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Hand-in exercises for TATA34 Real Analysis, Honours Course, 2024

I will send out information by personal email during the course, so please send
me an email to anders.bjorn@liu.se with your name, preferred email address,
programme and year. Let me know if you decide to drop the course, and I won’t bother
you with further emails.

The examination of this course consists of six rounds of hand-in exercises as given below.

The exercises should be solved individually and you have to be prepared to demonstrate
your solutions at the board during the exercise sessions held after each round (but for the
last one).

Each exercise can give one point. For grade 3 it is enough to get 5 points in each round.
For grades 4 and 5 it is enough with 6 resp. 7 points in each round, provided that among
them there are at least 6 resp. 12 *-marked points in total (i.e. from all the rounds together).

If you are very close to fulfilling these requirements I will take an overall look after all six
rounds, and perhaps give you (individually) some extra exercise(s) to solve in order for you
to obtain a certain grade. This mainly applies for passing the course.

In addition, to pass the course you are also required to be present and demonstrate so-
lutions at the board during at least three exercise sessions. (You will be asked to demonstrate
some exercise, or part of an exercise, that you’ve solved.)

Instructions for the exercises

• For deadlines see the lecture plan. If for some reason you are not able to hand in the
solutions by the deadline, you should notify the examiner as early as possible.

• If you need to to do a maxmin investigation in some problem, then please provide the
details as required in the first year single-variable analysis course TATA41.

• Swedish-speaking students are encouraged to write their solutions in Swedish.
• You are allowed to discuss the problems with the other students taking the course, but
you are not allowed to copy anyone else’s solution. You must formulate your own
solutions, and understand them. You are not allowed to use ChatGPT or similar
tools.

• A good idea is to first solve a problem on scrap paper, and later write it down more
carefully on another piece of paper.

• You should put an effort into writing clearly and legibly, and to carefully justify your
arguments.

• You may of course write your solutions using LATEX (or some similar program), but
this is not at all necessary.

• The exercises should be numbered according to the list below, and sorted according
to the numbering.

• There should be space for my comments on each page. You may solve several
exercises on the same page, and use both sides of the paper, but there should always
be space between the solutions and in the margins so that I have ample space for my
comments.

Continued on the next page.
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• Each round should have a cover page on which you should write your name, programme
and year. In addition you should tick off which exercises you have solved in a table of
the following form: Mark solved exercises with X and unsolved with – . (The third line
is meant for me to mark how many points you get on each exercise.) Don’t make the
squares too small.

1 2 3 4 5 6 7 8 9 10 11

X X – X X X – – X X X

• Staple the cover page together with your solutions in the upper left corner. (And make
sure that no text is hidden on later pages, not even any exercise numbers.)

• The solutions should be handed into the course’s mailbox, B-house, top floor, near
entrance 21.

• Don’t be afraid of the *-marked exercises, some of them are not so difficult.
• In all exercises (with several parts) it is ok to use the result in one part to show a later
part, even if you haven’t solved the first part, unless said otherwise.

• You may use any result that is proved in the course book by Abbott, the course
book by Forsling–Neymark for the 1st year single-variable analysis courses TATA41
and TATA42, or during the lectures.

Course evaluations: This course has generally been given very positive course evaluations
by the students. There has not been any major specific adjustments suggested. Neverthe-
less, there are always some minor adjustments each year, as part of the continuing course
develeopment.
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Round 1
In this round all the involved numbers and sets are within R, unless explicitly said otherwise.

In all exercises it is ok to use the result in one part to show a later part, even if you
haven’t solved the first part, unless said otherwise. This applies to all later rounds as well.

1. Let A1 ⊃ A2 ⊃ A3 ⊃ ... . Decide if each of the following statements is true. If not give
a counterexample. No proof needed if a statement is true. (Note that, in contrast to
Abbott, when I write A ⊂ B it is allowed that A = B.)
(a) If each An is infinite (i.e. contains an infinite number of points), then

⋂∞
n=1An is

infinite.
(b) If each An is finite and nonempty, then

⋂∞
n=1An is nonempty.

