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Abstract The orientation of an arbitrary rigid body is specified in terms of a
quaternion based upon a set of four Euler parameters. A corresponding set of four
generalized angular momentum variables is derived (another quaternion) and then
used to replace the usual three-component angular velocity vector to specify the rate
by which the orientation of the body with respect to an inertial frame changes. The
use of these two quaternions, coordinates and conjugate moments, naturally leads to
a formulation of rigid-body rotational dynamics in terms of a system of eight coupled
first-order differential equations involving the four Euler parameters and the four
conjugate momenta. The equations are formally simple, easy to handle and free of
singularities. Furthermore, integration is fast, since only arithmetic operations are
involved.

Keywords Attitude dynamics · Rigid body motion · Rotations · Quaternions

1 Introduction

The rotational dynamics of a rigid body is an initial value problem. For a given orien-
tation and its change rate with respect to an inertial frame at an initial time and the
force acting on it, find its attitude at any instant.

Usually, attitude representation is given by means of three angles and their deriv-
atives (or conjugate moments), although there are many possibilities to represent the
attitude (see for instance the complete survey by Shuster 1993).

It is well known that three angles cannot afford a regular representation of the
rotation group SO(3), since there are singularities. Euler proposed a solution to cir-
cumvent this problem by introducing a set of four quantities, the so-called Euler
parameters, based on relations among the above-mentioned three angles. Later on,
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Hamilton (1844) invented the quaternions, an extension of the complex numbers C,
and soon after, it was discovered that rotations may be represented by quaternions.
Names like Rodrigues, Cayley, Klein, Whittaker, etc. are attached to quaternion rep-
resentation (see again Shuster 1993 for a historical description of the topic).

In Hamiltonian formalism, the increase of the dimension is quite exceptional.
Perhaps, the first case found when increasing the degrees of freedom by one is the
K–S transformation for orbital problems. The extension was achieved in matricial
form (Stiefel and Scheifele 1971). Soon after, other extensions for orbital problems
were made, for instance, Burdet (1968) and Ferrándiz (1988), among others. Deprit
et al. (1994) obtained the K–S transformation by means of quaternions, albeit Stiefel
and Scheifele (1971) (Sect. 44, p. 286) claimed that “a transfer from matrices to qua-
ternions would lead to failure or at least to a very unwieldy formalism.” This challenge
has recently been taken on by Waldvogel (2006).

With respect to the rotation of rigid bodies, Euler parameters have been the favor-
ite variables to increase the dimension. Thus, Maciejewski (1985), Morton (1993), and
Junkins and Singla (2004) obtained the Hamiltonian in terms of Euler parameters by
using matrices, in a similar way to the one used by Stiefel and Scheifele (1971) to obtain
the K–S transformation. A different approach was given in Cid and Sansaturio (1988)
and Abad et al. (1989), where the conjugate momenta were obtained by constructing
a weakly canonical transformation ad hoc.

In this paper, we formulate the problem in terms of quaternions from scratch. By
making use of some properties of the algebra of quaternions, we show the equivalence
between unit quaternions and rotations (Sect. 2); then, we build up the quaternion
conjugate moment of the unit quaternion coordinate, and both the Hamiltonian func-
tion and Hamilton’s equations are derived in Sect. 3. Since another set of conjugate
momenta was obtained in previous papers (Cid and Sansaturio 1988; Abad et al.
1989), we reproduce (Sect. 5) the construction of these canonical variables in terms of
quaternions by means of a weakly canonical transformation, showing that both sets
of variables are the same. Finally (Sect. 6), some academic applications will be made.
The corresponding Hamilton equations are formally simple, singularity-free, and fast
to manipulate, since addition and multiplication are the only arithmetic operations
involved. Applications to more realistic cases like the rotation of natural celestial
bodies (Henrard 2005) or binary asteroids (Scheeres 2004) are in progress.

2 Representation of a rotation

We can think of a rotation about a fixed point O as an operator R in the space E
of three-dimensional vectors; it is determined by its axis, defined by a unit vector a,
and by its amplitude ω. When it is necessary to specify these elements, the rotation is
denoted as the operator R(ω, a).

