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1b) :i(fn; = <x : sin(w2)> s Da sin(x?) &r begrinsad, 1/2 — 0 gar faktorn inom paren-
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t—0,dvsdaxz— 1 enligt ett standardgransvirde.
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2) f dr definierad d 0 < z < 4. Standardrikningar (Gor dessal) ger f'(z) = (2 4 )(x) )
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Da Inz — —oo, x — 0T ser vi att f(z) = —o0, z — 07, f(x) = oo, x — 4~. Vidare #r
f(1) =—=2—-3In3 och f(2) = —4 — 2In 2. Detta ger grafen
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Svar: For graf, se ovan. f har en lokal maximipunkt i z = 1 (med det lokala maximivirdet
f(1) = =2 — 31In3) och en lokal minimipunkt i © = 2 (med det lokala minimivérdet f(2) =
—4 —21In2). Linjerna x = 0 och & = 4 &r lodrita asymptoter. Vagrita asymptoter saknas.

3a) Partialbraksuppdelning ger (C' &r en godtycklig konstant)
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3b) Bytet t =1Inz, dt = (1/x)dx ger

jl;lnx /\/ﬁdt [3(1+t)3/2]1—4\[3_2

0

3c) En partialintegration ger (C' dr en godtycklig konstant)
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dx dx
4a) Int len & li d bade 1 0 och oc. —— och ————— maste alltsa
a) Integralen &r generaliserad bade i 0 och oo /\/E(az 3 oc /\/E(x 3 maste alltsa

undersokas var for sig. Bytet t = /& = x = t?, dx = 2t dt samt partialbraksuppdelning ger
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Svar: (a) T (b) Divergent.
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f ar sjélvklart kontinuerlig 6verallt dér den &r definierad utom mojligtvis i x = 0. Om f &r
arcsin

kontinuerlig ocksa i 0 sa maste a = f(0) = lim f(z) = lim = /t = arcsinz/ =
z—0t z—0t

1
lim — = 1 enligt ett standardgrénsvérde. Dessutom maste 1 = a = f(0) = lim f(z) =
t—0+ —Sl?t z—0~
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lim barctan — = — — vilket ger att b = ——. Med dessa virden pa a och b &r lim f(z) =
z—0~ z—0~

™
lim+ f(x) =1= f(0) sa f blir verkligen kontinuerlig i 0 for dessa virden pa a och b.
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Observera att g(1) = e, ¢’'(x) = (x + 1)e” och att forutsittningarna i satsen om derivering av
1 1

invers funktion ar uppfyllda. Detta ger (gfl)’ (e) =

g1~ 2
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var: (@) a=1,b=—- (b) o
Vi ritar férst en figur och infér beteckningar.
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Pythagoras sats ger h = \/L? — 2Lx. Vi ska maximera arean A(x) = xh = x\/L? — 2Lz

for £ > 0 och L — x > x (ty hypotenusan i en riatvinklig triangel &r alltid ldngre &n bada

L Lz L? - 3Lx
kateterna), d vs 0 < x < —. Derivering ger A'(z) = VL? — 2Lx— = .
) 2 B ger A'(@) VI* —2Lz VI?—2Lx

Vi ser att A'(z) > 0da L* —3Lzx > 0,dvsda0 <z < L/3, A(2) =0daz = L/3
och A'(z) < 0da L/3 < x < L/2. A(x) #r alltsd stringt vixande pa 0, L/3] och stringt

avtagande pa [L/3,L/2[ (det gar forstas ocksa att gora en teckentabell for att se dettal).
L2
Vidare ar il_l’)% A(z) = xll}IEI/QA(Z) =0och A(L/3) = 33 Grafen y = A(z) blir dérfor
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Areans storsta virde dr alltsa A(L/3) = ——=

3v/3

triangeln har lingd 2L/3. Triangeln med storst area ér alltsa liksidig, vilket skulle visas.

och det antas da x = L/3, d v s da alla sidor i

Svar: Se ovan.



7a) Sétt ¢(z) =1 for 0 < z < 1/2 och ¢(z) = e'/? for 1/2 < = < 1.

Da ér ¢ en undertrappa till y = €* pa [0, 1] ty e dr stringt vixande. Enligt definitionen av
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integral av trappfunktion éir/czﬁ(a:) dx =1 < - 0) +el/? <1 - > __te > 2 ==
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7b) Dela upp intervallet [0,1] i n st lika langa delintervall. Definiera sedan ¢, (z) genom att sétta

E-1 k-1 k.. , ..
¢n(0) =1och ¢pp(z) =en om —— <z < — for k=1,2,...,n. ¢,:s varde pa intervall k
n n
ar alltsa hela tiden e*:s virde i den vénstra &ndpunkten i detta intervall och da e ar striangt
vixande foljer det att ¢, dr en undertrappa till e* pa [0, 1].
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Definitionen av integral av trappfunktion ger sedan
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enligt standardgréansvérdet — 1, z — 0. Féljden ¢,, ovan har alltsa alla de féreskrivna
egenskaperna.

Svar: Se ovan.



