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No aids allowed (except drawing tools, such as rulers, of course). You may write your
answers in English or in Swedish, or some mixture thereof.

Each problem is marked pass (3 or 2 points) or fail (1 or 0 points). For grade n ∈ {3,4,5}
you need at least n passed problems and at least 3n −1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

1. Find the solution u(x, y) to the PDE xux − yuy = 0 in the positive quadrant
x > 0, y > 0, under the condition u(x,2x) = sin x for x > 0.

2. Consider the heat equation ut = uxx on the interval 0 < x < π, with the
initial condition u(x,0) = 1−cos2x. Find the solution u(x, t ) (for t > 0) in
the following two cases:

(a) With Neumann boundary conditions (ux = 0 at both endpoints). (1p)

(b) With Dirichlet boundary conditions (u = 0 at both endpoints). (2p)

3. Consider the wave equation ut t = 4uxx on the half-line x > 0, with the
boundary condition u(0, t ) = 0 for all t . Suppose that the (weak) solution
u(x, t) looks as in the graph below when t = 0, and also that ut (x,0) = 0.
Draw graphs showing what u(x, t ) looks like when t = 1, t = 2 and t = 3.
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4. Solve Laplace’s equation ∆u(x, y, z) = 0 in the unit ball x2 + y2 + z2 < 1,
with the boundary condition that u(x, y, z) = x3 when x2 + y2 + z2 = 1.
(Hint: Seek a first-degree polynomial q such that x3 + (1− r 2) q(x, y, z) is
harmonic, where r 2 = x2 + y2 + z2.)

5. Outline the main steps in (the basic variant of) the Finite Element Method
for solving Poisson’s equation −∆u = f in a bounded domainΩ⊂ R2 with
the Dirichlet condition u = 0 on ∂Ω. (What is the “semi-weak formulation”
that the method is based upon? In what form do we seek the approximate
solution? What algebraic equations do we need to solve in order to find
the unknown coefficients in that expression? Etc.)

6. LetΩ⊆ Rn be a connected nonempty open set, and suppose that u ∈C 2

satisfies ∆u = u2 inΩ. Show that u cannot attain a local maximum inΩ
unless u ≡ 0 there. (Hint: Subharmonic.)



Solutions for TATA27 2025-05-28

1. The PDE says that u is constant along the characteristics, which are the
solution curves of the ODEs ẋ = x, ẏ = −y , namely (x, y) = (x0e t , y0e−t )
with x0 > 0 and y0 > 0, or in other words the curves x y =C in the positive
quadrant. Thus u(x, y) = f (x y), where the additional condition requires
that f (x ·2x) = sin x for x > 0, so that f (ξ) = sin

√
ξ/2 for ξ> 0.

Answer. u(x, y) = sin
√

x y/2 for x > 0 and y > 0.

2. (a) Solvable by inspection! Answer. u(x, t ) = 1−e−4t cos2x.

(b) A basis of separated solutions is un(x, t) = e−n2t sinnx for integers
n ≥ 1. To obtain the expansion of u(x, t) in terms of un(x, t), we
need the expansion of u(x,0) in terms of un(x,0), namely 1−cos2x =∑∞

n=1 cn sinnx for 0 < x <π. Orthogonality gives∫ π

0

(
1−cos2x

)
sinnx d x = cn

∫ π

0
sin2 nx d x,

so that

cn = 2

π

∫ π

0

(
sinnx − 1

2 sin(n +2)x − 1
2 sin(n −2)x

)
d x

=
{

0, n = 2,
2
π

(
1− (−1)n

)( 1
n − 1/2

n+2 − 1/2
n−2

)
, 1 ≤ n ̸= 2

=
{

0, n even,
16

πn(4−n2)
, n odd.

Answer. u(x, t ) =
∞∑

n=1
cnun(x, t ) = ∑

odd n ≥ 1

16e−n2t sinnx

πn(4−n2)
.



3. Extend the initial function u(x,0) to an odd function on the whole line,
and then use d’Alembert’s formula, i.e., split the function into the sum of
two equal halves and let them move left and right, respectively, with the
wave speed c = 2. At time t = 1, the upside-down wave coming in from
the left starts interfering with the left-moving positive wave coming from
the right, giving the impression that this wave is bouncing against the
interval’s endpoint x = 0:
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4. The function u(x, y, z) = x3+(1−r 2)(ax+by+cz+d) satisfies the boundary
condition u|r=1 = x3 by construction, and it is harmonic if

0 =∆u =∆(
x3 + (1−x2 − y2 − z2) (ax +by + cz +d)

)
= ·· · = 6x −10ax −10by −10cz −6d ,

which gives a = 3/5 and b = c = d = 0.

Answer. u(x, y, z) = x3 + (1−x2 − y2 − z2) · 3
5 x = 2

5 x3 − 3
5 x y2 − 3

5 xz2 + 3
5 x.

5. Multiply the PDE by a test function ϕ which is zero on the boundary ∂Ω,
and integrate by parts (using the divergence theorem) to obtain the semi-
weak formulation

∫
Ω∇u •∇ϕdx dy = ∫

Ω f ϕdx dy . TriangulateΩ and label
the interior nodes in the triangulation by 1, . . . , N . Define the basis function
ϕk to be a “tent function”: continuous, equal to one at node number k,
equal to zero at all other nodes (including the boundary nodes), and
piecewise affine (given by a first-degree polynomial on each triangle).
Then the approximate solution is u = ∑N

k=1 c jϕ j , where the coefficients
c j are determined by requiring this expression to satisfy the semi-weak
formulation withϕ=ϕi for 1 ≤ i ≤ N ; in other words, they are given by the
linear system

∑N
j=1 Ki j c j = fi for 1 ≤ i ≤ N , where Ki j =

∫
Ω∇ϕi •∇ϕ j dx dy

and fi =
∫
Ω f ϕi dx dy .



6. Since ∆u = u2 we have ∆u ≥ 0, i.e., u is subharmonic. Suppose u attains
a local maximum at an interior point ofΩ. According to the strong max-
imum principle for subharmonic functions, this can only happen if u is
constant in that connected component of the domain, which is this case is
all ofΩ since it was assumed to be connected. So u is constant onΩ, which
implies that ∆u = 0, and then the PDE ∆u = u2 shows that the constant
value of u is actually zero. Q.E.D.