Any vector x can be decomposed into the sum

x = (x · a)a + (a × x)× a, (1)

and since the vectors a, a × x, and (a × x)× a are mutually orthogonal, the rotation
of a vector x is

R(x) = (x · a)a + R[(a × x)× a]
= (x · a)a + (a × x) sinω + [(a × x)× a] cosω

(2)
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equation that, by using the radial and transversal decomposition (1), can be written
as the well known Euler–Rodrigues formula

R(x) = x + (a × x) sinω + [a × (a × x)] (1 − cosω). (3)

Let us now consider the set R × R
3 of pairs {a0, a} made of a scalar a0 and a vector

a. It is a real vector space with the usual operations of addition and multiplication by
a real number. For any q = {q0, q} and p = {p0, p}, the law of composition

(q, p) → q p = {q0 p0 − q · p, q0 p + p0 q + q × p}
is bilinear; hence it endows R×R

3 with a structure of algebra (see Deprit et al. 1994 for
details). The set R×R

3 endowed with that structure is designated as Q, its elements are
called quaternions, and the mapping (q, p) → q p is called the product of q to the right
by p (or the product of p to the left by q). The product of quaternions is manifestly
associative; it is not commutative, however, since it involves a cross product.

The components q0 and q of a quaternion q = (q0, q) are referred to as its real part
�(q) and its imaginary part �(q), respectively.

The quaternion (q0, −q) is called the conjugate of q = (q0, q); it is denoted as q̃. The
mapping q → q̃ is an automorphism of the vector space Q, but an antiautomorphism
of the algebra structure since p̃ q = q̃ p̃ for any p and q.

The application (p, q) → �(p q) : Q × Q → R is a bilinear form; it is called the
dot product of quaternions p and q and is denoted as p · q. It is not degenerate, i.e., if
p · q = 0 for any q ∈ Q, then p = 0.

Because q q̃ = q̃ q = (‖�(q)‖2 + ‖�(q)‖2, 0) = ‖�(q)‖2 + ‖�(q)‖2 is the sum of
two positive numbers, it makes sense to define the norm of a quaternion as the scalar
‖q‖ = √

q q̃. Evidently, q = 0 if and only if ‖q‖ = 0; furthermore, for any p and q ∈ Q,

‖p q‖2 = (p q) (̃p q) = (p q) (q̃ p̃) = p (q q̃) p̃ = (p p̃) ‖q‖2 = ‖p‖2 ‖q‖2,

which means that the norm q → ‖q‖ : Q → R
+ makes of Q a normed algebra.

Of a quaternion q such that ‖q‖ = 1, it is said that it is a unit quaternion. Let S3(R)

denote the set of all unit quaternions. It is not empty: 1 ∈ S3(R). If q ∈ S3(R), so does
q̃; in fact, q̃ is the inverse of q. If p and q ∈ S3(R), so does their product p q. In sum,
the product of quaternions endows S3(R) with the structure of a group. It should be
noted that the group S3(R) is not commutative.

Theorem 1 Let q be the quaternion (cosω/2, a sin ω/2)where a is a unit vector; for any
x ∈ R

3, the product qxq̃ belongs to R
3. Moreover, the application x → qxq̃ : R

3 → R
3

is identical to the rotation R(ω, a).

The theorem is proved by calculating that

qx =
(

(−a · x) sin 1
2 ω, x cos 1

2 ω + (a × x) sin 1
2 ω

)

,

qxq̃ =
(

0, (a · x)a + (a × x) sinω + (a × x)× a cosω
)

that coincides with the expression (2) of a rotation, and that is the equivalent of
Euler’s formula in quaternion form.

