of the form

v(x, t ) =
∞∑

k=1
Ak (t ) sin(kx),

and for 0 < x <π we have (reusing some calculations from part (b) above)

e−t x

π
=

∞∑
k=1

Bk (t ) sin(kx),

where

Bk = e−t

π
· 2

π

∫ π

0
x sin(kx)d x = e−t

π
· 2(−1)k−1

k
= bk e−t , bk = 2(−1)k−1

kπ
.

The boundary conditions for v are already taken care of, and from the PDE
and the initial condition we find

A′
k (t ) =−k2 Ak (t )+bk e−t , Ak (0) = 0,

that is,
d

d t

(
Ak (t )ek2t )= bk e−t ek2t , Ak (0) = 0.

Integration gives

Ak (t ) =


b1 te−t , k = 1,

bk e−k2t e(k2−1)t −1

k2 −1
, k ≥ 2.

Answer: u(x, t ) = e−t x

π
+ 2

π
te−t sin x +

∞∑
k=2

2(−1)k−1
(
e−t −e−k2t

)
(k2 −1)kπ

sin(kx).
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11.2

(a) The assumptions imply that the function w = u−v satisfies∆w−wt = g − f ≥
0 on Ω∞ and w ≤ 0 on ΓT . According to the weak maximum principle for
subsolutions of the heat equation, the maximum of w on ΩT is attained
on ΓT , so w ≤ 0 (i.e., u ≤ v) throughoutΩT , as was to be shown.

(b) A short computation shows that the function u(x, t ) = (1−e−t )sin x satisfies
ut = uxx + sin x, With Ω = (0,π) and f (x, t) = g (x, t) = sin x, it is then easily
verified that all hypotheses from part (a) are satisfied for any value T > 0. So
the conclusion holds too: u(x, t) ≤ v(x, t) on any ΩT , and hence on Ω∞, as
desired.

11.3

(a) u(x, t ) =C sin(nx)e−n2t .

(b) Solutions do not depend continuously on the given data; for example, with
Cn = 1/n in part (a) we obtain a sequence of solutions un(x, t) such that
un(x,0) tends to the zero functionϕ(x) = 0 (uniformly) as n →∞, but un(x, t )
doesn’t (for any fixed t < 0).

There is also trouble with existence; it can be shown that even if u(x,0) isn’t
smooth (it could be just continuous, or not even that), the solution u(x, t ) of
the forward heat equation is of class C∞ as a function of x for any fixed t > 0.
So if the given function u(x,0) in the backwards problem is not smooth, it’s
impossible for it to have arisen by heat flow from some function u(x, t) for
t < 0.

Curiously enough, uniqueness is not a problem; there is at most one solution
(see Evans, Section 2.3, Theorem 11).

11.4

(a) If u ≥ 0, then ∆u−ut ≥ cu ≥ 0, so that u is a subsolution to the heat equation,
and the result follows from the usual weak maximum principle for subsolu-
tions.

(b) Note that the inequality ut ≤∆u −cu can be written as (uect )t ≤∆(uect ), so
that v = uect is a subsolution. Taking v(x, t ) =−1−2t −x2 (which actually is a
solution to the heat equation vt = vxx , not just a subsolution) on the interval
Ω = (−1,1) ⊂ R, say, we have u(x, t) = (−1 − 2t − x2)e−ct (which satisfies
ut = uxx−cu). For T large enough, max

ΩT

u is attained at the point (x, t ) = (0,T )

and not on ΓT .

12.1

(a,b,c) Easy.
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(d) Just calculate:

ut (x, y) = c2u(x, y)+e−cx+c2t (−2c fx (x −2ct , t )+ ft (x −2ct , t )
)
,

ux (x, y) =−cu(x, y)+e−cx+c2t fx (x −2ct , t ),

uxx (x, y) =−cux (x, y)+ (−c)e−cx+c2t fx (x −2ct , t )+e−cx+c2t fxx (x −2ct , t )

= [
fxx = ft

]
= c2u(x, y)−2ce−cx+c2t fx (x −2ct , t )+e−cx+c2t ft (x −2ct , t ),

which shows that ut (x, y) = uxx (x, y), as claimed.

(e) To make life a little easier, let’s use the abbreviations T = 1+ 4ct and E =
exp(−cx2/T ), and also write just f instead of f (x/T, t/T ) (and similarly for
the derivatives of f ). Then u = T −1/2E f , and we compute

ut =−2cT −3/2E f +T −1/2(4c2x2/T 2)E f +T −1/2E
(−4cx fx /T 2 + ft /T 2)

=−2cT −3/2E f +T −5/2E
(
4c2x2 f + ft −4cx fx

)
,

ux = T −1/2(−2cx/T )E f +T −1/2E fx /T

= T −3/2E
(

fx −2cx f
)
,

uxx = T −3/2(−2cx/T )E
(

fx −2cx f
)+T −3/2E

(
fxx /T −2c f −2cx fx /T

)
= T −5/2E

(
−2cx

(
fx −2cx f

)+ fxx −2cx fx

)
−2cT −3/2E f

= [
fxx = ft

]= T −5/2E
(−4cx fx +4c2x2 f + ft

)−2cT −3/2E f ,

and again we find that ut = uxx .

(f) Similar to (e).

12.2

(a) Easy.

(b) p0(x, t) = 1, p1(x, t) = x, p2(x, t) = x2 +2t , p3(x, t) = x3 +6xt , p4(x, t) = x4 +
12x2t +12t 2, p5(x, t ) = x5 +20x3t +60xt 2, and in general

pn(x, t ) = n!
⌊n/2⌋∑
k=0

t k

k !

xn−2k

(n −2k)!
.

(c) —

12.3 Thinking of the inhomogeneous heat equation as

∂u

∂t︸︷︷︸
rate of

temperature
change

= D∆u︸ ︷︷ ︸
Fick’s law

+ f (x, t )︸ ︷︷ ︸
external

heat source

,
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we see that the contribution from the extra source term f (x, s) at the point x dur-
ing an infinitesimal time interval from s to s +d s ought to add an extra f (x, s)d s
to u(x, s), so the contribution to the future temperature caused by that external
heat source (acting at all points x during that time interval) ought to be simply d s
times the temperature distribution which starts off from the initial value f (x, s)
at time s. And integrating these contributions for 0 ≤ s ≤ t should give the total
contribution at time t from the external source. So our conjecture is that the
solution should be

u(x, t ) =
∫ t

0
v(x, t ; s)d s,

where v(x, t ; s) is the solution of the following initial value problem (starting
at time s) for the usual homogeneous heat equation, with the source term f
appearing in the initial condition instead:

vt (x, t ; s) = D∆v(x, t ; s) for t > s,

v(x, s; s) = f (x, s).

Like in the answer to exercise 10.4, we differentiate the expression

u(x, t ) =
∫ t

0
v(x, t ; s)d s

to obtain, as desired,

ut (x, t ) = v(x, t ; t )︸ ︷︷ ︸
= f by def.

+
∫ t

0
vt (x, t ; s)︸ ︷︷ ︸
=D∆v(x,t ;s)

d s

= f (x, t )+D∆
∫ t

0
v(x, t ; s)d s

= f (x, t )+D∆u(x, t ).

12.4

(a) Let’s write u(x, t ) = g (p), where p = x/
p

t = xt−1/2. Then

ut = g ′(p) pt =−1
2 xt−3/2g ′(p),

ux = g ′(p) px ,

uxx = g ′′(p) p2
x + g ′(p) pxx = (t−1/2)2g ′′(p)+0g ′(p) = t−1g ′′(p),

so that ut = uxx becomes −1
2 xt−3/2g ′(p) = t−1g ′′(p), which is equivalent to

g ′′(p)+ 1
2 pg ′(p) = 0.

(b) Multiplication by the integrating factor e
1
4 p2

gives
(
e

1
4 p2

g ′(p)
)′ = 0, so that

g ′(p) =C e−
1
4 p2
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and hence
g (p) = D erf(p/2)+E ,

where the error function is defined as

erf x = 2p
π

∫ x

0
e−ξ

2
dξ.

(The constant 2/
p
π is included in the definition in order to make erf x →±1

as x →±∞.) So

u(x, t ) = g
(
x/

p
t
)= D erf

(
x/

p
4t

)+E

for t > 0, and to satisfy the initial condition we must take D = E = 1
2 :

u(x, t ) =
{

1
2 erf

(
x/

p
4t

)+ 1
2 , t > 0,

H(x), t = 0.