2. Let |x| = (
∑n

j=1 x
2
j )

1/2 for x = (x1, ... , xn) ∈ Rn. Prove that
∣∣|a| − |b|

∣∣ ≤ |a − b| for
a, b ∈ Rn. Hint : Use the triangle inequality from linear algebra (no need to prove that).
You can get half credit if you only prove it for n = 1.

3. Let x1 = 1 and define xn+1 = (2xn + 5)/3 for n = 1, 2, ... .
(a) Use induction to prove that xn < 5 for each n.
(b) Show that the sequence is strictly increasing.
(c) It follows from the monotone convergence theorem (MCT, SOMK) that the se-

quence has a limit x = limn→∞ xn. Determine this limit.
4. Compute, without proofs, the suprema and infima of

A =
{ n

5n+ 2
: n = 1, 2, ...

}
and B =

{ m

2m+ n
: m,n = 1, 2, ...

}
.

Is inf A ∈ A?, supA ∈ A?, inf B ∈ B?, supB ∈ B?
5. Let A,B ⊂ R be nonempty bounded sets. Decide if each of the following statements is

true. If so give a short proof and otherwise a counterexample.
(a) If supA < inf B, then there exists c ∈ R such that a < c < b for all a ∈ A and

b ∈ B.
(b) If c ∈ R is such that a < c < b for all a ∈ A and b ∈ B, then supA < inf B.

*6. Let I = R \Q be the set of irrational numbers.
(a) Show that if a, b ∈ Q, then a+ b, ab ∈ Q.
(b) Show that if a ∈ Q \ {0} and b ∈ I, then a+ b, ab ∈ I.
(c) What happens if a, b ∈ I? Is it possible to have a+ b ∈ Q? How about a+ b ∈ I?

How about ab ∈ Q? How about ab ∈ I? (For each question, give an example or
prove none exists.)

7. Prove that the following numbers are irrational.
(a)

√
7, (b)

√
10, (c)

√
2 +

√
5.

8. (a) Show that 3√5 and
√
2 +

√
5 are algebraic.

(b) Show that if a ∈ A, a ̸= 0, (i.e. a is algebraic) then −a, 1/a ∈ A. (You are not
allowed to use that A is a field.)

There are more questions on the next page.
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*9. (a) Show that (0, 1) ∼ R (where (0, 1) = {x : 0 < x < 1}).
(b) Show that [0, 1] ∼ R (where [0, 1] = {x : 0 ≤ x ≤ 1}).
(c) Show that (0, 1)× (0, 1) ∼ R2.
(d) Show that (0, 1) ⪯ (0, 1)× (0, 1).
(e) Show that (0, 1) × (0, 1) ⪯ (0, 1). Hint : Use a mapping which maps (x, y) ∈

(0, 1)× (0, 1), where x = 0.x1x2x3... and y = 0.y1y2y3... , to z = 0.x1y1x2y2x3y3... .
Make sure your mapping is well-defined.

(f) Show that (0, 1)× (0, 1) ∼ (0, 1).
(g) Show that R2 ∼ R.

*10. Show that the set consisting of all finite subsets of N is countable.
*11. Let an = 1/n. Then we know that an → 0, but is this completely obvious. In this

exercise we’ll look at how this follows from our axioms. (You don’t have to show that
the sequence is decreasing.)
(a) Let i = inf{a1, a2, ...}, which exists by the supremum axiom (SA, Axiom of Com-

pletness). As 0 is a lower bound for the set, we see that i ≥ 0. Show that the
archimedean property (AP, AE) ⇒ i = 0. (Hence we know that SA ⇒ AP ⇒
i = 0.) Hint : Consider the contrapositive implication.

(b) Let a = limn→∞ an, which exists by the monotone convergence theorem (MCT,
SOMK). By the order limit theorem, a ≥ 0. Show that a = 0 without using AP.
Hint : Assume a > 0, then we may use ε = a in the definition of limits.
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Round 2
In this round all the involved numbers and sets are within R, unless explicitly said otherwise.