Proposition 1 If R is a time depending rotation, then the instantaneous angular velocity
is the vector

� = 2q̇q̃.
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Proof Let q the quaternion equivalent to the rotation R, that is, y = qxq̃, hence,
x = q̃yq. The time derivative of y is

ẏ = q̇xq̃ + qx ˙̃q = q̇(q̃yq)q̃ + q(q̃yq) ˙̃q = q̇q̃y + yq ˙̃q = (q̇q̃)y − (̃q̇q̃)y,

since q is a unit quaternion. Moreover, by this reason, q̇q̃ + q ˙̃q = 0, hence �(q̇q̃) = 0,
that is, it is a vector. On the other hand, for any two quaternions a and b, there results
that

ab − b̃ã = (0, 2a0b + 2b0a + 2a × b),

but if both quaternions are vectors, then,

ab − b̃ã = (0, 2a × b),

hence, ẏ = 2(q̇q̃) y = 2(q̇q̃)× y = � × y. ��
Incidentally, let us point out that the relation between the traditional way of rep-

resenting a rotation by its orthogonal matrix R = (rij) ∈ SO(3) and its quaternion
p = (p0, p) is simple. Indeed, we only need to remember that the ith row of R is made
of the components of R(ei) in the orthonormal canonical basis E = (e1, e2, e3). Thus,
for instance,

R(e1) = pe1p̃ = e1 + 2p0(p × e1)+ 2p × (p × e1).

Circular permutations of the indices {1, 2, 3} in the preceding formula yields the last
two rows in the matrix below

R =








p2
1 − p2

2 − p2
3 + p2

0 2(p1p2 + p0p3) 2(p1p3 − p0p2)

2(p2p1 − p3p0) p2
2 − p2

3 − p2
1 + p2

0 2(p2p3 + p1p0)

2(p3p1 + p2p0) 2(p3p2 − p1p0) p2
3 − p2

1 − p2
2 + p2

0








.

The inverse procedure, i.e., the obtaining of the quaternion for a rotation matrix given,
in principle, is easy to obtain. Indeed, from the above matrix one deduces that

4p2
0 = r11 + r22 + r33 + 1, 4p2

1 = r11 − r22 − r33 + 1,

4p2
2 = r22 − r33 − r11 + 1, 4p2

3 = r33 − r11 − r22 + 1

an thus, it is possible to calculate the axis and amplitude of the rotation. Other ways
to solve the problem of extracting the quaternion from the direction-cosine matrix
are given in Shuster and Natanson (1993).

3 Hamiltonian in canonical quaternion variables

To study the rotation of a rigid body about a point O, we use two frames: one inertial
or fixed in space S ≡ Os1s2s3, and another fixed in the body B ≡ Ob1b2b3. In most of
the cases, it is quite convenient to choose this body frame to be the principal axes of
inertia. The attitude of B in S results from one rotation, which usually is decomposed
into three rotations of the basis of the group of rotations SO(3), as we shall see in the
next section.
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Let us assume R(ω, a) is such rotation. Then, the quaternion q = (q0, q) defined in
Theorem 1 is a unit quaternion that represents the rotation. Its components

q0 = cos (ω/2), q = a sin (ω/2)

are referred to as Euler parameters.

Proposition 2 The instantaneous angular velocity, expressed in the body frame BBB is the
vector

ω = 2q̃q̇. (4)

Proof By proposition 1, the instantaneous angular velocity in the fixed frame is
� = 2q̇q̃. This vector, expressed in the body frame is ω = q̃ � q = 2q̃q̇. ��

The kinetic energy of a rotating rigid body is

T = 1
2
ω.I ω,

where I is the tensor of principal moments of inertia. This expression may be consid-
ered as an expression involving quaternions. Indeed, let us consider the application
(λ,µ) → λ⊗ µ : R

4 × R
4 → R

4 defined by

λ⊗ µ = (λ0µ0, λ1µ1, λ2µ2, λ3µ3);

this operation is obviously commutative, and the inverse λ−1 of λ is λ−1 = (1/λ0, 1/λ1,
1/λ2, 1/λ3).

Let us now define I = (I0, I1, I2, I3) ∈ R
4. Note that we introduced a new quan-

tity I0, which has dimensions of a moment of inertia, although its value is irrelevant
(Morton 1993) since it is multiplying a vector, that is, a quaternion with real part null.

In terms of quaternions, and taking into account (4), the kinetic energy is

T = 2(q̃q̇) · (I ⊗ q̃q̇). (5)

Straight computations lead us to the following

Proposition 3 Let a and b two quaternions, and let F be the function F(a, b) = (ab) ·
(I ⊗ ab), then

∂F
∂b

= 2ã(I ⊗ ab).

