TATA27 Partiella differentialekvationer

Tentamen 2025-08-18 kl. 14.00-18.00

No aids allowed (except drawing tools, such as rulers, of course). You may write your answers in English or in Swedish, or some mixture thereof.

Utbildningskod: TATA27

Modul: TEN1

Each problem is marked *pass* (3 or 2 points) or *fail* (1 or 0 points). For grade $n \in \{3,4,5\}$ you need at least n passed problems and at least 3n-1 points.

Solutions will be posted on the course webpage afterwards. Good luck!

- 1. Suppose u(x, y) is harmonic on \mathbb{R}^2 , with $u(x, y) = x^2$ when $x^2 + y^2 = 4$. Determine u(0,0).
- 2. Let c > 0. Solve the wave equation $u_{tt} = c^2 u_{xx}$ for $0 < x < \pi$ and t > 0, with Dirichlet boundary conditions u = 0 for x = 0 and $x = \pi$ and initial conditions $u = \sin 2x$ and $u_t = \sin 3x$ for t = 0.
- 3. (a) Let $\Omega \subset \mathbf{R}^n$ be a bounded nonempty open set and $I \subseteq \mathbf{R}$ an open interval. Suppose $u(\mathbf{x},t)$ satisfies the heat equation $u_t = \Delta u$ for $(\mathbf{x},t) \in \Omega \times I$, with the boundary condition $u(\mathbf{x},t) = 0$ for $(\mathbf{x},t) \in \partial \Omega \times I$. Show that $E(t) = \frac{1}{2} \int_{\Omega} u(\mathbf{x},t)^2 \, dV$ (for $t \in I$) is a nonincreasing function. (It is assumed that we are looking at a nice enough domain Ω and nice enough functions u, so that we may differentiate under the integral sign and use the divergence theorem.)
 - (b) Use part (a) to show that there is at most one solution $u(\mathbf{x}, t)$ (within this class of nice enough functions) to the initial–boundary value problem for the heat equation on $\Omega \times \mathbf{R}_+$.
- 4. Solve $2x^2yu_x u_y = 0$ subject to the condition u(x,0) = f(x) for $x \in \mathbf{R}$, where $f \in C^1(\mathbf{R})$ is a given function. It is enough if you compute the solution u(x,y) in the region of the xy-plane where its values are actually determined by f. What region is that?
- 5. Prove the weak maximum principle for harmonic functions: If Ω is a *bounded* nonempty open set in \mathbf{R}^n , and if u is harmonic on Ω and continuous on $\overline{\Omega}$, then the maximum of u on $\overline{\Omega}$ (which exists by the extreme value theorem) is attained on the boundary $\partial\Omega$.

(Reminder: It's useful to consider the function $v(\mathbf{x}) = u(\mathbf{x}) + \varepsilon |\mathbf{x}|^2$ for $\varepsilon > 0$.)

6. For the inviscid Burgers equation $u_t + uu_x = 0$, find a weak solution u(x, t) for t > 0 with the initial condition

$$u(x,0) = \begin{cases} 0, & x \le 0, \\ x, & 0 < x < 1, \\ 0, & 1 < x. \end{cases}$$

(Recall the Rankine–Hugoniot condition for constructing a weak solution by gluing strong solutions u^L and u^R along a curve x = g(t): the shock velocity g'(t) must equal the average of u^L and u^R on the curve.)

Solutions for TATA27 2025-08-18

1. By the mean value property for harmonic functions, u(0,0) is the average of the known values $u(x, y) = x^2$ on the circle $(x, y) = (2\cos\varphi, 2\sin\varphi)$:

$$u(0,0) = \frac{1}{2\pi} \int_0^{2\pi} (2\cos\varphi)^2 d\varphi = \frac{1}{\pi} \int_0^{2\pi} (1+\cos 2\varphi) d\varphi = 2.$$

(We can also verify this by seeking the solution on the form $u(x, y) = x^2 + c(4-x^2-y^2)$, $c \in \mathbf{R}$, which satisfies the boundary condition by construction and is harmonic iff c = 1/2. Thus $u(x, y) = 2 + \frac{1}{2}(x^2 - y^2)$, so u(0, 0) = 2.)

Answer. u(0,0) = 2.

2. A function with the sought properties can be found by inspection, and theory says that the solution is unique.

Answer. $u(x, t) = \sin 2x \cos 2ct + \frac{1}{3c} \sin 3x \sin 3ct$.