1. Verify, using the (ε,N)-definition of limit, that lim
n→∞

3n+ 2

5n+ 3
=

3

5
.

2. Let xn ≥ 0. (In this exercise you’re not allowed to use that
√
x is a continuous function.)

(a) Show that if xn → 0, then
√
xn → 0.

(b) Show that if xn → x, then
√
xn →

√
x.

3. Let (xn)
∞
n=1 be a sequence of points in Rn such that xn → a and xn → b, as n → ∞.

Show that a = b. You can get half credit if you only prove it for n = 1.
4. What happens if we reverse the order of the (first two) quantifiers in the definition of

limits? We get the following (nonstandard) definition.
Definition: A sequence (xn)

∞
n=1 conges to x if ∃ε > 0 ∀N ∈ N ∀n ≥ N |xn − x| < ε.

(a) Give an example of a congent sequence (and state what it conges to).
(b) Does there exist a congent sequence which is divergent?
(c) Can a sequence cong to two different values?
(d) Exactly what is described by this weird definition? (It is enough to give a descrip-

tion.)
5. Let

x1 = 5 and xn+1 =
1

2

(
xn +

3

xn

)
, n = 1, 2, ... .

Show that xn →
√
3. Hint : Prove that xn >

√
3 for each n, and then that (xn)

∞
n=1 is

decreasing.
*6. Let (an)

∞
n=1 be a bounded sequence and define the limit superior

lim sup
n→∞

an = lim
n→∞

xn, where xn = sup{ak : k ≥ n}.

(a) Show that (xn)
∞
n=1 converges.

(b) Provide a reasonable definition for lim infn→∞ an.
(c) Prove that lim infn→∞ an ≤ lim supn→∞ an, and show with an example that the

inequality can be strict.
(d) Show that lim infn→∞ an = lim supn→∞ an = a if and only if limn→∞ an = a.

7. Let (an) and (bn) be Cauchy sequences, and let cn = |an − bn|. Is (cn) always a Cauchy
sequence? Show this or give a counterexample.

8. (a) Show that if
∑∞

n=1 an is absolutely convergent then also
∑∞

n=1 a
2
n is absolutely

convergent.
(b) Is it true that if

∑∞
n=1 an is convergent, then also

∑∞
n=1 a

2
n is convergent? Give a

proof or a counterexample.
(c) Assume that both

∑∞
n=1 xn and

∑∞
n=1 yn diverge. Can it happen that

∑∞
n=1 xnyn

converges? Give an example or prove that none exist.

There are more questions on the next page.
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*9. The Leibniz’ criterium says that if (an)
∞
n=1 is a decreasing sequence tending to 0, then

∞∑
n=1

(−1)n−1an

converges. Prove this in the following three ways:
(a) Prove that the partial sums

sn =

n∑
k=1

(−1)k−1ak

form a Cauchy sequence, and use this to prove Leibniz’ criterium.
(b) Use Cantor’s encapsulation theorem for intervals to prove Leibniz’ criterium
(c) Show that the subsequences (s2n)

∞
n=1 and (s2n+1)

∞
n=1 are monotone, and use this

to prove Leibniz’ criterium.
10. Assume that

∑∞
k=1 ak = A ∈ R and

∑∞
k=1 bk = B ∈ R. If one wants to sum the

double series
∑∞

k=1

∑∞
j=1 akbj it may depend on the order of summation. If we sum

over squares this leads to limn→∞
∑n

k=1

∑n
j=1 akbj , while if we sum over triangles we

obtain

lim
n→∞

n∑
k=2

ck, where ck =
k−1∑
j=1

ajbk−j .

(a) Show that if we sum over squares we always get

lim
n→∞

n∑
k=1

n∑
j=1

akbj = AB.

(b) Show, by giving an example, that it can happen that the sum over triangles
∑∞

k=1 ck
diverges. Hint : Consider ak = bk = (−1)k/

√
k. If you make other choices you need

to show that
∑∞

k=1 ak and
∑∞

k=1 bk are convergent.
*11. (See above for the definition of lim sup.)