With this result, Q, the conjugate moment of the quaternion q is

Q = ∂T
∂q̇

= 4q(I ⊗ q̃q̇).

This expression is easily inverted, resulting in

q̇ = 1
4

q
(

I−1 ⊗ q̃Q
)

,

hence the kinetic energy is

T = 1
8
(I−1 ⊗ q̃Q) · (q̃Q), or T = 1

8
(I−1 ⊗ Q̃q) · (Q̃q). (6)
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If the rigid body is under the influence of a potential field U(q), the Hamiltonian is
H = T + U, and the equations of motion are

Q̇ = −∂H
∂q

= −1
4

Q(I−1 ⊗ Q̃q)− ∂U
∂q

,

q̇ = ∂H
∂Q

= 1
4

q(I−1 ⊗ q̃Q).
(7)

An equivalent matricial formulation was derived by Morton (1993).

4 Hamiltonian in canonical Euler variables

The most usual way to represent rotations about a fixed point in astrodynamics and
mechanics is by means of the so-called Euler angles (φ,ϑ ,ψ), because the rotation
matrix is defined in terms of three consecutive rotations. There are 12 possible sets of
Euler angles, six symmetric sets

1 − 2 − 1 1 − 3 − 1 2 − 3 − 2,
2 − 1 − 2 3 − 1 − 3 3 − 2 − 3

and six asymmetric sets

1 − 2 − 3 1 − 3 − 2 2 − 3 − 1,
2 − 1 − 3 3 − 1 − 2 3 − 2 − 1.

All of them have the disadvantage of presenting a polar-like singularity, but are
otherwise simple and convenient. In this paper, we will use the sequence 3 − 1 − 3.

Let us now to proceed to establish the relation between the inertial and mobile
frames through the Euler angles (φ,ϑ ,ψ). We define the inclination angle ϑ of the
plane b1b2 and the plane s1s2, such that:

s3 · b3 = cosϑ , 0 ≤ ϑ ≤ π .

The node vector � of plane b1b2 on plane s1s2 is obtained by the relation:

s3 × b3 = � sin ϑ

(defined only if ϑ �= 0) and its longitude in s1s2 is given by the angle φ, reckoned
from s1,

� = s1 cosφ + s2 sin φ, 0 ≤ φ < 2π .

Finally, the angle of proper rotation is defined by the relation

b1 = � cosψ + (s3 × �) sinψ , 0 ≤ ψ < 2π .

Thus, the relation between the inertial and body frames is a composition of three
rotations

R(ψ , b3)R(ϑ , �)R(φ, s3).

Note that when b3 = s3, then ϑ = 0; when b3 = −s3, then ϑ = π . In both cases, the
node �, is an arbitrary unit vector in the plane spanned by s1 and s2. We set aside these
singular cases by assuming the three vectors s3, �, and b3 are linearly independent,
and thus, can be considered as a non-orthogonal base. It can be shown (Deprit and
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Elipe 1993) that the conjugate moments (�,	,
) of the Euler angles (φ,ϑ ,ψ) are
precisely the components of the angular momentum vector G on this base, that is,

� = G · s3, 	 = G · �, 
 = G · b3.

With this, it is a matter of some algebra to find that the components of the angular
momentum in the body frame are

g1 =
(
�−
 cosϑ

sin ϑ

)

sinψ +	 cosψ ,

g2 =
(
�−
 cosϑ

sin ϑ

)

cosψ −	 sinψ ,

g3 = 


(8)

and since the rotational kinetic energy is

T = 1
2
(I−1

1 g2
1 + I−1

2 g2
2 + I−1

3 g2
3) (9)

the Hamiltonian is

H = 1
2
(I−1

1 sin2 ψ + I−1
2 cos2 ψ)

(
�−
 cosϑ

sin ϑ

)2

+ 1
2

2 + 1

2
(I−1

1 cos2 ψ + I−1
2 sin2 ψ)	2

+ (I−1
1 − I−1

2 )

(
�−
 cosϑ

sin ϑ

)

	 sinψ cosψ + V(φ,ϑ ,ψ). (10)

5 Weakly canonical transformation

The use of quaternions in Hamiltonian formalism presents an additional difficulty,
since quaternions extend the dimension of the Hamiltonian system. In order to do
so, several solutions have been proposed, for instance, the ones given in Maciejewski
(1985), Cid and Sansaturio (1988), Abad et al. (1989), and Morton (1993).

