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1. (a) Bestäm maclaurinutvecklingen av f med hjälp av standardutvecklingarna. Vi
chansar p̊a att det räcker med restterm O(x6). Vi f̊ar d̊a

(arctanx)2 =

(

x− 1

3
x3 +O

(
x5
)
)2

= x2 − 2·x·1
3
x3 + 2·x·O

(
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)
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= x2 − 2

3
x4 +O

(
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)
,
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2
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(
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)
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=
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=
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6
+O

(
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︸ ︷︷ ︸

<0 om x nära 0
︸ ︷︷ ︸

<0 om x 6= 0 litet

< −1

om x 6= 0 tillräckligt litet, d.v.s. f har ett lokalt maximum, −1 för x = 0.

(b) Sätt 1/x = t s̊a att t → 0+ d̊a x → ∞. D̊a är maclaurinutvecklling en
framkomlig väg och vi f̊ar

x2 sin
1

x
=

sin t

t2
=
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2
t2 +O
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+
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=
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)
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3
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(
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)
→ 0

d̊a t = 1
x
→ 0+.

(c) D̊a vi skall ha restterm O(x4) utvecklar vi täljare och nämnare till restterm



O(x4). Vi f̊ar

ln (1 + x) = x− 1

2
x2 +
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=
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=
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)
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2
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=
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=
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=
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=

=
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2
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(
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=
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2
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5

6
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(
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)
.

Alternativ: Ansätt f(x) = ln (1+x)
cos x

= a0 + a1x + a2x
2 + a2x

3 + O(x4). D̊a
f(0) = 0 = a0 f̊as om vi multiplicerar upp cosx = 1− 1

2
x2 +O(x4) att

ln (1 + x) = x− 1

2
x2 +

1

3
x3 +O

(
x4
)
=

=

(

1− 1

2
x2 +O

(
x4
)
)
(
a1x+ a2x

2 + a3x
3 +O

(
x4
))

=

= a1x+ a2x
2 + a3x

3 − 1

2
x2·a1x+O

(
x4
)
=

= a1x+ a2x
2 +

(

a3 −
a1
2

)

x3 +O
(
x4
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.

Entydighetssatsenger d̊a

a1 = 1, a2 = −1

2
,

a3 −
a1
2

= a3 −
1

2
=

1

3
⇐⇒ a3 =

1

3
+

1

2
=

5

6

vilket först̊as är samma resultat som ovan.

Svar: (a) lokalt max., (b) 0, (c) ln (1+x)
cos x

= x− 1
2
x2 + 5

6
x3 +O(x4).

2. Karakteristiska polynomet P (r) = r3 + r2 + 3r − 5 har nollstället r = 1. Poly-



nomdivision av P (r) med r − 1 ger d̊a

r2 + 2r + 5
r3 + r2 + 3r − 5 r − 1
r3 − r2

2r2 + 3r
2r2 − 2r

5r − 5
5r − 5

0

=⇒

=⇒ P (r) = (r − 1)(r2 + 2r + 5) = (r − 1)
(
(r + 1)2 + 4

)
= 0 ⇐⇒

⇐⇒ r = 1,−1± 2i =⇒ yh = C1e
x + e−x (C2 cos 2x+ C3 sin 2x) .

Vi delar upp partikulärlösningen i tv̊a delar s̊a att yp = yp1+yp2 där P (D)yp1 = e−x

och P (D)yp2 = −20 sin x genom att ansätta yp1 = Ke−x och yp2 = A cosx+B sin x.
Vi f̊ar

yp1 : y′p1 = −Ke−x, y′′p1 = Ke−x, y′′′p1 = −Ke−x

y′′′p1 + y′′p1 + 3y′p1 − 5yp1=(−K +K − 3K − 5K)e−x = −8Ke−x = e−x ⇐⇒

⇐⇒ K = −1

8
, yp1 = −1

8
e−x,

yp1 : y′p2 = −A sin x+B cosx, y′′p2 = −A cosx−B sin x, y′′′p2=A sin x− B cosx,

y′′′p1+y′′p1+3y′p1−5yp1=cos x(−B−A+3B−5A)+ sin x(A−B−3A−5B) =

= (−6A+2B) cosx+(−2A−6B) sin x = 0· cos x−20 sinx ⇐⇒

⇐⇒
{

−6A+ 2B = 0
−2A− 6B = −20

⇐⇒
{

B = 3A
−2A− 18A = −20

⇐⇒

⇐⇒
{

B = 3
A = 1

, yp2 = cos x+ 3 sin x,

y = yh + yp1 + yp2 = C1e
x + e−x (C2 cos 2x+ C3 sin 2x)−

1

8
e−x + cosx+ 3 sin x

Svar: y = C1e
x + e−x

(
C2 cos 2x+ C3 sin 2x− 1

8

)
+ cosx+ 3 sin x

3. (a) Enklast att använda Sats 10.7 (Jämförelsesats II för positiva serier, jämförelse
p̊a gränsvärdesform, jämförelse p̊a kvotform). L̊at

ak =
sin (1/k2)

cos (1/k)
=

1

k2

=bk

· sin (1/k
2)