(Note that the limit of erf
(
x/

p
4t

)
as t → 0+ depends on whether x < 0, x = 0

or x > 0.)

For x = 0, we have u(0, t ) = 1
2 for all t > 0, so the weaker initial condition that

we required at the origin is obviously satisfied. For x0 > 0, we should check
that u(x, t) → 1 as (x, t) → (x0,0) (with t > 0) in the two-variable sense, not
just as t → 0+ with a fixed x = x0, But this is clear, since for any M we can
find a (small) half-disk centered at (x0,0) such that x/

p
4t > M there; that is,

x/
p

4t →∞ as (x, t) → (x0,0). Similarly for x0 < 0, one checks just as easily
that u(x, t ) → 0, since x/

p
4t →−∞.

(c) We have ux (x,0) = H ′(x) = δ(x) in the sense of distributions. (In the classical
sense, ux (x,0) = 0 for x ̸= 0, while ux (0,0) is undefined.) For t > 0, we have

ux (x, t ) = ∂

∂x

(
1

2
erf

(
x/

p
4t

)+ 1

2

)
= 1

2
erf′

(
x/

p
4t

) · 1p
4t

= 1

2
· 1p

4t
· 2p

π
exp

(
−

(
xp
4t

)2)
= 1p

4πt
exp

(
−x2

4t

)
= S(x, t ),

the well-known “source solution” of the heat equation, i.e., the solution with
the Dirac delta δ(x) as initial data. (Note that since u solves the heat equation
for t > 0, so does ux , since (ux )t = (ut )x = (uxx )x = (ux )xx .)

12.5

(a) Extend ϕ to an odd function and use the solution formula for the whole real
line.

(b) Extend ϕ to an even function.
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(c) The verifications are straightforward. Any multiple of v(x, t) can be added
to the solution u(x, t ) in part (a) without disturbing the initial and boundary
conditions, at least away from the origin. But v is not bounded near the
origin, since v(x, x2) = 1

x|x| e−1/4 →∞ as x → 0+. To get uniqueness in part (a),
we can for example require ϕ to extend continuously to ϕ(0) = 0 and require
the solution u to be continuous and bounded on [0,∞)× [0,∞).

13.1

(a) The chain rule gives

ux = ur rx +us sx ,

uxx = (ur )x rx +ur rxx + (us)x sx +us sxx

= (ur r rx +ur s sx )rx +ur rxx + (usr rx +uss sx )sx +us sxx ,

and so on, which in the end gives

Ã = (
rx ry

)(A B
B C

)(
rx

ry

)
,

B̃ = (
rx ry

)(A B
B C

)(
sx

sy

)
,

C̃ = (
sx sy

)(A B
B C

)(
sx

sy

)
,

D̃ = A rxx +2B rx y +C ry y +D rx +E ry ,

Ẽ = A sxx +2B sx y +C sy y +D sx +E sy ,

F̃ = F,

G̃ =G .

(More precisely, F̃ (r (x, y), s(x, y)) = F (x, y), or, in terms of the inverse trans-
formation, F̃ (r, s) = F (x(r, s), y(r, s)). Similarly for all the other coefficients.)

(b) The quickest way is probably to notice that(
Ã B̃
B̃ C̃

)
=

(
rx ry

sx sy

)(
A B
B C

)(
rx sx

ry sy

)
and take determinants on both sides:

ÃC̃ − B̃ 2 = (rx sy − sx ry )2(AC −B 2).

The Jacobian determinant rx sy − sx ry is nonzero, since (by assumption) the
change of variables r = r (x, y), s = s(x, y) is invertible with differentiable
inverse, so that (by the chain rule)(

rx ry

sx sy

)(
xr xs

yr ys

)
=

(
1 0
0 1

)
.
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(c) At every point in the domain in question, the matrix
(

A B
B C

)
has exactly one

zero eigenvalue, with corresponding eigenvector v (unique up to scaling).
Choose some v(x, y) at each point, compute the flow of the rotated vector
field, (

ẋ
ẏ

)
=

(
0 −1
1 0

)(
v1(x, y)
v2(x, y)

)
,

and eliminate the time parameter to obtain the family of characteristic curves
on the form s(x, y) =C for some function s, which will have the property that
∇s is proportional to v at each point, so that

(
A B
B C

)∇s = 0, and thus B̃ = C̃ =
0, according to the formulas in part (a). Let the new variables be (r, s) =
(r (x, y), s(x, y)) where r is any function that makes the Jacobian determinant
nonzero (typically just take r (x, y) = x or r (x, y) = y).

13.2

(a) The coefficients are A(x, y) = 0, B(x, y) =−x y and C (x, y) = y2, so AC −B 2 =
−x2 y2, which is negative if x ̸= 0 and y ̸= 0, so the PDE is indeed hyperbolic
away from the coordinate axes. The quadratic form

Q(x,y)(v) = A(x, y) v2
1 +2B(x, y) v1v2 +C (x, y) v2

2 = (−2x v1 + y v2
)
y v2

is zero for v = (1,0) and for v = (y,2x) (for example). In the first case, we see
immediately that v = (1,0) =∇r (x, y) for r (x, y) = x. In the second case, we
compute the flow of the rotated vector field:(

ẋ
ẏ

)
=

(−v2

v1

)
=

(−2x
y

)
⇐⇒

{
x(t ) = x0e−2t ,

y(t ) = y0e t .

Eliminating t , we find that the trajectories have the form x y2 = C , so we
take s(x, y) = x y2. (As a verification, we can check that ∇s = (y2,2x y) is
proportional to the vector field v = (y,2x) that we started with, as it should be.
It is also possible to eliminate t right away by writing d y/d x = ẏ/ẋ = y/(−2x);
this gives −2

∫
d y/y = ∫

d x/x, so that −2ln y = ln x +C , and again we find
that x y2 is constant.) In terms of the new variables (r, s) = (x, x y2) the PDE
becomes

0 = y2 uy y −2x y ux y +2x ux

= y2 (4x2 y2 uss +2x us)−2x y (2x y ur s +2x y3 uss +2y us)+2x (ur + y2 us)

=−4x2 y2 ur s +2x ur

=−4r s ur s +2r ur .

In the first quadrant, x and y are positive, hence so are r and s, so we can
divide the equation by −4r s and continue with the help of the integrating
factor exp(−1

2 ln s) = 1p
s

:

ur s + −1

2s
ur = 0 ⇐⇒

(
urp

s

)
s
= 0 ⇐⇒ urp

s
= f (r ),

78



where f is an arbitrary C 1-function. Then f = F ′, where F is an arbitrary
C 2-function, and one more integration gives

u = F (r )
p

s +G(r ),

where G is another arbitrary C 2-function. Now it only remains to go back to
the original variables:

u = F (x)
√

x y2 +G(x y2) = F (x)
p

x︸ ︷︷ ︸
=H(x)

y +G(x y2).

Answer: u(x, y) =G(x y2)+ y H(x), where G and H are arbitrary C 2-functions.

(b) The coefficients are A(x, y) = x y , B(x, y) = 1
2 (x2 − y2) and C (x, y) = −x y , so

AC−B 2 =−x2 y2− 1
4 (x2−y2)2 =−1

4 (x2+y2)2, which is negative if (x, y) ̸= (0,0),
so the PDE is indeed hyperbolic away from the origin. The quadratic form

Q(x,y)(v) = A(x, y) v2
1 +2B(x, y) v1v2 +C (x, y) v2

2

= x y v2
1 + (x2 − y2)v1v2 −x y v2

2

= (y v1 +x v2)(x v1 − y v2)

is zero for v = (2x,−2y) =∇(x2−y2) and for v = (2y,2x) =∇(x y) (for example),
so that (r, s) = (x2 − y2,2x y) are characteristic coordinates. (This change of
variables is invertible under the assumption x > 0; note that r + i s = (x + i y)2,
so that x + i y is then the principal complex square root of r + i s.) Then

ux = 2x ur +2y us ,

uy =−2y ur +2x us ,

uxx = 4x2 ur r +8x y ur s +4y2 uss +2ur ,

ux y =−4x y ur r +4(x2 − y2)ur s +4x y uss +2us ,

uy y = 4y2 ur r −8x y ur s +4x2 uss −2ur ,

so that the PDE becomes

4s = 8x y

= x y (uxx −uy y )+ (x2 − y2)ux y +
(y3 −3x2 y)ux + (3x y2 −x3)uy

x2 + y2

= x y
(
4(x2 − y2)(ur r −uss)+16x y ur s +4ur

)
+ (x2 − y2)

(−4x y (ur r −uss)+4(x2 − y2)ur s +2us
)

+ (y3 −3x2 y) (2x ur +2y us)+ (3x y2 −x3) (−2y ur +2x us)

x2 + y2

= (
4(x2 − y2)+16x2 y2)ur s +

(
4x y + 2x(y3 −3x2 y)−2y(3x y2 −x3)

x2 + y2

)
ur

+
(
2(x2 − y2)+ 2y(y3 −3x2 y)+2x(3x y2 −x3)

x2 + y2

)
us

= 4(x2 + y2)2ur s = 4(r 2 + s2)ur s ,
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and hence

(ur )s = s

r 2 + s2 ⇐⇒ ur = 1

2
ln(r 2 + s2)+ f ′(r )

⇐⇒ u = s

2
ln(r 2 + s2)− s + r arctan

s

r
+ f (r )+ g (s).