Lowering the dimension of a Hamiltonian system is a step most frequent in mechan-
ics. Indeed, for a Hamiltonian H(p, P) given in n coordinates p and n momenta P, one
builds a canonical transformation

λ : (q, Q) −→ (p, P) : R
n × R

n −→ R
n × R

n

that will render m < n coordinates ignorable, (qi)1≤i≤m in the pullback of the Hamil-
tonian H. Thus, there are m integrals, namely the conjugate momenta (Qi)1≤i≤m, and
the problem is reduced to another one which dimension is 2m lower.

The reverse problem, that of increasing the dimension of a Hamiltonian system
appear in orbital dynamics (Stiefel and Scheifele 1971) in connection with the K–S
transformation. Assume that a transformation λmaps a domain of dimension 2(n+m)
in the phase space (q, Q) into a domain of dimension 2n in the phase space (p, P).
Provided that the Poisson brackets

{pi; pj} = {Pi; Pj} = 0 for 1 ≤ i ≤ j ≤ n

and that exists a so-called multiplier µ independent of q and Q such that
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{pi; Pj} = µδij for 1 ≤ i ≤ j ≤ n

with δij the Kronecker symbol, then

λ∗p(t) = p(q(t), Q(t)) and λ∗P(t) = P(q(t), Q(t))

is solution of the Hamilton equations

ṗ = ∇PH, Ṗ = −∇pH,

whenever (q(t), Q(t)) is a solution of the system

q̇ = ∇Q(λ
∗(µ−1H)), Q̇ = −∇q(λ∗(µ−1H)).

Such a transformation is called weakly canonical (Deprit et al. 1994).
This result gives us a way to check whether a transformation is weakly canonical or

not, but does not supply a technique for building canonical transformations capable
to raise the dimension of the Hamiltonian system. This was accomplished in Cid and
Sansaturio (1988), where it is stated that a given transformation q = q(p) raising the
dimension by 1, its extension with the moments obtained by

Qi =
(
∂p
∂qi

)

· P (1 ≤ i ≤ n + 1) (11)

is weakly canonical.
Coming back to the Euler sequence 3 – 1 – 3, one defines the so-called Euler

parameters by the relations

p0 = cos
ϑ

2
cos

φ + ψ

2
, p1 = sin

ϑ

2
cos

φ − ψ

2
,

p2 = sin
ϑ

2
sin

φ − ψ

2
, p3 = cos

ϑ

2
sin

φ + ψ

2
.

(12)

After some algebra, one finds that inverse transformation is

tan φ = p1p3 + p0p2

p0p1 − p2p3
,

tan
ϑ

2
=

√

p2
1 + p2

2
√

p2
0 + p2

3

,

tan ψ = p1p3 − p0p2

p0p1 + p2p3
.

(13)

Then, we can use these relations to compute the partial derivatives of the Euler angles
with respect to the Euler parameters and thus to obtain the conjugate moments to the
Euler parameters by the relations (11) as

P0 = −(�+
)
sin (φ + ψ)/2

cosϑ/2
− 2	 sin

ϑ

2
cos

φ + ψ

2
,

P1 = −(�−
)
sin (φ − ψ)/2

sin ϑ/2
+ 2	 cos

ϑ

2
cos

φ − ψ

2
,

P2 = (�−
)
cos (φ − ψ)/2

sin ϑ/2
+ 2	 cos

ϑ

2
sin

φ − ψ

2
,

P3 = (�+
)
cos (φ + ψ)/2

cosϑ/2
− 2	 sin

ϑ

2
sin

φ + ψ

2
.

(14)
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With the help of a symbolic processor, one easily checks that the Poisson brackets
satisfy the conditions for the transformation be weakly canonical.