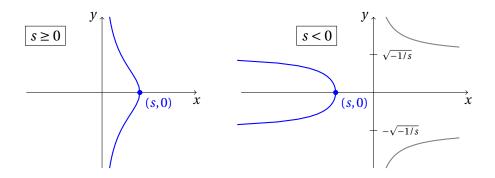
3. (a) Using that $u_t = \Delta u$ and that u = 0 for $\mathbf{x} \in \partial \Omega$, we have

$$\begin{split} E'(t) &= \frac{d}{dt} \int_{\Omega} \frac{1}{2} u^2 dV = \int_{\Omega} \frac{1}{2} \frac{\partial}{\partial t} (u^2) dV = \int_{\Omega} u u_t dV = \int_{\Omega} u \Delta u dV \\ &= \int_{\Omega} \left(\nabla \cdot (u \nabla u) - \nabla u \cdot \nabla u \right) dV = \underbrace{\int_{\partial \Omega} u \nabla u \cdot \mathbf{n} \, dS}_{=0} - \underbrace{\int_{\Omega} |\nabla u|^2 \, dV}_{\leq 0} \leq 0 \end{split}$$

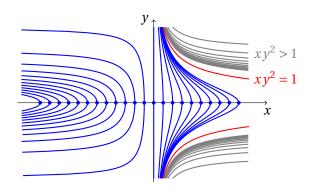
for all $t \in I$, which implies that E is nonincreasing.

(b) If u_1 and u_2 both solve the same initial–boundary value problem, then $u=u_1-u_2$ is like in part (a) with $I=\mathbf{R}_+$, so that E(t) is non-decreasing for t>0, and moreover u=0 at t=0, so that E(0)=0. As usual when talking about solutions to initial–boundary value problems, it is assumed that u_1 and u_2 are continuous on $\overline{\Omega}\times[0,\infty)$, and therefore E is continuous on $[0,\infty)$. Since E(t) is nonnegative (being the integral of $\frac{1}{2}u^2$), it follows that E(t)=0 for all $t\geq 0$, which implies that u is identically zero, so that $u_1=u_2$.

4. For a fixed $s \in \mathbf{R}$, the characteristic curve (x(t), y(t)) starting at the point (s,0) is given by the ODEs $\dot{x}=2x^2y$ and $\dot{y}=-1$ with initial conditions x(0)=s and y(0)=0. This is readily solved (but note that the case s=0 may need separate treatment) to give $x(t)=\frac{s}{1+st^2}$ and y(t)=-t. Note that for $s\geq 0$ the parameter t can take any real value, but if s<0 then we only have $|t|<\sqrt{-1/s}$; values with $|t|>\sqrt{-1/s}$ parametrize two characteristic curves which are not connected to our starting point (s,0):



For a given point $(x,y) \in \mathbf{R}^2$, we may invert the relations $(x,y) = \left(\frac{s}{1+st^2}, -t\right)$ to find t = -y and $s = \frac{x}{1-xy^2}$, provided that $xy^2 \neq 1$. Thus, the point (x,y) lies on a characteristic curve corresponding to the value $s = \frac{x}{1-xy^2}$, where the value of u is (locally) constant since the right-hand side of the PDE is zero. However, it is only for $xy^2 < 1$ that this characteristic curve is actually connected to (s,0), where we know the value $u = f(s) = f\left(\frac{x}{1-xy^2}\right)$:



Answer.
$$u(x, y) = f\left(\frac{x}{1-xy^2}\right)$$
 for $xy^2 < 1$.

(Whether or not this can be continued into the region $xy^2 \ge 1$ to form a global solution $u \in C^1(\mathbf{R}^2)$ depends on how f(x) behaves as $x \to +\infty$, but that was outside the scope of the question.)

- 5. See the course materials.
- 6. We want to construct a weak solution by gluing the "left" and "right" strong solutions $u^L(x,t) = u^R(x,t) = 0$ to the "middle" strong solution $u^M(x,t) = \frac{x}{t+1}$, which can be found from the initial values $u^M(x,0) = x$ by thinking of the solution as consisting of "particles" with the property that a particle at elevation h travels with velocity h; indeed, a particle starting out at (x,u) = (h,h) when t=0 will be at (x,u) = (h+th,h) at time t>0, so that the slope of the line has changed from 1 to $\frac{1}{t+1}$.

We can immediately glue x^L and x^M (continuously, i.e., without a shock) along the line x = 0. For gluing x^M and x^R , we seek a curve x = g(t) > 0, with g(0) = 1, such that the Rankine–Hugoniot condition

$$g'(t) = \frac{x^{M}(g(t), t) + x^{R}(g(t), t)}{2} = \frac{\frac{g(t)}{t+1} + 0}{2}$$

holds for t > 0. Since g(t) > 0, we can write this as $\frac{g'(t)}{g(t)} = \frac{1/2}{t+1}$ and integrate (using g(0) = 1) to obtain $\ln g(t) = \frac{1}{2} \ln(t+1)$, i.e., $g(t) = \sqrt{t+1}$.

Answer. For t > 0, a weak solution is

$$u(x,t) = \begin{cases} 0, & x \le 0, \\ \frac{x}{t+1}, & 0 < x < \sqrt{t+1}, \\ 0, & \sqrt{t+1} < x. \end{cases}$$