(a) Show that
∑∞

k=1 ak is absolutely convergent if lim sup
k→∞

|ak|1/k < 1.

(b) Show that
∑∞

k=1 ak is divergent if lim sup
k→∞

|ak|1/k > 1.

(c) Give an example where lim sup
k→∞

|ak|1/k = 1 and
∑∞

k=1 ak is absolutely convergent.

(d) Give an example where lim sup
k→∞

|ak|1/k = 1 and
∑∞

k=1 ak is conditionally convergent.

(e) Give an example where lim sup
k→∞

|ak|1/k = 1 and
∑∞

k=1 ak is divergent.
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Round 3

1. Let

an = (−1)n +
2

n
, n = 1, 2, 3, ... , and A = {an : n = 1, 2, 3, ...}.

(a) Calculate lim sup
n→∞

an and lim inf
n→∞

an. Only answers required in (a), (b), (e) and (f).

(b) Determine the limit points of A.
(c) Is A open? Why?
(d) Is A closed? Why?
(e) Has A any isolated points? If so which?
(f) Determine A. (In this course, A denotes the closure of A, not the complement.)

2. For each of the following sets determine if it is open, closed, both or neither (with
respect to R). If a set isn’t open, find a point in it without a neighbourhood within the
set. If a set isn’t closed, find a limit point which isn’t in the set. No further justification
has to be given.
(a) Q, (b) N, (c) {x ∈ R : x ̸= 0},
(d) {1+1/2+1/3+ ...+1/n : n = 1, 2, ...}, (e) {1+1/4+1/9+ ...+1/n2 : n = 1, 2, ...}.

3. (a) Show that A ∪B = A ∪ B. In both parts you may assume that the sets are
subsets of R.

(b) Is the corresponding identity true for infinite unions? Give a proof or a counterex-
ample.

4. Decide which of the following statements are true. For each one give a proof or a
counterexample.
(a) If A ⊂ R is open and Q ⊂ A, then A = R.
(b) Every nonempty open set A ⊂ R contains a rational number.
(c) Every infinite closed set A ⊂ [0, 1] contains a rational number.
(d) Every infinite countable set A ⊂ [0, 1] has a limit point.
(e) Every infinite countable set A ⊂ [0, 1] has an isolated point.

5. Which of the following sets are compact? For the noncompact ones, show why it isn’t
sequentially compact, i.e. give an example of a sequence in the set without convergent
subsequence with limit in the set.
(a) N, (b) Q ∩ [0, 1], (c)

{
1, 12 ,

1
3 ,

1
4 , ...

}
, (d)

{
1, 12 ,

2
3 ,

3
4 , ...

}
,

(e) {1 + 1/4 + 1/9 + ...+ 1/n2 : n = 1, 2, ...}.
6. For the sets which were noncompact in the previous exercise, find an open cover without

finite subcover.
*7. Let X be a metric space. Let a ∈ X, and let (an)

∞
n=1 be a sequence in X such that

every subsequence has a subsubsequence converging to a. Show that limn→∞ an = a.
Hint : Assume that an ̸→ a. You can get 0.7p if you only consider this for X = R.

There are more questions on the next page.
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8. Decide which of the following statements are true. For each one either give a proof or a
counterexample. For full credit you should consider if the statement is true in arbitrary
metric spaces, but partial credit will be given if you only consider subsets of R.
(a) An arbitrary intersection of compact sets is compact.
(b) An arbitrary union of compact sets is compact.
(c) If A is arbitrary and K compact, then A ∩K is compact.
(d) If F1 ⊃ F2 ⊃ F3 ⊃ ... is a decreasing sequence of nonempty closed sets, then⋂∞

n=1 Fn ̸= ∅.
(e) A finite set is always compact.
(f) A countable set is always compact.

*9. Let (X, dX) and (Y, dY ) be nonempty metric spaces. Let

dX×Y ((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2).