Appropriate combinations of formulas (12) and (14) lead to

cosφ = p0p1 − p2p3
√

(p2
1 + p2

2)(p
2
0 + p2

3)

, sin φ = p1p3 + p0p2
√

(p2
1 + p2

2)(p
2
0 + p2

3)

,

cosϑ = (p2
0 + p2

3)− (p2
1 + p2

2), sin ϑ = 2
√

(p2
1 + p2

2)(p
2
0 + p2

3),

cosψ = p0p1 + p2p3
√

(p2
1 + p2

2)(p
2
0 + p2

3)

, sinψ = p1p3 − p0p2
√

(p2
1 + p2

2)(p
2
0 + p2

3)

,

�+
 = p0P3 − p3P0, �−
 = p1P2 − p2P1,

	 sin ϑ = p1P1 + p2P2

and from these expressions, one readily finds that

� = 1
2
(−p3P0 − p2P1 + p1P2 + p0P3),

	 = (−p0P0 + p1P1 + p2P2 − p3P3)

4
√

p2
1 + p2

2

√

p2
0 + p2

3

,


 = 1
2
(−p3P0 + p2P1 − p1P2 + p0P3).

(15)

By replacing Eqs. 13 and 15 into the expressions of the components of the angular
momentum (8), and after some algebraic simplifications, there results that

g1 = 1
2
(−p1P0 + p0P1 + p3P2 − p2P3),

g2 = 1
2
(−p2P0 − p3P1 + p0P2 + p1P3),

g3 = 1
2
(−p3P0 + p2P1 − p1P2 + p0P3).

On the other hand, one easily checks that

p2
0 + p2

1 + p2
2 + p2

3 = 1 (16)

and also that

p0P0 + p1P1 + p2P2 + p3P3 = 0.

In other words, Euler parameters are on the S3 sphere, and their conjugate moments
belong to the tangent plane to the sphere.

The above relations suggest to use the algebra of quaternions. Thus, we can define
the unit quaternion p = (p0, q) = (p0, p1, p2, p3), and P = (P0, P) = (P0, P1, P2, P3).
By means of these quaternions, there results that the product p̃P is a pure vector,
which is precisely twice the angular moment vector expressed in the body frame,
that is,

g = 1
2

p̃P. (17)

Incidentally, let us point out that the angular moment vector G in the space frame is
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G = pgp̃ = 1
2

Pp̃ = s1G1 + s2G2 + s3G3,

hence,

G1 = 1
2
(−p1P0 + p0P1 − p3P2 + p2P3),

G2 = 1
2
(−p2P0 + p3P1 + p0P2 − p1P3),

G3 = 1
2
(−p3P0 − p2P1 + p1P2 + p0P3).

Taking into account expression (17) of the angular momentum vector in the body
frame, the kinetic energy (9) is

T = 1
8
(I−1 ⊗ p̃P) · (p̃P) or T = 1

8
(I−1 ⊗ P̃p) · (P̃p)

expressions that coincide with the ones in (6).
So far, we obtained two sets of canonical variables for the rigid body motion based

on quaternions. The first one (q, Q) derived directly from the Lagrangian in Sect. 3
and the second one (p, P) built by means of a weakly canonical transformation in
Sect. 5. We just proved that both set of quaternions are the same.

6 Applications to gravity gradients in a Newtonian force field

As applications of the above-exposed theory, we will proceed to numerically inte-
grate Hamilton’s equations for some examples, namely, the rigid body in torque free
motion, the heavy top and the attitude of a rigid body in a Keplerian orbit.

6.1 Heavy rigid body

Let us consider the motion of a heavy rigid body about a fixed point O. We will assume
that the fixed point O is at the origin, and that position xc of the center of mass of the
body frame is

xc = xc
1b1 + xc

2b2 + xc
3b3.

Now, let the direction of the acceleration of gravity along the s3-axis, then the force
F is

F
∣
∣
∣S

= −Mgs3,

where M is the total mass of the body and g is the gravity acceleration. Hence, the
force in the body frame is

F = F
∣
∣
∣B

= q̃ F
∣
∣
∣S

q

= −Mg(0, 2(q1q3 − q0q2), 2(q0q1 + q2q3), q2
0 − q2

1 − q2
2 + q2

3)

and the potential is

U = xc · F, (18)



Quaternions and the rotation of a rigid body 249

which have to be added to the unperturbed Hamiltonian (6), obtaining in this way,
the total Hamiltonian in terms of quaternions and the equations of motion (7).