Answer: u(x, y) = (x2−y2) ln(x2+y2)+y2−x2+2x y arctan x2−y2

2x y + f (x2−y2)+
g (2x y), where f and g are arbitrary C 2-functions.

13.3

(a) The coefficients are A(x, y) = 4y2, B(x, y) =−2y and C (x, y) = 1, so AC −B 2 =
0, and the PDE is indeed parabolic everywhere. The quadratic form

Q(x,y)(v) = A(x, y) v2
1 +2B(x, y) v1v2 +C (x, y) v2

2

= 4y2 v2
1 −4y v1v2 + v2

2

= (2y v1 − v2)2

is zero for v = (1,2y) =∇(x + y2), so we can (for example) take r = x − y2 and
s = y as characteristic coordinates. The PDE becomes

6s = 6y = 4y2uxx −4yux y +uy y −2ux

= 4y2ur r −4y
(
2y ur r +ur s

)+ (
4y2 ur r +4y ur s +uss +2ur

)−2ur

= uss ,

so that u = s3 + s f (r )+ g (r ).

Answer: u(x, y) = y3 + y f (x + y2)+ g (x + y2), where f and g are arbitrary
C 2-functions.

(b) Differentiation of the answer from part (a) gives

uy (x, y) = 3y2 + f (x + y2)+ y ·2y f ′(x + y2)+2y g ′(x + y2),

so the given conditions u(x,0) = x2 and uy (x,0) = sin x amount to

02 +0 f (x)+ g (x) = x2,

3 ·02 + f (x)+0 f ′(x)+0 g ′(x) = sin x,

so that f (x) = sin x and g (x) = x2, and hence f (x + y2) = sin(x + y2) and
g (x + y2) = (x + y2)2.

Answer: u(x, y) = y3 + y sin(x + y2)+ (x + y2)2.
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13.4

(a) Elliptic in the upper half-plane y > 0, parabolic on the line y = 0, hyperbolic
in the lower half-plane y < 0.

(b) For y < 0, the quadratic form

Q(x,y)(v) = A(x, y) v2
1 +2B(x, y) v1v2 +C (x, y) v2

2 = y v2
1 + v2

2

is zero for v = (1,±p−y). The flows of the rotated vector fields are given
by ẋ =∓p−y and ẏ = 1, so d y/d x = ẏ/ẋ =∓(−y)−1/2 and hence 2

3 (−y)3/2 =
±x +C , so we can (for example) take r = x + 2

3 (−y)3/2 and s = x − 2
3 (−y)3/2 as

characteristic coordinates. (Draw a picture of the coordinate grid!)

Expressed in these coordinates, the PDE becomes

0 = y uxx +uy y

= y
(
ur r +2ur s +uss

)+ 1
2 (−y)−1/2(ur −us)− y

(
ur r −2ur s +uss

)
= 4y ur s + 1

2 (−y)−1/2(ur −us).

Answer:
ur s = ur −us

6(r − s)
.

Remark: We can make the left-hand side look like the usual wave equation
by letting r = w + z and s = w − z (which is the same as letting w = x and
z = 2

3 (−y)3/2 in terms of the original variables). This gives

uw w −uzz = 1/3

z
uz ,

which is nothing but our old friend the Euler–Poisson–Darboux

ut t = ur r + β

r
ur

(with z = 2
3 (−y)3/2 > 0 playing the role of r and w = x playing the role of t),

but with the parameter value β = 1/3 instead of β = n −1 as we had in the
method of spherical means.

(c) For y > 0, we have ux = uw , uxx = uw w , uy = y1/2uz and uy y = 1
2 y−1/2uz +

y1/2 · y1/2uzz , so the PDE obtains a canonical form where the principal part is
given by the Laplace operator:

0 = uxx +
uy y

y
= uw w + 1

2 y−3/2uz +uzz = uw w +uzz + 1/3

z
uz .

This is the so-called elliptic Euler–Poisson–Darboux equation with parameter
β= 1/3.
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14.1

(a) For any test function ϕ, we have

〈H ′,ϕ〉 =−〈H ,ϕ′〉 =−
∫

R
H(x)ϕ′(x)d x =−

∫ ∞

0
ϕ′(x)d x =−

[
ϕ(x)

]∞
0

=ϕ(0) = 〈δ,ϕ〉,

which is precisely what the statement “H ′ = δ” means.

(b) For any test function ϕ, we have

〈 f δ,ϕ〉 = 〈δ, f ϕ〉 = f (0)ϕ(0) = f (0)〈δ,ϕ〉 = 〈 f (0)δ,ϕ〉,

which is precisely what the statement “ f δ= f (0)δ” means. Next, 〈 f δ′,ϕ〉 =
〈δ′, f ϕ〉 =−〈δ, ( f ϕ)′〉 =−〈δ, f ′ϕ+ f ϕ′〉 =− f ′(0)ϕ(0)− f (0)ϕ′(0) =− f ′(0)〈δ,ϕ〉−
f (0)〈δ,ϕ′〉 =− f ′(0)〈δ,ϕ〉+ f (0)〈δ′,ϕ〉 = 〈− f ′(0)δ+ f (0)δ′,ϕ〉, so that

f δ′ = f (0)δ′− f ′(0)δ,

and similarly we find

f δ′′ = f (0)δ′′−2 f ′(0)δ′+ f ′′(0)δ.

(c) Answer: u′(x) =−sgn(x)e−|x|, u′′(x) = e−|x|−2δ(x).

(d) For any test function ϕ,

〈( f T )′,ϕ〉 =−〈 f T,ϕ′〉 =−〈T, f ϕ′〉 =−〈T, ( f ϕ)′− f ′ϕ〉
=−〈T, ( f ϕ)′〉+〈T, f ′ϕ〉 = 〈T ′, f ϕ〉+〈 f ′T,ϕ〉
= 〈 f T ′,ϕ〉+〈 f ′T,ϕ〉 = 〈 f T ′+ f ′T,ϕ〉.

(e) Answer: T (x) = e3x (H(x)+C ), where H is the Heaviside function. (Or, more
precisely: T = Tg where g (x) = e3x (H(x)+C ).)

(f) We can use the theorem about solutions to the heat equation, which (among
other things) says that the function

u(x, t ) =


∫
R

S(x − y, t )ϕ(y)d y, t > 0,

ϕ(x), t = 0,

is continuous at (x,0) for every x where ϕ is continuous. Just take x = 0 in
this theorem, and use that S(−y, t ) = S(y, t ).

We can also give a direct proof (which is simpler than the proof of that theo-
rem) if we use that ϕ is a test function, not just a continuous function. Since
ϕ is smooth, it admits a first-order Maclaurin expansion ϕ(x) =ϕ(0)+x B(x),

82



where B is bounded near the origin, and since ϕ has compact support, B has
compact support too, and therefore B is bounded, say |B(x)| ≤ M for all x ∈ R.
Then, letting z = x/

p
4t , so that d x =p

4t d z, we have for t > 0 that∫
R

S(x, t )ϕ(x)d x =
∫

R
S(x, t )

(
ϕ(0)+x B(x)

)
d x

= 1p
4πt

∫
R

exp

(
−x2

4t

) (
ϕ(0)+x B(x)

)
d x

= 1p
π

∫
R

e−z2 (
ϕ(0)+p

4t z B(
p

4t z)
)

d z

=ϕ(0)
1p
π

∫
R

e−z2
d z +p

4t · 1p
π

∫
R

e−z2
z B(

p
4t z)d z

=ϕ(0)+ g (t ),

where ∣∣g (t )
∣∣≤p

4t · Mp
π

∫
R

e−z2 |z| d z → 0, t → 0+.

