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1a) lim
x→0

√
1 + 3x−

√
1 + 2x

x
= lim

x→0

1 + 3x− (1 + 2x)

x(
√

1 + 3x+
√

1 + 2x)
= lim

x→0

1√
1 + 3x+

√
1 + 2x

=
1

2
.

1b)
sin(x2)

x− lnx
=

(
1

x
· sin(x2)

)
· 1

1− lnx
x

. D̊a sin(x2) är begränsad, 1/x→ 0 g̊ar faktorn inom paren-

tes mot 0 enligt Sats 3.1. Andra faktorn g̊ar mot 1 ty
lnx

x
→ 0 (standard) s̊a lim

x→∞

sin(x2)

x− lnx
= 0.

1c)
ex − e
x3 − x

=
ex − e

(x− 1)x(x+ 1)
= /t = x − 1/ =

et+1 − e
t(t+ 1)(t+ 2)

=
e

(t+ 1)(t+ 2)
· e

t − 1

t
→ e

2
d̊a

t→ 0, d v s d̊a x→ 1 enligt ett standardgränsvärde.

Svar: (a)
1

2
(b) 0 (c)

e

2
.

2) f är definierad d̊a 0 < x < 4. Standardräkningar (Gör dessa!) ger f ′(x) =
2(x− 1)(x− 2)

x(4− x)
.

Teckentabell:
x 0 1 2 4

2(x− 1) − 0 + +
x− 2 − − 0 +
4− x + + + 0
x 0 + + +

f ′(x) ej
def.

+ 0 − 0 + ej
def.

f(x) ej
def.

↗ lok.
max. ↘ lok.

min. ↗
ej
def.

D̊a lnx → −∞ , x → 0+ ser vi att f(x) → −∞ , x → 0+, f(x) → ∞ , x → 4−. Vidare är
f(1) = −2− 3 ln 3 och f(2) = −4− 2 ln 2. Detta ger grafen

x

y

1 2

−2− 3 ln 3−4− 2 ln 2

x = 0 x = 4



Svar: För graf, se ovan. f har en lokal maximipunkt i x = 1 (med det lokala maximivärdet
f(1) = −2 − 3 ln 3) och en lokal minimipunkt i x = 2 (med det lokala minimivärdet f(2) =
−4− 2 ln 2). Linjerna x = 0 och x = 4 är lodräta asymptoter. V̊agräta asymptoter saknas.

3a) Partialbr̊aksuppdelning ger (C är en godtycklig konstant)∫
1 + x− x2

x(x+ 1)2
dx =

∫ (
1

x
− 2

x+ 1
+

1

(x+ 1)2

)
dx = ln |x| − 2 ln |x+ 1| − 1

x+ 1
+ C.

3b) Bytet t = lnx, dt = (1/x) dx ger

e∫
1

√
1 + lnx

x
dx =

1∫
0

√
1 + t dt =

[
2

3
(1 + t)3/2

]1
0

=
4
√

2− 2

3
.

3c) En partialintegration ger (C är en godtycklig konstant)∫
arctan 2x dx = x arctan 2x−

∫
2x

1 + 4x2
dx = x arctan 2x− 1

4
ln(1 + 4x2) + C.

Svar: (a) ln |x|−2 ln |x+ 1|− 1

x+ 1
+C (b)

4
√

2− 2

3
(c) x arctan 2x− 1

4
ln(1 + 4x2) +C.

4a) Integralen är generaliserad b̊ade i 0 och ∞.

1∫
0

dx√
x(x+ 3)

och

∞∫
1

dx√
x(x+ 3)

m̊aste allts̊a

undersökas var för sig. Bytet t =
√
x⇒ x = t2, dx = 2t dt samt partialbr̊aksuppdelning ger

1∫
ε

dx√
x(x+ 3)

=

1∫
√
ε

2 dt

t2 + 3
=

2

3

1∫
√
ε
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1 +
(

t√
3

)2 =
2√
3

[
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t√
3

]1
√
ε

=
π

3
√

3
− 2√

3
arctan

√
ε

3
→ π

3
√

3
, ε→ 0+,

vilket visar att

1∫
0

dx√
x(x+ 3)

är konvergent med

1∫
0

dx√
x(x+ 3)

=
π

3
√

3
. P̊a samma sätt f̊as

∞∫
1

dx√
x(x+ 3)

= lim
ω→∞

ω∫
1

dx√
x(x+ 3)

= lim
ω→∞

(
2√
3

arctan

√
ω

3
− π

3
√

3

)
=

2π

3
√

3
,

vilket visar att

∞∫
0

dx√
x(x+ 3)

är konvergent och att

∞∫
0

dx√
x(x+ 3)

=

1∫
0

dx√
x(x+ 3)

+

∞∫
1

dx√
x(x+ 3)

=
π

3
√

3
+

2π

3
√

3
=

π√
3
.