1/k2
· 1

cos (1/k)
︸ ︷︷ ︸

=ck

Ser direkt att ck → 1 d̊a k → ∞. D̊a
∑∞

k=1
1
k2

är konvergent ger ovannämnda
sats att v̊ar ursprungliga serie är konvergent.



(b) Integralen är generalsierad i b̊ade 0 och ∞ och m̊aste därför delas upp.

|I| =
∣
∣
∣
∣

∫ ∞

0

sin x√
x+ x3

dx

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ 1

0

sin x√
x+ x3

dx+

∫ ∞

1

sin x√
x+ x3

dx

∣
∣
∣
∣
≤

≤
∣
∣
∣
∣

∫ 1

0

sin x√
x+ x3

︸ ︷︷ ︸

≥0

dx

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ ∞

1

sin x√
x+ x3

︸ ︷︷ ︸

växlar tecken

dx

∣
∣
∣
∣
≤

≤
∫ 1

0

sin x√
x+ x3

dx+

∫ ∞

1

|sin x|√
x+ x3

dx ≤

≤
∫ 1

0

1√
x
dx+

∫ ∞

1

1√
x3

dx =

[

2
√
x

]1

0

+

[

−2x−1/2

]∞

1

= 2 + 2 = 4.V SB.

Anmärkning: Om man utnyttjar att 0 ≤ sin x ≤ x d̊a 0 ≤ x ≤ 1 f̊ar man
en betydligt bättre uppskattning

∫ 1

0

sin x√
x+ x3

dx ≤
∫ 1

0

x√
x
dx =

∫ 1

0

√
x dx =

[
2

3
x3/2

]1

0

=
2

3
.

Svar: (a) Konvergent. (b) Se ovan.

4. (a) Vi börjar med figuren.

1

y = 9− x2

y = 5x− 5

3

y = −1

x

y

2−3 −2 −1r1 = 1

R2 = 10− x2
R1 = 10− x2

r2 = 5x− 4

Rr



Ur figuren ovan ser vi att vi m̊aste dela upp omr̊adet i tv̊a delar för
−3 ≤ x ≤ 1 respektive 1 ≤ x ≤ 2. Vi använder skivformeln för b̊ada och f̊ar
volymselementen

−3 ≤ x ≤ 1 : R1 = 9− x2 − (−1) = 10− x2, r1 = 1,

dV1 = π(R2
1 − r21)dx = π

((
10− x2

)2 − 1
)

dx,

1 ≤ x ≤ 2 : R2 = R1 = 10− x2, r2 = 5x− 5− (−1) = 5x− 4,

dV2 = π(R2
2 − r22)dx = π

((
10− x2

)2 − (5x− 4)2
)

dx.

Integration och summering ger

V =

∫

dV1 +

∫

dV2 =

= π

∫ 1

−3

((
10− x2

)2 − 1
)

dx+ π

∫ 2

1

((
10− x2

)2 − (5x− 4)2
)

dx =

= π

∫ 2

−3

(
10− x2

)2
dx− 4π − π

∫ 2

1

(5x− 4)2dx.

D̊a integralen inte skall beräknas finns det flera godtygbara sätt att skriva
integranden.

(b) Arealementet för beräkning av rotationsytans area är detsamma oavsett vil-
ken axel vi roterar kring, dA = 2π·l·ds. Rita figur.

x

y

x+ 3

x

x = −3 y = x2

ds

2π(x+ 3)

2

Med y = x2 f̊as

ds =
√

1 + (y′)2 dx =
√

1 + (2x)2 dx =
√
1 + 4x2 dx,

dA = 2π(x+ 3)
√
1 + 4x2 dx, 0 ≤ x ≤ 2

A =

∫

dA = 2π

∫ 2

0

(x+ 3)
√
1 + 4x2 dx.

Svar: (a) V = π
∫ 1

−3

(

(10− x2)
2 − 1

)

dx+ π
∫ 2

1

(

(10− x2)
2 − (5x− 4)2

)

dx,

(b) A = 2π
∫ 2

0
(x+ 3)

√
1 + 4x2 dx.