14.2

(a) Answer: L∗ϕ=−ϕt −ϕxx .

(b) Answer: L∗ϕ=ϕxx +ϕy y .

(c) Answer: L∗ϕ= (x yϕ)xx −ϕx y y = 2yϕx +x yϕxx −ϕx y y .

14.3 What we need to show is that u(x, t ) = f (x − ct ) satisfies

0 =
Ï

R2
u (ϕt t − c2ϕxx )d xd t

for all test functions ϕ. With the change of variables y = x − ct , s = t (whose
Jacobian matrix is the identity matrix, so that d xd t = d yd s), we getÏ

R2
f (x − ct )

(
ϕt t (x, t )− c2ϕxx (x, t )

)
d xd t

=
Ï

R2
f (y)

(
ϕt t (y + cs, s)− c2ϕxx (y + cs, s)

)
d yd s

=
∫

R
f (y)

(∫
R

(
ϕt t (y + cs, s)− c2ϕxx (y + cs, s)

)
d s

)
d y

=
∫

R
f (y)

(∫
R

(
cϕt x (y + cs, s)+ϕt t (y + cs, s)− c2ϕxx (y + cs, s)− cϕxt (y + cs, s)

)
d s

)
d y

=
∫

R
f (y)

(∫
R

(
d

d s
ϕt (y + cs, s)− c

d

d s
ϕx (y + cs, s)

)
d s

)
d y

=
∫

R
f (y)

[
ϕt (y + cs, s)− cϕx (y + cs, s)

]∞
s=−∞

d y =
∫

R
f (y) ·0d y = 0,

since ϕt and ϕx have compact support when ϕ is a test function.
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14.4

(a) Answer: For 0 < t < 1 the wave gradually steepens,

u(x, t ) =


1, x ≤ t ,
1−x
1−t , t < x < 1,

0, x ≥ 1,

and for t ≥ 1 we have a shock wave travelling with velocity 1
2 (according to

the Rankine–Hugoniot condition),

u(x, t ) = 1−H
(
x − 1

2 t − 1
2

)={
1, x < 1

2 t + 1
2 ,

0, x > 1
2 t + 1

2 ,

where H is the Heaviside function.

(b) For initial data u0(x) = 0 and u0(x) = x − 1 we have the strong solutions
u(x, t) = 0 and u(x, t) = x−1

1+t , respectively, and we can glue them together
along a curve x = g (t ) provided that the Rankine–Hugoniot condition

g ′(t ) = uL(g (t ), t )+uR (g (t ), t )

2
= 0+ g (t )−1

1+t

2

is satisfied. This is an ODE for g that we can solve using the integrating factor
exp(−1

2 ln(1+ t)) = (1+ t)−1/2, with the initial condition g (0) = 0 (since the
shock is at the origin initially), and the result is g (t ) = 1−p

1+ t .

Answer: For t ≥ 0,

u(x, t ) =


0, x < 1−p

1+ t ,

1−x

1+ t
, x > 1−p

1+ t .

14.5

(a) For all test functions ϕ,Ï
R2

(−uϕt − 1
2 u2ϕx +auϕ)d xd t = 0.

(b) The jump condition arises from integration by parts in the terms containing
ϕt and ϕx , and this does not involve the new term auϕ.

(c) The ODEs for the characteristic curves are

d x/dτ= z,

d t/dτ= 1,

d z/dτ= az,
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with initial values (x, t , z) = (x0,0,u0(x0)) at τ= 0. We see that t (τ) = τ, so we
can work with t instead of τ, and first solve d z/d t = az and then integrate
d x/d t = z(t ).

Answer: (x(t ), t , z(t )) where x(t ) = x0+u(x0)· 1
a (1−e−at ) and z(t ) = u(x0)e−at .

(d) Answer: For t ≥ 0,
0, x ≤ 0,

ax

(a +1)eat −1
, 0 < x < 1+ 1

a (1−e−at ),

e−at , x ≥ 1+ 1
a (1−e−at ).

(e) For initial data u0(x) = 1 and u0(x) = 0 we have the strong solutions u(x, t ) =
e−at and u(x, t) = 0, respectively, and we can glue them together along a
curve x = g (t ) provided that the Rankine–Hugoniot condition

g ′(t ) = uL(g (t ), t )+uR (g (t ), t )

2
= e−at +0

2

is satisfied. Integrating this, with the initial condition g (0) = 0 (since the
shock is at the origin initially), we find g (t ) = 1

2a (1−e−at ).

Answer: For t ≥ 0,

u(x, t ) =
{

e−at , x < 1
2a (1−e−at ),

0, x > 1
2a (1−e−at ).

(f) To avoid shock formation, we need to make sure that the projected charac-
teristics in the (x, t )-plane don’t cross. A rather obvious sufficient condition
for this is that u0 is non-decreasing. But we can do a little better, if we use
the fact that the envelope of a family of curves F (x, t ;β) = 0 is obtained by
eliminating the parameter β from the equations

F (x, t ;β) = 0,
∂F

∂β
(x, t ;β) = 0.

In our case here, the (projected) characteristics from part (c) constitute a
curve family parametrized by x0, and the equations for the envelope are

x0 +u(x0) · 1
a (1−e−at )−x = 0, 1+u′(x0) · 1

a (1−e−at ) = 0,

where the second equation is ∂/∂x0 of the first one. Since a > 0, we have
0 < 1

a (1− e−at ) < 1
a for all t > 0, so if u′

0(x) ≥−a the system has no solution,
implying that no characteristics cross.

Answer: u′
0(x) ≥−a.

(So if the initial slope is negative, as long as it’s not too steep, the damping will
prevent the shock formation that would have taken place in the undamped
situation.)
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14.6

(a) It’s obvious that the change of variables is a one-to-one correspondence
between positive functions v and real-valued functions ϕ. We compute

vt = −1
2µϕt e−ϕ/2µ, vx = −1

2µϕx e−ϕ/2µ, vxx = −1
2µϕxx e−ϕ/2µ+ (−1

2µ

)2
ϕ2

x e−ϕ/2µ

to obtain the desired result:

vt =µvxx ⇐⇒ −1
2µϕt e−ϕ/2µ =µ

(
−1
2µϕxx e−ϕ/2µ+ (−1

2µ

)2
ϕ2

x e−ϕ/2µ
)

⇐⇒ ϕt =µϕxx − 1
2ϕ

2
x .

(We can cancel −1
2µ e−ϕ/2µ in the second equivalence since it’s nonzero.)

(b) This is also just calculation. Suppose ϕt =µϕxx − 1
2ϕ

2
x . Then u =ϕx satisfies

ut =ϕxt =ϕt x = ∂x
(
µϕxx − 1

2ϕ
2
x

)=µϕxxx −ϕxϕxx =µuxx −uux ,

as claimed.

(c) Suppose ut =µuxx −uux and let

Φ(x, t ) =
∫ t

0
u(ξ, t )dξ,

so that u =Φx . Then

∂xΦt =Φt x =Φxt = ut =µuxx −uux =µΦxxx −ΦxΦxx = ∂x
(
µΦxx − 1

2Φ
2
x

)
,

which after integration with respect to x becomes

Φt + g (t ) =µΦxx − 1
2Φ

2
x , (∗)

where the “constant” of integration g may depend on the other variable t .
The function g (t ) must be continuous, since the other terms in the equality
are continuous (we are only considering classical solutions here), so it has an
antiderivative G(t ). If we now let

ϕ(x, t ) =Φ(x, t )+G(t ),

then (∗) becomes ϕt =µϕxx − 1
2ϕ

2
x , so we have found the sought function ϕ.

(d) Trivial.

15.1

(a) u(x, t ) = sin(πx)e−π
2t .

(b) Initial value: U (1,0) = u( 1
2 ,0) = sin π

2 = 1. Solution: U (1,m) = (1−8τ)m .
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(c) Initial values: U (1,0) =U (3,0) = 1p
2

and U (2,0) = 1. That is, U (k,0) = sin kπ
4

for k ∈ {1,2,3}.

A general fact, that we can use below as well, is that if h = 1/K , then we know
from separation of variables that the solution with initial values U (k,0) =
X (k) = sin j kπ

K is U (k,m) = X (k)ξm , where

X (k) · ξ
m+1 −ξm

τ
= X (k +1)−2X (k)+X (k −1)

h2 ·ξm ,

so that

ξ−1 = τ

h2 · X (k +1)−2X (k)+X (k −1)

X (k)
= ·· · = 2K 2τ

(
cos

jπ

K
−1

)
.

that is,

ξ= 1+2Q, where Q = K 2τ

(
cos

jπ

K
−1

)
.