4b)

1∫
ε

dx

x3
=

[
− 1

2x2

]1
ε

=
1

2ε2
− 1

2
→∞ , ε→ 0+ s̊a

1∫
0

dx

x3
, och därmed även

1∫
−1

dx

x3
, är divergent.



Svar: (a)
π√
3

(b) Divergent.

5a) f är självklart kontinuerlig överallt där den är definierad utom möjligtvis i x = 0. Om f är

kontinuerlig ocks̊a i 0 s̊a m̊aste a = f(0) = lim
x→0+

f(x) = lim
x→0+

arcsinx

x
= /t = arcsinx/ =

lim
t→0+

1
sin t
t

= 1 enligt ett standardgränsvärde. Dessutom m̊aste 1 = a = f(0) = lim
x→0−

f(x) =

lim
x→0−

b arctan
1

x
= −πb

2
vilket ger att b = − 2

π
. Med dessa värden p̊a a och b är lim

x→0−
f(x) =

lim
x→0+

f(x) = 1 = f(0) s̊a f blir verkligen kontinuerlig i 0 för dessa värden p̊a a och b.

5b) Observera att g(1) = e, g′(x) = (x+ 1)ex och att förutsättningarna i satsen om derivering av

invers funktion är uppfyllda. Detta ger
(
g−1
)′

(e) =
1

g′(1)
=

1

2e
.

Svar: (a) a = 1 , b = − 2

π
(b)

1

2e
.

6) Vi ritar först en figur och inför beteckningar.

L− x L− x

x x

h

Pythagoras sats ger h =
√
L2 − 2Lx. Vi ska maximera arean A(x) = xh = x

√
L2 − 2Lx

för x > 0 och L − x > x (ty hypotenusan i en rätvinklig triangel är alltid längre än b̊ada

kateterna), d v s 0 < x <
L

2
. Derivering ger A′(x) =

√
L2 − 2Lx− Lx√

L2 − 2Lx
=

L2 − 3Lx√
L2 − 2Lx

.

Vi ser att A′(x) > 0 d̊a L2 − 3Lx > 0, d v s d̊a 0 < x < L/3, A′(x) = 0 d̊a x = L/3
och A′(x) < 0 d̊a L/3 < x < L/2. A(x) är allts̊a strängt växande p̊a ]0, L/3] och strängt
avtagande p̊a [L/3, L/2[ (det g̊ar först̊as ocks̊a att göra en teckentabell för att se detta!).

Vidare är lim
x→0

A(x) = lim
x→L/2

A(x) = 0 och A(L/3) =
L2

3
√

3
. Grafen y = A(x) blir därför

x

y

L/3 L/2

L2

3
√

3

Areans största värde är allts̊a A(L/3) =
L2

3
√

3
och det antas d̊a x = L/3, d v s d̊a alla sidor i

triangeln har längd 2L/3. Triangeln med störst area är allts̊a liksidig, vilket skulle visas.

Svar: Se ovan.



7a) Sätt φ(x) = 1 för 0 ≤ x ≤ 1/2 och φ(x) = e1/2 för 1/2 < x ≤ 1.

x

y

1

2

1

1

e1/2

e

y = ex

y = φ(x)

D̊a är φ en undertrappa till y = ex p̊a [0, 1] ty ex är strängt växande. Enligt definitionen av

integral av trappfunktion är

1∫
0

φ(x) dx = 1·
(

1

2
− 0

)
+e1/2

(
1− 1

2

)
=

1 + e1/2

2
>

1 + 3
2

2
=

5

4
,

ty

(
3

2

)2

=
9

4
< e.

7b) Dela upp intervallet [0, 1] i n st lika l̊anga delintervall. Definiera sedan φn(x) genom att sätta

φn(0) = 1 och φn(x) = e
k−1
n om

k − 1

n
< x ≤ k

n
för k = 1, 2, . . . , n. φn:s värde p̊a intervall k

är allts̊a hela tiden ex:s värde i den vänstra ändpunkten i detta intervall och d̊a ex är strängt
växande följer det att φn är en undertrappa till ex p̊a [0, 1].

x

y

1

n

2

n

k − 1

n

k

n

n− 1

n

1

1

e

y = ex

y = φn(x)

Definitionen av integral av trappfunktion ger sedan

1∫
0

φn(x) dx =

n∑
k=1

e
k−1
n

(
k

n
− k − 1

n

)
=
e−1/n

n

n∑
k=1

ek/n = /geometrisk summa/ =
e−1/n

n
e1/n

(
e1/n

)n − 1

e1/n − 1

=
e− 1

n
· 1

e1/n − 1
=

e− 1
e1/n−1
1/n

→ e− 1

1
= e− 1 =

1∫
0

ex dx , n→∞,

enligt standardgränsvärdet
ex − 1

x
→ 1 , x→ 0. Följden φn ovan har allts̊a alla de föreskrivna

egenskaperna.

Svar: Se ovan.