(a) Show that (X × Y, dX×Y ) is a metric space, i.e. that dX×Y is a metric on X × Y .
(b) Show that X × Y is complete if and only if both X and Y are complete.

10. A set is clact if every cover by closed sets has a finite subcover. (This is a nonstandard
definition.) Describe all clact subsets of R. Prove that your description is correct.

*11. Repeat the Cantor construction starting with the interval A0 = B0 = [0, 1]. This time,
however, remove the open middle quarter of each interval in An−1 when constructing An,
and the open middle interval of length 4−n of each interval in Bn−1 when constructing
Bn. The set A =

⋂∞
n=0An is a selfsimilar Cantor set, whereas B =

⋂∞
n=0Bn is a

nonselfsimilar Cantor set.
(a) Draw A1, A2, B1 and B2, with explicit coordinates using fractions. A1 = B1 but

how can you compare A2 and B2? (Is A2 = B2, A2 ⊂ B2, A2 ⊃ B2 or none of
these?)

(b) Draw the first two intervals (closest to 0) of A3 and B3, with explicit coordinates
using fractions. How can you compare A3 and B3?

(c) Draw the first two intervals (closest to 0) of A4 and B4, with explicit coordinates
using fractions. How can you compare A4 and B4?

(d) Are A and B compact? Perfect? Do they have any interior points?
(e) What is the total length of the removed intervals when constructing A resp. B?
(f) What is the length (i.e. outer measure) of A resp. B? What are their dimensions?

(We haven’t all the tools available for this, but give your best guesses, and try to
explain them.)
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Round 4

1. Use the (ε,δ)-definition of limit to show:
(a) lim

x→1
x4 − 1 = 0,

(b) lim
x→2

x2 + x+ 1 = 7.

2. Prove or disprove that the following functions are uniformly continuous:
(a) ex on (0, 1), (b) ex on (1,∞), (c) lnx on (0, 1), (d) lnx on (1,∞).

3. Define for each of the following sets A a function f : R → R which is discontinuous at
every point in A but continuous at every point in Ac: (It is enough if you define them.)
(a) A = Z, (b) A = [0, 1], (c) A = (0, 1), (d) A = {1, 12 ,

1
3 , ...}.

*4. (a) Prove that Dirichlet’s function χQ isn’t continuous at any point. Here

χQ(x) =

{
1, if x ∈ Q,

0, otherwise.

(b) Show that Thomae’s function t, see Section 4.1, isn’t continuous at any rational
point.

(c) Show that t is continuous at every irrational point. Hint : Study the set {x ∈ R :
t(x) ≥ ε}.

5. Let X and Y be metric spaces and f : X → Y be continuous. Show that f−1(F ) is
closed if F is closed. You can get half credit if you only consider continuous functions
f : R → R.

6. Give for each part an example of such an f and a Cauchy sequence (xn), with xn ∈ Df

(f ’s domain of definition), such that (f(xn)) isn’t a Cauchy sequence, or explain why
this is impossible to fulfill.
(a) With a continuous f : (0, 1) → R.
(b) With a continuous f : [0, 1] → R.
(c) With a continuous f : [0,∞) → R.
(d) With a uniformly continuous f : (0, 1) → R.
(e) With a uniformly continuous f : [0, 1] → R.
(f) With a uniformly continuous f : [0,∞) → R.

*7. A function f : A → R is Lipschitz with Lipschitz constant M if |f(x)−f(y)| ≤ M |x−y|
for all x, y ∈ A.
(a) Show that if f is Lipschitz on (0, 1], then limx→0+ f(x) exists and is finite.
(b) Show that if f is Lipschitz on (0, 1], then f has a continuous extension (utvidgning)

g : [0, 1] → R, i.e. such that g(x) = f(x) for x ∈ (0, 1].
(c) Is g in (c) always Lipschitz on [0, 1]? (Give proof or counterexample.)