In our case here, we have K = 4 and j = 1, so the solution is

U (k,m) =
(
1+32τ

(
1p
2
−1

))m
sin

kπ

4
,

for k ∈ {1,2,3} and m ≥ 0.

(d) In the setup from part (c), we still have K = 4 but now j = 3, so the solution is

U (k,m) =
(
1+32τ

(
− 1p

2
−1

))m
sin

3kπ

4
.

(e) We could use the formulas with K = 4 and j = 4, or simply notice that the
initial values U (k,0) = sin 4kπ

4 are simply U (1,0) =U (2,0) =U (3,0) = 0, so the
solution is trivially

U (k,m) = 0.

(f) Here we could use the formulas with K = 4 and j = 5, but we can also notice
that the initial values U (k,0) = sin 5kπ

4 are U (1,0) = sin 5π
4 = − 1p

2
, U (2,0) =

sin 10π
4 =−1 and U (3,0) = sin 15π

4 =− 1p
2

, the negatives of the initial values in

part (c), so the solution here is the negative of the solution in part (c):

U (k,m) =−
(
1+32τ

(
1p
2
−1

))m
sin

kπ

4
.

(Note that in parts (e) and (f), our numerical scheme is clearly doing a very
bad job! We would need to take a smaller h in order to handle the oscillations
in the initial data.)
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15.2 For the Crank–Nicolson scheme with h = 1/K , the solution with initial
values U (k,0) = X (k) = sin j kπ

K is U (k,m) = X (k)ξm , where

X (k) · ξ
m+1 −ξm

τ
= 1

2

X (k +1)−2X (k)+X (k −1)

h2 ·ξm

+ 1

2

X (k +1)−2X (k)+X (k −1)

h2 ·ξm+1,

so that

ξ−1

ξ+1
= τ

2h2 · X (k +1)−2X (k)+X (k −1)

X (k)
= K 2τ

(
cos

jπ

K
−1

)
,

that is,

ξ= 1+Q

1−Q
, where Q = K 2τ

(
cos

jπ

K
−1

)
.

Answers:

(b) U (1,m) =
(

1−4τ

1+4τ

)m

.

(c) U (k,m) =
1+16τ

(
1p
2
−1

)
1−16τ

(
1p
2
−1

)
m

sin kπ
4 .

(d) U (k,m) =
1+16τ

(
− 1p

2
−1

)
1−16τ

(
− 1p

2
−1

)
m

sin 3kπ
4 .

(e) U (k,m) = 0.

(f) The negative of the answer in part (c).

15.3 One way is to add an extra column of grid points (−1,m), and to require
that

U (0,m)−U (−1,m)

h
= g (mτ)

and
U (0,m +1)−U (0,m)

τ
= U (1,m)−2U (0,m)+U (−1,m)

h2 .
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15.4 Comparing A to

LR =


1
l1 1

l2 1
l3 1

l4 1




m1 r1

m2 r2

m3 r3

m4 r4

m5



=


m1 r1

m1l1 l1r1 +m2 r2

m2l2 l2r2 +m3 r3

m3l3 l3r3 +m4 r4

m4l4 l4r4 +m5

 ,

we see that ri = bi for all i , while mi and li are easily determined successively in
terms of {a j ,b j ,c j } from the equations

m1 = a1,

m1l1 = c1,

l1b1 +m2 = a2,

m2l2 = c2,

l2b2 +m3 = a3,

m3l3 = c3,

and so on. So the factorization requires one loop through the matrix (essentially
n steps). Then the system Ax = LRx = d can be split into two subproblems: first
solve Ly = d for y (which amounts to another loop of size n, since L is bidiagonal
so that it’s just a matter of back-substitution) and then solve Rx = y for x (yet
another loop of size n).

(Remark. Compare this to Gaussian elimination with a full matrix A, which
requires O(n3) operations.)

15.5

(a) The FEM solution is
u(x) = c1ϕ1(x)+ c2ϕ2(x),

where ϕ1 and ϕ2 are the piecewise linear basis functions that are equal to 1
at 1

3 and at 2
3 , respectively, and equal to 0 at the other mesh points. The

equations that determine the coefficients c1 and c2 are∫ 1

0
u′(x)ϕ′

i (x)d x =
∫ 1

0
f (x)ϕi (x)d x, i ∈ {1,2},

or more explicitly∫ 1

0

(
c1ϕ

′
1(x)+ c2ϕ

′
2(x)

)
ϕ′

1(x)d x =
∫ 1

0
f (x)ϕ1(x)d x,∫ 1

0

(
c1ϕ

′
1(x)+ c2ϕ

′
2(x)

)
ϕ′

2(x)d x =
∫ 1

0
f (x)ϕ2(x)d x,
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or even more explicitly (
K11 K12

K12 K22

)(
c1

c2

)
=

(
f1

f2

)
,

where

K11 =
∫ 1

0
ϕ′

1(x)2 d x =
∫ 1/3

0
32d x +

∫ 2/3

1/3
(−3)2d x = 6,

K12 =
∫ 1

0
ϕ′

1(x)ϕ′
2(x)d x =

∫ 2/3

1/3
(−3) ·3d x =−3,

K22 =
∫ 1

0
ϕ′

2(x)2 d x =
∫ 2/3

1/3
32d x +

∫ 1

2/3
(−3)2d x = 6

and

f1 =
∫ 1

0
f (x)ϕ1(x)d x =

∫ 1/3

0
3x f (x)d x +

∫ 2/3

1/3
(2−3x) f (x)d x,

f2 =
∫ 1

0
f (x)ϕ2(x)d x =

∫ 2/3

1/3
(3x −1) f (x)d x +

∫ 1

2/3
(3−3x) f (x)d x.

(b) With U (k) = u(k/3), the standard finite difference approximation is

U (0) = 0,

−U0 −2U1 +U2

(1/3)2 = f ( 1
3 ),

−U1 −2U2 +U3

(1/3)2 = f ( 2
3 ),

U (3) = 0,

that is, (
2 −1
−1 2

)(
U (1)
U (2)

)
= 1

9

(
f ( 1

3 )
f ( 2

3 )

)
.

To compare with the FEM solution in part (a), note that c1 =U (1) = u( 1
3 ) and

c2 =U (2) = u( 2
3 ), so that the FEM equations(

6 −3
−3 6

)(
U (1)
U (2)

)
=

(
f1

f2

)
.

If the integrals f1 and f2 are computed by approximating f with its value at
the respective mesh point,

f1 ≈
∫ 1

0
ϕ1(x) f ( 1

3 )d x = 1
3 f ( 1

3 ),

f2 ≈
∫ 1

0
ϕ2(x) f ( 2

3 )d x = 1
3 f ( 2

3 ),

we see that FEM and finite differences give the same approximate solution in
this case.
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(c) With these boundary conditions, the FEM solution is

u(x) = c1ϕ1(x)+ c2ϕ2(x)+ c3ϕ3(x),

where ϕk is the basis function at x = k/3, with the coefficients determined by
the requirement that∫ 1

0
u′(x)ϕ′

i (x)d x =
∫ 1

0
f (x)ϕi (x)d x, i ∈ {1,2,3}.

Similar computations as in part (a) lead to the equations 6 −3 0
−3 6 −3
0 −3 6

c1

c2

c3

=
 f1

f2

f3

 , fk =
∫ 1

0
f (x)ϕk (x)d x,

where the simplest approximation to fk is fk ≈ 1
3 f ( k

3 ).