5. Maclaurinutveckla cos t med retterm i Lagranges form och ersätt därefter t med
x2.

f(t) = cos t, f ′′(t) = − cos t, f (2n)(t) = (−1)n cos t, . . . , f (2n+2)(t) = (−1)n+1 cos t,

f(t) = 1− 1

2
t2 +

1

4!
t4 + . . .+

(−1)n

(2n)!
t2n +

(−1)n+1 cos ξ

(2n+ 2)!
t2n+2 = [t = x2] =

= 1− 1

2
x4 +

1

4!
x8 + . . .+

(−1)n

(2n)!
x4n +

(−1)n+1 cos ξ

(2n+ 2)!
x4n+4

för n̊agot ξ mellan 0 och t = x2. Fr̊agan är hur l̊angt vi skall uteckla. Vi chansar
med n = 2, dvs

x cosx2 = x

(

1− 1

2
x4 +

1

4!
x8 − cos ξ

6!
x12

)

= x− 1

2
x5 +

1

4!
x9

︸ ︷︷ ︸

p(x)

−cos ξ

6!
x13 =⇒

=⇒
∣
∣x cosx2 − p(x)

∣
∣ =

∣
∣
∣
∣

cos ξ

6!
x13

∣
∣
∣
∣
=

|cos ξ|
6!

|x|13≤ 1

6!
|x|13≤ 1

6!·213≤10−6 ⇐⇒

⇐⇒ 720·213 = 1440·210·4 > 1000·1024·4 > 106

för alla x: |x| ≤ 1/2.
Alternativ: Kör p̊a med godtyckligt n och välj p̊a slutet istället

x cos x2 = x− 1

2
x5 +

1

4!
x9 + . . .+

(−1)n

(2n)!
x4n+1

︸ ︷︷ ︸

p(x)

+
(−1)n+1 cos ξ

(2n+ 2)!
x4n+5 =⇒

=⇒
∣
∣x cosx2 − p(x)

∣
∣ =

∣
∣
∣
∣

(−1)n+1 cos ξ

(2n+ 2)!
x4n+5

∣
∣
∣
∣
=

|cos ξ|
(2n+ 2)!

|x|4n+5 ≤

≤ 1

(2n+ 2)! · 24n+5

för alla x: |x| ≤ 1/2.
Välj nu n s̊a att felet blir mindre än 10−6, d.v.s. (2n+ 2)! · 24n+5 ≥ 106. Prova.

n = 1 : (2 + 2)! · 24+5 = 4!·29 = 24·512 = 12·1024 < 106 för litet,

n = 2 : (4 + 2)! · 28+5 = 6!·213 = 720·8·210 < 5000·1024 > 106 duger =⇒

=⇒ p(x) = x− 1

2
x5 +

1

4!
x9

har den sökta egenskapen.

Svar: p(x) = x− 1
2
x5 + 1

24
x9

6. Gör s̊a som föreslagits i ledningen, d.v.s. sätt z(x) = y(x)/x ⇐⇒ y(x) = x·z(x).
D̊a f̊as

z(−eπ) =
y(−eπ)

−eπ
=

eπ

−eπ
= −1,

y′(x) = D(x·z(x)) = z + x·z′ = 1 +
y

x
+

y2

x2
= 1 + z + z2 ⇐⇒

⇐⇒ x·z′ = 1 + z2 ⇐⇒ z′

1 + z2
=

1

x
, x 6= 0



vilket är en separabel ekvation. Lös p̊a vanligt sätt. Vi f̊ar

∫
dz

z2 + 1
= arctan z = ln |x|+ C.

Utnyttja bivillkoret och bestäm C.

arctan (z(−eπ)) = arctan (−1) = −π

4
= ln |−eπ|+ C = ln eπ + C = π + C ⇐⇒

C = −5π

4

vilket ger

arctan z = ln |x| − 5π

4
⇐⇒ z =

y

x
= tan

(

ln |x| − 5π

4

)

⇐⇒

⇐⇒ y = x tan

(

ln |x| − 5π

4

)

där x är s̊adant att ln |x| − 5π
4
6= π

2
+ nπ. Eftersom lösningen skall vara definierad

p̊a ett intervall som inneh̊aller x = −eπ och

ln |−eπ| − 5π

4
= −π

4
∈
]

−π

2
,
π

2

[

f̊as maximalt definitionsintervall ur olikheterna

−π

2
< ln |x| − 5π

4
<

π

2
⇐⇒ 3π

4
< ln |x| < 7π

4
⇐⇒ e3π/4 < |x| < e7π/4.

Eftersom x = −eπ < 0 följer |x| = −x s̊a att

e3π/4 < |x| = −x < e7π/4 ⇐⇒ −e7π/4 < x < −e3π/4.

Svar: y = x tan
(
ln |x| − 5π

4

)
, −e7π/4 < x < −e3π/4