8. Let I be an interval, f : I → R be differentiable and M = supx∈I |f ′(x)|. Here f ′(a) is
defined using a one-sided limit if a ∈ I is an end point of I.
Definition: f ∈ C1(I) if f ′ (exists and) is continuous on I.
(a) Show that if f ∈ C1(I) with I = [0, 1], then M < ∞.
(b) Given an example of f ∈ C1(I) with I = (0, 1) such that M = ∞.
(c) Given an example of f ∈ C1(I) with I = [0,∞) such that M = ∞.
(d) Given an example of a differentiable f on I = [0, 1] such that M = ∞.
(e) Show that if M < ∞, then f is Lipschitz on I.
(f) Show that if M = ∞, then f is not Lipschitz on I.

There are more questions on the next page.
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9. Show that a metric space X is connected if and only if X and ∅ are the only sets which
are both open and closed.

*10. Let (X, dX) be a nonempty metric space, and I = [0, 1]. Let

dX×I((x1, y1), (x2, y2)) = dX(x1, x2) + |y1 − y2|.

(a) Show that if X is pathconnected then X × I is pathconnected.
(b) Show that if X × I is pathconnected then X is pathconnected.
(c) Show that if X is connected then X × I is connected.
(d) Show that if X × I is connected then X is connected.
Hint : The projections PX : X × I → X, PX(x, t) = x, and PI : X × I → I, PI(x, t) = t,
which are clearly Lipschitz (you don’t need to prove that) and the fibers X × {t} =
{(x, t) : x ∈ X}, t ∈ I, and {x} × I, x ∈ X, may be of some help.

*11. Let X be a metric space and E ⊂ X be nonempty. Show that if E is connected, then
so is E? You can get 0.7p if you only consider this for X = Rn, and 0.3p if you only
consider X = R.
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Round 5
If you need to to do a maxmin investigation in some problem, then please provide the details
as required in the first year single-variable analysis course TATA41.

You are NOT allowed to use fixed point theorems that have not been proved at the
lectures.

1. For each of the following sets E show that the statement “if f : E → E is continuous,
then f has a fixed point” is true, or give a counterexample if it is false.
(a) E = [0, 1], (b) E = (0, 1), (c) E = R, (d) E = [0, 1] ∪ [2, 3].

2. Let f : [1, 4] → R be a differentiable function such that f(1) = 0, f(2) = 1 and f(4) = 8.
Show that (make sure that you give careful references to the key theorems you use)
(a) f has a fixed point,
(b) there is some x such that f ′(x) = 1,
(c) there is some x such that f ′(x) = 2.

3. Let
fn(x) =

nx

1 + nx3
, x ≥ 0, n = 1, 2, ... , and f(x) = lim

n→∞
fn(x).

(a) Determine f .
(b) Is the convergence uniform on (0, 1)? Show this or show that it isn’t.
(c) Is the convergence uniform on (1,∞)? Show this or show that it isn’t.

4. Let for x ∈ [0,∞),

fn(x) =
x2

1 + xn
, n = 1, 2, ... , and f(x) = lim

n→∞
fn(x).

(a) Determine f .
(b) Explain how we know that fn does not tend to f uniformly on [0,∞).
(c) On which closed subintervals I of [0,∞) does fn → f uniformly? (Make sure that

you list all such intervals.) Prove that the convergence is indeed uniform on each
of these subintervals.

5. Let (rn) be a sequence of positive numbers such that limn→∞ rn = 0. Let f : R → R
be continuous and define fn(x) = f(x+ rn).
(a) Show that fn → f pointwise.
(b) Show that if f is uniformly continuous, then fn → f uniformly.
(c) Give an example of a continuous f such that fn doesn’t tend to f uniformly (and

show this).
*6. We can construct the Cantor function f (a.k.a. the Devil’s staircase) in the following

way. Let f0(x) = x for 0 ≤ x ≤ 1. Define recursively, for n = 1, 2, ... ,

fn(x) =


1
2fn−1(3x), 0 ≤ x < 1

3 ,
1
2 ,

1
3 ≤ x ≤ 2

3 ,
1
2 + 1

2fn−1(3x− 2), 2
3 < x ≤ 1.