(d) For the FEM solutions, we get different stiffnesses:

K11 =
∫ 1

0
ϕ′

1(x)2 d x =
∫ 1/3

0
32d x +

∫ 1/2

1/3
(−6)2d x = 9,

K12 =
∫ 1

0
ϕ′

1(x)ϕ′
2(x)d x =

∫ 1/2

1/3
(−6) ·6d x =−6,

K13 =
∫ 1

0
ϕ′

1(x)ϕ′
3(x)d x = 0,

K22 =
∫ 1

0
ϕ′

2(x)2 d x =
∫ 1/2

1/3
62d x +

∫ 1

1/2
(−2)2d x = 8,

K23 =
∫ 1

0
ϕ′

2(x)ϕ′
3(x)d x =

∫ 1

1/2
(−2) ·2d x =−2,

K33 =
∫ 1

0
ϕ′

3(x)2 d x =
∫ 1

1/2
22d x = 2,

so that with u(0) = u(1) = 0 we get

u(x) = c1ϕ1(x)+ c2ϕ2(x),

(
9 −6
−6 8

)(
c1

c2

)
=

(
f1

f2

)
,

and with u(0) = u′(1) = 0 we get

u(x) = c1ϕ1(x)+ c2ϕ2(x)+ c3ϕ3(x),

 9 −6 0
−6 8 −2
0 −2 2

c1

c2

c3

=
 f1

f2

f3

 ,

where the simplest approximations to fk = ∫ 1
0 f (x)ϕk (x)d x are f1 ≈ 1

4 f ( 1
3 ),

f2 ≈ 1
3 f ( 1

2 ) and f3 ≈ 1
4 f (1).
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To derive a finite difference approximation of the second derivative with an
irregular mesh, we compute

u(x +h) = u(x)+u′(x)h + 1
2 u′′(x)h2 +O(h3),

u(x −k) = u(x)−u′(x)k + 1
2 u′′(x)k2 +O(k3),

and eliminate the u′(x) terms to find

u′′(x) ≈ k
(
u(x +h)−u(x)

)+h
(
u(x −k)−u(x)

)
1
2 hk(h +k)

.

With our particular mesh, this gives

u′′( 1
3 ) ≈

1
3

(
u( 1

2 )−u( 1
3 )

)+ 1
6

(
u(0)−u( 1

3 )
)

1/72
,

u′′( 1
2 ) ≈

1
6

(
u(1)−u( 1

2 )
)+ 1

2

(
u( 1

3 )−u( 1
2 )

)
1/36

,

so that the finite difference approximation scheme is

U (0) = 0,

−
1
3

(
U (2)−U (1)

)+ 1
6

(
U (0)−U (1)

)
1/72

= f ( 1
3 ),

−
1
6

(
U (3)−U (2)

)+ 1
2

(
U (1)−U (2)

)
1/36

= f ( 1
2 ),

U (3) = 0,

that is, (
6 −4
−3 4

)(
U (1)
U (2)

)
= 1

6

(
f ( 1

3 )

f ( 2
3 )

)
.

We see that the finite difference scheme again gives the same result as FEM
(with the given approximations for f1 and f2), since(

9 −6
−6 8

)(
c1

c2

)
=

(
1
4 f ( 1

3 )
1
3 f ( 1

2 )

)
⇐⇒

(
6 −4
−3 4

)(
c1

c2

)
= 1

6

(
f ( 1

3 )

f ( 2
3 )

)
.

15.6 Denote the position vectors of the nodes by a = (a1, a2), b = (b1,b2) and c =
(c1,c2), and let v = b−a and w = c−a be the edge vectors from node a to node b
and c, respectively. The angle between v and w is α, so

|v| |w|cosα,

and the area of the parallelogram that they span, which is also twice the area of
the triangle T , is

|v| |w|sinα.
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and this is also the absolute value of the determinant

∆=
∣∣∣∣v1 w1

v2 w2

∣∣∣∣= ∣∣∣∣b1 −a1 c1 −a1

b2 −a2 c2 −a2

∣∣∣∣
= a1b2 +b1c2 + c1a2 −a1c2 −b1a2 − c1b2

=
∣∣∣∣∣∣
1 a1 a2

1 b1 b2

1 c1 c2

∣∣∣∣∣∣ .

Note that the value of ∆ is unchanged under cyclic permutations of the vectors a,
b and c. Next, we derive a formula for the restriction of the basis function ϕa to
the triangle T . Since it’s piecewise linear, we have ϕa(x, y) = K +Lx +M y on T ,
and since it’s equal to 1 at node a and equal to 0 at nodes b and c, we have

K +La1 +M a2 = 1,

K +Lb1 +Mb2 = 0,

K +Lc1 +Mc2 = 0,

where we can solve for (K ,L, M) and insert back into the formula for ϕa , which
after a bit of calculation shows that

ϕa(x, y) = 1

∆

∣∣∣∣x − c1 b1 − c1

y − c2 b2 − c2

∣∣∣∣
for (x, y) ∈ T . It follows that the gradient (which is a piecewise constant vector)
equals

∇ϕa(x, y) = 1

∆

(
b2 − c2

−(b1 − c1)

)
for (x, y) in the interior of T . The formulas for ϕb and ϕc on T are obtained by
cyclic permutations of the vectors a, b and c, so on T we have

∇ϕb ·∇ϕc = 1

∆

(
c2 −a2

−(c1 −a1)

)
· 1

∆

(
a2 −b2

−(a1 −b1)

)
= (c−a) · (a−b)

∆2 =−v ·w

∆2 ,

and thus

K T
bc =

∫
T
∇ϕb ·∇ϕc d xd y =−area(T )

v ·w

∆2 =−1
2 |∆|

v ·w

∆2 =−v ·w

2 |∆|
= − |v| |w|cosα

2 |v| |w|sinα
=−1

2 cotα.

Similarly,

K T
aa =

∫
T
∇ϕa ·∇ϕa d xd y = area(T )

(b−c) · (b−c)

∆2

=
(
(b−a)+ (a−c)

) · (b−c)

2 |∆|
= − (a−b) · (b−c)+ (b−c) · (c−a)

2 |∆|
= −(K T

ac +K T
ab) = 1

2 cotβ+ 1
2 cotγ.
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16.1

(a) Green’s second identity says that
∫
Ω

(
(∆u)v −u(∆v)

)
dV = ∫

∂Ω

(
(∂u/∂n)v −

u(∂v/∂n)
)
dV , which equals zero if u and v are zero on ∂Ω.

(b) Green’s first identity says that
∫
∂Ω∇·(u∆v)dV = ∫

Ω

(∇u ·∇v+u∆v
)
dV . Taking

u = v , with u = 0 on the boundary, we obtain
∫
Ω(−∆u)u dV = ∫

Ω |∇u|2 dV ≥ 0,
with equality only if u is constant, i.e., if u ≡ 0 in Ω (since it’s zero on the
boundary). So if u ̸≡ 0, then we have strict inequality, as was to be shown.

(c) Using−∆ui =λi ui and the symmetry proved in part (a), we haveλi
∫
Ωui u j dV =∫

Ω(−∆ui )u j dV = ∫
Ωui (−∆u j )dV =λ j

∫
Ωui u j dV , so that (λi−λ j )

∫
Ωui u j dV =

0. Since λi −λ j ̸= 0 by assumption, the integral must be zero.

(d) If −∆u = λu and u ̸≡ 0, then λ
∫
Ωu2 dV = ∫

Ω(λu)u dV = ∫
Ω(−∆u)u dV > 0

by the positive definiteness proved in part (b). Since obviously
∫
Ωu2 dV > 0,

it follows that λ> 0.

(e) The operator −∆with Neumann conditions is still symmetric, but only posi-
tive semidefinite, since u ≡C satisfies ∂u/∂n = 0 for any value of C , not just
C = 0. Orthogonality of the eigenspaces still holds, but the eigenvalues only
satisfy λ≥ 0, not λ> 0. (The lowest eigenvalue is λ0 = 0, with eigenfunction
u0 ≡ 1).

16.2 The answer is

u(x, t ) =
∞∑

k=1

∞∑
m=1

Ckm sin(kx)sin(my)e−(k2+m2)t ,

where

Ckm =

Ï
Ω

x(π−x)sin2 y · sin(kx)sin(my)d xd yÏ
Ω

(
sin(kx)sin(my)

)2 d xd y

=
(

2

π

∫ π

0
x(π−x)sin(kx)d x

)
︸ ︷︷ ︸

=Ak

(
2

π

∫ π

0
sin2 y sin(my)d y

)
︸ ︷︷ ︸

=Bm

,

where we get

Ak =


8

πk3 , if k is odd,

0 if k is even,

from exercise 9.2, and where we compute

Bm =


−8

π(m3 −4m)
, if m is odd,

0 if m is even,
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using

sin2 y sin(my) = 1
2 sin(my)− 1

4 sin((m +2)y)− 1
4 sin((m −2)y).

(Note that the case m = 2 needs separate treatment when computing the anti-
derivative.)