In the case here considered, we took as dimensionless principal moments of inertia
(I1, I2, I3) = (1.25, 1.0, 0.75), and initial conditions

q(t0) = (0.5, −1/
√

2, 0, 0.5), Q(t0) = (0.3, −0.848528, 0.141421, −1.5)

or equivalently in Euler variables

(φ,ϑ ,ψ)(t0) = (π/4, 3π/2,π/4), (�,	,
)(t0) = (0.5, 0.6, 0.4).

Note that when xc = 0 we have the rigid body in torque free rotation. This problem
is integrated numerically with the above initial conditions, and the evolution of the
two quaternions, coordinates q and moments Q appears in Fig. 1.

For the numerical integration of the equations of motion of the heavy top, we
choose

xc = (1, 0, 0), Mg = 0.5.

In Fig. 2 we present the evolution of q and Q.

6.2 Rigid body in a Keplerian orbit

Let us now consider the attitude of a rigid body moving on an orbit around a cen-
tral spherical body (the Earth). We also make the assumption that both mass and
dimensions of the satellite are much smaller that the position vector and the central

Fig. 1 Torque free rotation: time evolution of the components of quaternions q (left) and Q (right)

Fig. 2 Heavy rigid body: time evolution of the components of quaternions q (left) and Q (right)
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body mass; consequently, we are assuming that satellite’s rotation have no influence
on the orbit, but not the converse.

The potential acting on the satellite, attracted by the Earth, may be expressed by
the MacCullagh formula (Danby 1992)

U = −GM
[

m
r

+ 1
2r3 (I1 + I2 + I3 − 3J)

]

, (19)

where r = ‖x‖ is the radial distance, M the central body mass, m the satellite mass,
and J is the moment of inertia of the satellite about the line joining both centres of
masses.

Let us denote by x̂ = x/r the unit vector in the radial direction expressed in the
body frame B. Then, J = x̂ · I ⊗ x̂.

By using the orbital elements: node �, inclination i, and ω + f , we define the
quaternion p representing the rotation from the space frame S to the orbital frame as

p0 = cos
i
2

cos
�+ (ω + f )

2
, p1 = sin

i
2

cos
�− (ω + f )

2
,

p2 = sin
i
2

sin
�− (ω + f )

2
, p3 = cos

i
2

sin
�+ (ω + f )

2
.

Then, in the space frame the vector x̂ is

x̂
∣
∣
∣S

= p s1 p̃

and thus,

x̂
∣
∣
∣B

= q̃ x̂
∣
∣
∣S

q = q̃ (p s1 p̃)q,

expression that has to be replaced in

J = x̂ · I ⊗ x̂.

Since the quaternion p and r are known functions of t, and in the Hamilton equa-
tions we only need the partial derivatives with respect to the quaternion q, we can
drop from the potential (19) those additive terms independent of q, resulting into

U = 3GM
2r3

(

q̃ (p s1 p̃)q
)

· I ⊗
(

q̃ (p s1 p̃)q
)

. (20)

Fig. 3 Rigid body in Keplerian orbit: time evolution of the components of quaternions q (left) and
Q (right)
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For the Keplerian orbit, we take an elliptic orbit with initial conditions

a = 7, 000 km, e = 0.2, i = π/6, � = π/4, ω = π/12, f (t0) = 0

and for the moments of inertia of the satellite we take

I1 = 400 kg/km2, I2 = 500 kg/km2, I3 = 600 kg/km2.

The initial conditions for the rotation quaternions are the same as in the above
example. The results of the integration appear in Fig. 3.

7 Conclusions

We derived the Hamiltonian function of the attitude dynamics of a rigid body under
external torques in terms of quaternions by two different ways. The corresponding
Hamilton equations are formally simple, they are singularity-free and fast to manip-
ulate, since addition, and multiplication are the only arithmetic operations involved.
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