Let f(x) = limn→∞ fn(x).
(a) Draw the graphs of f0, f1 and f2, in one diagram.
(b) Show that fn → f uniformly.
(c) Show that f is continuous and increasing and that f(0) = 0 and f(1) = 1.
(d) Show that f ′(x) = 0 for all x ∈ [0, 1]\C, where C is the (standard ternary) Cantor

set.

There are more questions on the next page.
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7. Let
fn(x) =

x

1 + nx4
, n = 1, 2, ... , and f(x) = lim

n→∞
fn(x).

(a) Calculate f ′
n.

(b) For each n find the maximum and minimum values of fn on R.
(c) Use this to show that (fn) converges uniformly on R.
(d) Determine f .
(e) Determine for which x, f ′(x) = limn→∞ f ′

n(x).
8. (Make sure that you give careful references to the key theorems you use.) Let

f(x) =
∞∑
n=1

1

x4 + n4
.

(a) Show that f is a continuous function defined on R.
(b) Show that f ′ exists and is continuous.
(c) Does f ′′ exist?, and if so is it continuous? Show these facts or explain why they

fail.
(*)9. Part (b) is *-marked and can give 0.5 points.

Let M > 0 and let fn : [0, 1] → R be a sequence of Lipschitz functions with common
Lipschitz constant M , i.e. |fn(x)− fn(y)| ≤ M |x− y|. Assume that fn → f pointwise,
where f : [0, 1] → R.
(a) Show that f is Lipschitz continuous.

*(b) Show that it follows that fn → f uniformly. Hint : Use Arzelà–Ascoli’s theorem
together with an exercise from an earlier round.

*10. Let I ⊂ R be an interval. Definition: A function f : I → R is lower semicontinuous
(ned̊at halvkontinuerlig) if f(x) ≤ lim infy→x f(y) for all x ∈ I, where

lim inf
y→x

f(y) = lim
r→0+

inf{f(y) : y ∈ (I ∩ (x− r, x+ r)) \ {x}}.

Equivalently, f is lower semicontinuous if f−1((z,∞)) is relatively open in I for every z ∈
R (you don’t need to show this equivalence). Next, let fn : [0, 1] → [0, 1] be an increasing
sequence (i.e. fn+1 ≥ fn) of continuous function, and let f(x) = limn→∞ fn(x).
(a) Show that f is lower semicontinuous using the lim inf-definition.
(b) Show that f−1((z,∞)) =

⋃∞
n=1 f

−1
n ((z,∞)) if z ∈ R.

(c) Use (b) to show that f is lower semicontinuous using the f−1-definition.
(d) Give an example (of fn and f) showing that f doesn’t have to be continuous.

*11. Let {r1, r2, r3, ...} be an enumeration of Q. Let

fn(x) =

{
1/n2, if x > rn,

0, if x ≤ rn,
and f(x) =

∞∑
n=1

fn(x).

(a) Show that f is strictly increasing.
(b) Show that f is continuous at every x ∈ R \Q.
(c) Show that f is discontinuous at every x ∈ Q.
(d) Show that f is lower semicontinuous (see the previous exercise).
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Round 6 You need to justify all your answers.

1. The series

f(x) =

∞∑
n=1

xn√
n

converges for every x ∈ [−1, 1) but not for x = 1. For a fixed x0 ∈ (−1, 1) explain how
it is still possible to use the Weierstrass M-test to show that f is continuous at x0.

2. Determine coefficients an so that the power series
∑∞

n=1 anx
n has the following proper-

ties, if it is possible. Explain why the property is satisfied, or why it is impossible to
satisfy.
(a) Converges absolutely for all x ∈ [−1, 1] and diverges elsewhere.
(b) Converges conditionally at x = 1 and diverges at x = −1.
(c) Converges conditionally both at x = −1 and x = 1.
(d) Converges conditionally at x = −1 and absolutely at x = 1.