16.3

(a) We write u(r cosϕ,r sinϕ) = R(r )Φ(ϕ). Then everything is like for the disk,
except that we get −Φ′′(ϕ) = γΦ(ϕ) with Dirichlet conditionsΦ(0) =Φ(β) = 0
instead of 2π-periodicity, so that (up to a constant) Φ(ϕ) = sin(nπx/β) and
γ= (nπ/β)2 where m ≥ 1 is an integer. And then the Bessel equation that we
get for Q(ρ) = R(ρ/

p
λ) will have parameter nπ/β instead of n. The radial part

will be R(r ) = Jnπ/β(
p
λr ), where λ is determined by the boundary condition

R(a) = 0. (The Bessel functions are defined not just for integer values of
the parameter, but actually for any complex value.) If we write µnk for the
kth positive zero of Jnπ/β, then the eigenfunctions and their corresponding
eigenvalues are

unk (r cosϕ,r sinϕ) = Jnπ/β(µnk r /a) sin(nπx/β), λnk = (µnk /a)2,

for integers n ≥ 1 and k ≥ 1.

(b) —

16.4 The minimal value of I (w) is the smallest eigenvalue of the one-dimensional
Laplacian −d 2/d x2 with boundary conditions w(0) = w(1) = 1, namely λ1 =π2.
(The eigenfunctions are wm(x) = sin(mπx) with λm = (mπ)2, for integers m ≥ 1.)
This minimum is attained for w(x) =±2sin x.

16.5

(a) From the expression ∆u = ur r + 1
r 2 uθθ+ 1

r 2 sin2 θ
uϕϕ+ 2

r ur + cosθ
r 2 sinθ uθ, we ob-

tain

R ′′ΘΦ+ 1

r 2 RΘ′′Φ+ 1

r 2 sin2θ
RΘΦ′′+ 2

r
R ′ΘΦ+ cosθ

r 2 sinθ
RΘ′Φ=−λRΘΦ,

that is,
R ′′

R
+ 1

r 2

Θ′′

Θ
+ 1

r 2 sin2θ

Φ′′

Φ
+ 2

r

R ′

R
+ cosθ

r 2 sinθ

Θ′

Θ
=−λ.

This can be rearranged to

r 2
(

R ′′

R
+ 2

r

R ′

R
+λ

)
=−

(
Θ′′

Θ
+ 1

sin2θ

Φ′′

Φ
+ cosθ

sinθ

Θ′

Θ

)
,

where the left-hand side is independent of θ and ϕ, while the right-hand side
is independent of r ; hence, both sides must be equal to some constant γ, so
that we get one equation for the radial part R(r ) and one involving the angles:

R ′′+ 2

r
R ′+

(
λ− γ

r 2

)
R = 0, sin2θ

(
Θ′′

Θ
+ cosθ

sinθ

Θ′

Θ
+γ

)
=−Φ

′′

Φ
.
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And in the angular equation, both sides must be equal to some constant α, so
that we get further separation into one equation forΘ(θ) and one forΦ(ϕ):

Θ′′+ cosθ

sinθ
Θ′+

(
γ− α

sin2θ

)
Θ= 0, Φ′′ =−αΦ.

The boundary conditions are that R(r ) must be finite at r = 0, R(a) = 0,
Θ(θ) must be finite at θ = 0 and θ = π, and Φ(ϕ) must be 2π-periodic; this
last condition implies that α= m2 for some integer m ≥ 0, and that Φ(ϕ) =
A cos(mϕ)+B sin(mϕ) (or justΦ(ϕ) = A if m = 0).

(b) With R(r ) =Q(
p
λr )r−1/2 we get R ′(r ) =p

λQ ′(
p
λr )r−1/2 − 1

2Q(
p
λr )r−3/2

and R ′′(r ) =λQ ′′(
p
λr )r−1/2−pλQ ′(

p
λr )r−3/2+ 3

4Q(
p
λr )r−5/2, so the ODE

for R becomes

0 = R ′′+ 2

r
R ′+

(
λ− γ

r 2

)
R = 0

= λr 2Q ′′(
p
λr )−p

λrQ ′(
p
λr )+ 3

4Q(
p
λr )

r 5/2

+ 2

r

p
λrQ ′(

p
λr )− 1

2Q

r 3/2
+ λr 2 −γ

r 2

Q(
p
λr )

r 1/2

= r−5/2
(
ρ2Q ′′(ρ)+ρQ ′(ρ)+ (

ρ2 −γ− 1
4

)
Q(ρ)

)
.

Comparison to Bessel’s equation ρ2Q ′′(ρ)+ρQ ′(r )+ (ρ2 −n2)Q(ρ) = 0 shows

that n =
√
γ+ 1

4 . This isn’t necessarily an integer, but the Bessel functions Jn

are defined for all complex values of n, so this is not a problem. Thus, the
radial radial solution will have the form

R(r ) = Jn(
p
λr )p
r

, n =
√
γ+ 1

4 .

The boundary condition R(a) = 0 implies that
p
λa must be a zero of that

Bessel function Jn , and this links the values of λ and γ. (But we haven’t yet
determined what values γ is allowed to take; see below.)

(c) If we writeΘ(θ) = Z (cosθ) for some function Z (z), thenΘ′(θ) =−sinθZ ′(cosθ)
andΘ′′(θ) = sin2θZ ′′(cosθ)−cosθZ ′(cosθ), so the ODE forΘ becomes

0 =Θ′′(θ)+ cosθ

sinθ
Θ′(θ)+

(
γ− m2

sin2θ

)
Θ(θ)

= sin2θZ ′′(cosθ)−cosθZ ′(cosθ)

+ cosθ

sinθ

(−sinθ
)
Z ′(cosθ)+

(
γ− m2

sin2θ

)
Z (cosθ)

= (1− z2)Z ′′(z)−2z Z ′(z)+
(
γ− m2

1− z2

)
Z (z), −1 < z < 1.
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This is called the (associated) Legendre equation, and it turns out that it has
solutions that extend nicely to z = ±1 (corresponding to θ = 0 and θ = π)
if and only if γ = l (l + 1) where l ≥ 0 is an integer, and 0 ≤ m ≤ l . These
solutions, denoted Z (z) = P m

l (z), are certain polynomials in z of degree l −m,
multiplied by (1− z2)m/2. (For more details, see for example Strauss’s book,
Sections 10.3 and 10.6).

To summarize, the eigenfunctions that we have found (and it can be shown
that this is a complete set) are constructed as follows: Pick integers 0 ≤ m ≤ l .
Let Θ(θ) = P m

l (cosθ). Let Φ(ϕ) = cos(mϕ) or sin(mϕ) (or just Φ(ϕ) = 1 if

m = 0). And finally pick some integer j ≥ 1 and let R(r ) = Jn(
p
λr )/

p
r , where

n =
√
γ+ 1

4 =
√

l (l +1)+ 1
4 = l + 1

2 ,

and where
p
λa is equal to the j th positive zero of the Bessel function Jn =

Jl+1/2; let’s denote this zero byµl j , so thatλ= (µl j /a)2. Then u = R(r )Θ(θ)Φ(ϕ)
satisfies −∆u = λu in the ball, and u = 0 on the boundary sphere, so it’s an
eigenfunction with the eigenvalue λ= (µl j /a)2. (Note the degeneracy; the
eigenvalue doesn’t depend on m, so we can form a linear combination of
eigenfunctions with the same l and j but different m, to obtain another
eigenfunction with the same eigenvalue.)

17.1

(a) Not dispersive, since ω=−i k2 isn’t real when k is real.

(b) Not dispersive, since w = ck makes d 2ω
dk2 identically zero.

(c) Not dispersive, since ω=±ck makes d 2ω
dk2 identically zero (in both cases).

(d) Dispersive, with ω= ck −bk3, so that cphase = c −bk2 and cgroup = c −3bk2.

(e) Dispersive, with ω=±ck/(1+b2k2)1/2, so that cphase =±c/(1+b2k2)1/2 and
cgroup =±(1−b2k2)/(1+b2k2)3/2.

(f ) Dispersive, with ω=±(c2k2 +m2)1/2, so that

cphase =± (c2k2 +m2)1/2

k
=±c

(
1+ m2

c2k2

)1/2

and

cgroup =±c2k(c2k2 +m2)−1/2 =±c

(
1+ m2

c2k2

)−1/2

.

(g) Not dispersive, since ω isn’t real when k is real.
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17.2 If ω= ck +d , then a wave packet takes the form

u(x, t ) =
∫ ∞

0
F (k)e i (kx−ωt )dk =

∫ ∞

0
F (k)e i (kx−ckt−d t )dk

= e−i d t
∫ ∞

0
F (k)e i k(x−ct )dk = e−i d t f (x − ct ),

so even if its shape changes (due to the factor e−i d t , the wave packet as a whole
still travels with velocity c, and doesn’t really disperse.

17.3 Rewriting as suggested, we obtain

u(x, t ) ≈ cos
((

kx −ω(k)t
)−δ(

x −ω′(k)t
))+cos

((
kx −ω(k)t

)+δ(
x −ω′(k)t

))
= 2cos

(
kx −ω(k)t

)
cos

(
δ
(
x −ω′(k)t

))
= 2cos

(
k
(
x − ω(k)

k t
))

cos
(
δ
(
x −ω′(k)t

))
,

so u looks like a rapidly oscillating wave with wave number k, moving with the
phase velocity cphase =ω(k)/k, multiplied by a slowly oscillating amplitude factor
with wave number δ, moving with the group velocity cgroup =ω′(k).

17.4 Hints: The ODE for g is g ′′′(p) = p g ′(p), so y(p) = g ′(p) satisfies the Airy
equation y ′′(p) = p y(p), whose general solution is y(p) =C Ai(p)+D Bi(p), where
Bi(p) ↗∞ as p →∞, while Ai is bounded on R and satisfies

∫ 0
−∞ Ai(p)d p = 2

3 and∫ ∞
0 Ai(p)d p = 1

3 (Abramowitz & Stegun, Handbook of Mathematical Functions,
formulas 10.4.82–83).

Answer:

u(x, t ) = 2

3
+

∫ x/(3t )1/3

0
Ai(r )dr.

Remark: Note that differentiating this with respect to x gives

1

(3t )1/3
Ai

(
x

(3t )1/3

)
,

which is the fundamental solution of this PDE (the solution with the Dirac delta
δ(x) = H ′(x) as initial data).

17.5 The Laplace equation implies (i k)2Z (z)+Z ′′(z) = 0, so that

Z (z) =C cosh(kz)+D sinh(kz).

The boundary condition at the bottom gives Z ′(−h) = 0, so D/C = tanh(kh), and
hence

Z (z) =C (cosh(kz)+ tanh(kh)sinh(kz)).

And finally, the boundary condition at the surface gives

0 =−ω2Z (0)+ g Z ′(0) =C
(−ω2 + g k tanh(kh)

)
.
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Answer: ω=±√
g k tanh(kh). For small k, we can approximate tanh(kh) with

kh to obtain ω≈±√
g h k, and as k →∞, tanh(kh) → 1, so that ω≈±√

g k.

17.6 Deriving the ODE should hopefully present no problems. Integration gives

−c f (ξ)+ 1
2 f (ξ)2 + f ′′(ξ) = A,

where we must have A = 0 since f and f ′′ were assumed to vanish at infinity.
Multiplying by 2 f ′(ξ) and integrating again gives

−c f (ξ)2 + 1
3 f (ξ)3 + f ′(ξ)2 = B ,

where we must have B = 0 since f and f ′ were assumed to vanish at infinity. So

f ′(ξ) =± f (ξ)
√

c − 1
3 f (ξ),

which is a separable ODE. The constant solution f = 0 is not very interesting here,
so we discard that case. For 0 < f (ξ) < 3c, on the other hand, we get∫

d f

f
√

c − 1
3 f

=±
∫

dξ

With the substitution f = 3c y , we can compute

±(ξ−x0) = 1p
c

∫
d y

y
√

1− y

= [
let s =√

1− y , use partial fractions, etc.
]

= 1p
c

ln
1−√

1− y

1+√
1− y

,

so that
1−√

1− y

1+√
1− y

= e±
p

c (ξ−x0) =: E .

This gives √
1− y = 1−E

1+E

and hence

1− y = 1+E 2 +2E

1+E 2 −2E
= 1− 4E

(1+E)2 ,

so that

f (ξ) = 3c y = 3c · 4E

(1+E)2 = 3c(
1+E

2
p

E

)2 = 3c(
E 1/2 +E−1/2

2

)2 = 3c

cosh2
(p

c
2 (ξ−x0)

) .
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The computation above has a potential problem with division by zero at ξ= x0,
where c − 1

3 f = 0, so we should perhaps give a bit more justification. The function

f (ξ) satisfies the ODE f ′(ξ) = + f (ξ)
√

c − 1
3 f (ξ) for ξ < x0, and the ODE f ′(ξ) =

− f (ξ)
√

c − 1
3 f (ξ) for ξ> x0 (according to our calculations, which are fine in those

cases). Moreover, it satisfies both these ODEs at the point ξ= x0, since f = 3c and
f ′ = 0 there. So the original ODE −c f (ξ)2 + 1

3 f (ξ)3 + f ′(ξ)2 = 0 is indeed satisfied
for all ξ ∈ R.

17.7

(a) We seek f (ξ) such that u = f (x − ct ) is a solution, which requires that

(−c)2 f ′′(ξ)− f ′′(ξ)+ sin f (ξ) = 0.

Multiply by 2 f ′(ξ) and integrate:

(c2 −1) f ′(ξ)2 −2cos f (ξ) = A.

By assumption, cos f (ξ) → 1 as ξ→±∞, and we can’t have c2 −1 = 0 since
that would imply that f is constant, so f ′(ξ)2 → (2+ A)/(c2 −1) as ξ→±∞. If
the right-hand side were nonzero, then f could not have finite limits at ±∞,
so A =−2, and

f ′(ξ)2 = 2(1−cos f (ξ))

1− c2 = 4sin2
(1

2 f (ξ)
)

1− c2 ;

here we see that we must have |c| < 1 in order for a solution of this type to
exist. Thinking of the relation

f ′(ξ) =± 2p
1− c2

∣∣sin
(1

2 f (ξ)
)∣∣

in terms of the ( f , f ′) phase plane, we see that the only curve coming from
the point (0,0) and going to the point (2π,0) is

f ′ = 2p
1− c2

sin( 1
2 f ), 0 < f < 2π.

f

f ′

2π

2p
1−c2

The solution following this curve is given by separation of variables:

1p
1− c2

∫
dξ=

∫
d f

2sin( 1
2 f )

,
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which gives
ξ−x0p
1− c2

= lntan( 1
4 f ),

where 0 < 1
4 f < π

2 .

Answer: u(x, t ) = 4arctan
(
e(x−ct−x0)/

p
1−c2 )

, for −1 < c < 1.

(b) Just compute: u = 4arctan T
X gives

ut = 4

1+ T 2

X 2

· Tt

X
= 4X Tt

X 2 +T 2 , ut t = 4X · Tt t (X 2 +T 2)−Tt ·2T Tt

(X 2 +T 2)2

and

ux = 4

1+ T 2

X 2

· −T Xx

X 2 = −4Xx T

X 2 +T 2 , uxx =−4T · Xxx (X 2 +T 2)−Xx ·2X Xx

(X 2 +T 2)2 .

Moreover, the identity sin(4α) = 2sin(2α)cos(2α) = 4sinαcosα(cos2α−sin2α),
with α= arctan T

X so that sinα= X /
p

X 2 +T 2 and cosα= T /
p

X 2 +T 2, gives

sinu = 4 · Xp
X 2 +T 2

· Tp
X 2 +T 2

·
(

X 2

X 2 +T 2 − T 2

X 2 +T 2

)
= 4X T (X 2 −T 2)

(X 2 +T 2)2 .

Inserting this into the sine–Gordon equation ut t −uxx + sinu = 0 and can-
celling the common factor 4/(X 2 +T 2)2 gives the first equation, and then the
second equation is obtained through division by X T .

(c) With T (t) =
p

1−ω2 cos(ωt) and X (x) = ωcosh
(p

1−ω2 x
)

we have Tt t =
−ω2T and Xxx = (1−ω2)X , and moreover from cos2+sin2 = 1 = cosh2−sinh2

we get

T 2
t = (1−ω2)ω2 sin2(ωt ) =ω2(1−ω2)

(
1− T 2

1−ω2

)
=ω2(1−ω2)−ω2T 2

and

X 2
x =ω2(1−ω2)sinh2(√1−ω2 x

)= (1−ω2)ω2
(

X 2

ω2 −1

)
= (1−ω2)X 2−ω2(1−ω2),

so that the condition from part (b) is fulfilled:

Tt t

T
X 2 +X Xxx +X 2 −2X 2

x +
Xxx

X
T 2 +T Tt t −T 2 −2T 2

t

=−ω2X 2 + (1−ω2)X 2 +X 2 −2(1−ω2)X 2 +2ω2(1−ω2)

+ (1−ω2)T 2 −ω2T 2 −T 2 +2ω2T 2 −2ω2(1−ω2)

= 0.
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