3. Define

g(x) = x− (2x)4

4
+

(2x)7

7
− (2x)10

10
+

(2x)13

13
− ... .

(a) Where is g defined?
(b) Where is g continuous?
(c) Where is g differentiable?
(d) Give an (as simple as possible) expression for g′ where it exists.

*4. Assume that
∑∞

k=1 ak = A ∈ R and
∑∞

k=1 bk = B ∈ R, with partial sums rn =
∑n

k=1 ak
and sn =

∑n
k=1 bk. If one wants to sum the double series

∑∞
k=1

∑∞
j=1 akbj the sum may

depend on the order of the summation. If we sum over squares we obtain (see an earlier
exercise)

lim
n→∞

n∑
k=1

n∑
j=1

akbj = lim
n→∞

rnsn = AB.

If the series
∑∞

k=1 ak and
∑∞

k=1 bk are absolutely convergent, then all orders of summa-
tion give the same result, i.e. AB. (You don’t need to prove the facts above.) If we sum
over triangles we obtain

lim
n→∞

n∑
k=2

ck, where ck =
k−1∑
j=1

ajbk−j .

In an earlier exercise we saw that
∑∞

k=1 ck may diverge. However, show that if
∑∞

k=1 ck
does converge then it must converge to AB. Hint : Consider f(x) =

∑∞
k=1 akx

k, g(x) =∑∞
k=1 bkx

k, h(x) =
∑∞

k=1 ckx
k and use Abel’s theorem.

5. For each of the functions f below find a formula for F (x) =
∫ x
−1 f dx (not involving any

integrals). Where is F continuous? Where is F differentiable? Where is F ′(x) = f(x)?

(a) f(x) = |x|, (b) f(x) =

{
1, if x < 0,

2, if x ≥ 0,
(c) f(x) =


x, if x < 0,

1, if x = 0,

2x, if x > 0.

There are more questions on the next page.
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In all the exercises below, integrable means Riemann integrable.

6. Dirichlet’s function χQ is not (Riemann) integrable on [0, 1] (you don’t need to show
this). Construct a sequence (fn) of integrable functions such that fn → χQ pointwise
on [0, 1].

*7. (a) Show that if fn → f uniformly on [0, 1] and fn are integrable functions, then f is
integrable.

(b) Show that ∫ π

0

n√
sinx dx → π, as n → ∞,

without using the dominated and monotone convergence theorems (which we didn’t
prove in this course).

(c) Show the result in (b) using the dominated and/or monotone convergence theo-
rems.

8. Find sequences (fn) of integrable functions on [0, 1] such that fn → 0 pointwise and
(a) limn→∞

∫ 1
0 fn dx = ∞,

(b) limn→∞
∫ 1
0 fn dx doesn’t exist (neither finite nor infinite).

9. Let f be an integrable function on I = [0, 1] and define

m = inf{f(x) : x ∈ I}, M = sup{f(x) : x ∈ I},
m′ = inf{|f(x)| : x ∈ I}, M ′ = sup{|f(x)| : x ∈ I}.

(a) Show that M ′ −m′ ≤ M −m.
(b) Show that |f | is integrable on I, without using Lebesgue’s theorem.
(c) Show that |f | is integrable on I, using Lebesgue’s theorem.
(d) Show that ∣∣∣∣∫ 1

0
f dx

∣∣∣∣ ≤ ∫ 1

0
|f | dx.

*10. Let

f(x) =

{
1, if x = 1/n for some n ∈ N,

0, otherwise.

(a) Show that f is integrable on [0, 1] without using Lebesgue’s theorem.
(b) Use Lebesgue’s theorem to show that f is integrable on [0, 1].
(c) Calculate

∫ 1
0 f dx.

11. Assume that f : [0, 1] → R is bounded. Define f2(x) = f(x)2 and f3(x) = f(x)3.
(a) Is it true that if f2 is integrable, then f is integrable?

(Give proof or counterexample.)
(b) Is it true that if f3 is integrable, then f is integrable?

(Give proof or counterexample.)
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