Hand-in Exercises 1, TATA49 Geometry with Applications. Fall 2025

Maple, Python or Matlab may/should be used in the calculations.

The exercises are customized by your birthdays as follows: p_1, p_2 is the month of your birthday, where January is 01, February 02,..., and December 12. q_1, q_2 is the date in the month, between 13 and 29, nearest to your birthday. r_1, r_2 are the two last digits in the year you were born. However, if you were born in 1990, then $r_1, r_2 = 9, 1$; if you are born in 200i $r_1 = 5 + i, r_2 = 4 + i$.

Exercise 1 1. Show that the lines l[1,1,1], $m[r_1,r_2,p_1+q_1]$, $n[q_2+4r_1,q_2+4r_2,q_2+4p_1+4q_1]$ are concurrent and determine the intersection point Int.

- 2. Show that the points P(-1/2, -1/2, 1), Q(-5, 10, 1), R(-2, 3, 1) are collinear and give the equation of the line $t[t_1, t_2, t_3]$ they belong to.
- 3. Determine the angles at Int formed by l, m and n (of course pairwise).
- 4. Show that there is a triangle whose sides lie on the lines l, m, t.

Exercise 2 Determine the affine transformation that takes the lines l, m, t in Exercise 1 to the lines l'[0,1,1], m'[2,0,4], respectively t'[-3,3,3]. Decompose it as a product of an isometry, a dilation, a strain and a shear. Is there any fixed point or line by this transformation?

Exercise 3 a Determine the image of the circle with equation $(r_1^2 + r_2^2)x_1^2 + (r_1^2 + r_2^2)x_2^2 - 4x_1 - 6x_2 = 9$ under the affine transformation given in Exercise 2. Determine the eccentricities.

b Show that a similarity transforms an ellipse, hyperbola respectively in another ellipse (hyperbola) of the same eccentricity. Recall that if a hyperbola is defined by a symmetric matrix C with eigenvalues $\lambda_1 > 0$ and $\lambda_2 < 0$, then the eccentricity e is defined by $e = \sqrt{1 + \frac{\lambda_1}{|\lambda_2|}}$. The eccentricity of an ellipse is given by $e = \sqrt{1 - \frac{\lambda_1}{|\lambda_2|}}$, where $0 < \lambda_1 < \lambda_2$.

Exercise 4 Determine the isometry that takes the points $P(p_1, p_2)$ and $Q(q_1, q_2)$ to $P'(r_1, r_2)$ and $Q'(r_1 + \frac{p_1\sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}}{\sqrt{p_1^2 + p_2^2}}, r_2 + \frac{p_2\sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}}{\sqrt{p_1^2 + p_2^2}})$ respectively. Which kind of isometry is it? **The** isometry?

Exercise 5 Consider the positiver real numbers \mathbb{R}^+ . We can equipe \mathbb{R}^+ with a structure of affine space using the following direction map: $\phi: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ given by $\phi(a,b) = \ln(b) - \ln(a)$ (we denote $\mathbf{v}_{ab} \ln(b) - \ln(a)$). Observe that \mathbb{R} is the 1-dim vector space over the reals

a) Show that we can identify \mathbb{R}^+ with the affine line $\mathcal{R} = \{(x,1)\}; x \in \mathbb{R}$ using the logarithm function on the first coordinate. Verify that \mathbb{R}^+ is in fact an affine space by controlling:

- i) Fixing any $a \in \mathbb{R}^+$ one has that for every $b \in \mathbb{R}^+$ there is a unique
 - ii) $\forall a, b, c \in \mathbb{R}^+$ the equality $\phi(a, b) + \phi(b, c) = \phi(a, c)$ holds.
- **b)** Show now that the map $f_t: \mathbb{R}^+ \to \mathbb{R}^+$, $t \in \mathbb{R}^+$ given by $f_t(a) = ta$ is an affine transformation of \mathbb{R}^+ by proving that $\ln f_t \ln^{-1} : \mathcal{R} \to \mathcal{R}$ is an affine transformation of R. Give the matrix of the affine transformation.

Exercise 6 Show that a direct isometry f, not the identity, which satisfies that $f^2 = 1_d$ is a rotation with angle π .

Exercise 7 Determine all the direct isometries that fix each of the lines $l_a[r_1 +$ $p_1, r_2 + q_2, ar_2$, $0 \le a$. Describe these isometries if existing. Are the lines concurrent?

Exercise 8 Identify the indirect isometries taking the point $P(p_1, p_2)$ to the point $P'(r_1 + q_1, r_2 + q_2)$. Determine the geometric locus (the set of points) formed by the axis of the isometries.

Exercise 9 Identify the direct isometries that take the point $P(p_1, p_2)$ to the point $P'(r_1+q_1,r_2+q_2)$. Determine the geometric locus formed by the centres of the rotations.

Compare geometrically the geometric loci given in the two previous Exercises.

Exercise 10 a) Show that any direct isometry T of the plane can be expressed in terms of complex numbers as T(z) = az + v, where $a = (\cos(\theta), \sin(\theta)), v =$ $v_1 + iv_2, z = x + iy.$

- b) Give the matrix of the isometry above.
- c) Let T' be another direct isometry given by T'(z) = az + w, where a = $(\cos(\phi), \sin(\phi)), w = w_1 + iw_2$. show that $TT'T^{-1}T'^{-1}$ is a translation. Which is the translation vector?

Exercise 11 Determine the similarity that takes the points $P(r_2 + p_1, r_1 + p_2, r_2)$ $(p_2), Q(r_2+q_2, r_1+q_2)$ to the points $P'(p_1+q_2+r_1, p_2+q_1+r_2)$ and $Q'(r_1+q_2+r_1, p_2+q_1+r_2)$ $p_1, r_2 + q_1$) respectively. What is the ratio of the similarity?

Exercise 12 Consider two glide-reflections G_m , G_n with axes the lines m and nrespectively. Show that $T = G_nG_m$ is a translation. Determine the translation vector of T in terms of the of the axes $m[m_1, m_2, m_3]$ and $n[n_1, n_2, n_3]$ and translation vectors $\mathbf{v}_m = (\lambda_1 m_2, -\lambda_1 m_1), \mathbf{v}_n = (\lambda_2 n_2, -\lambda_2 n_1), \lambda_1, \lambda_2 \neq 0$ of G_m and G_n .

Exercise 13 Consider the affine transformation T with matrix

ercise 13 Consider the affine transformation
$$T$$
 with matrix $\begin{pmatrix} a & b & 1-a \\ b & -a & -2b \\ 0 & 0 & 1 \end{pmatrix}$, where a and b are positive real numbers such that $a^2 + a^2 +$

 $b^2 = 1$. Show that the affine transformation T is a reflection and determine its axis m, i.e. the angle that the axis forms with the x_1 -axis and the intersection point of m with the x_1 -axis.

- Exercise 14 1. The arm of a robot consists of two equally long links with length 30 cm. with junctions J_1 and J_2 . The hand is rigidly linked to the end of the second link (the junction J_3 is rigid with angle 0 rad). The arm can move in a plane. The junctions are the origins of the corresponding coordinate systems. Determine the position and orientation of the hand of the robot, i.e. give the position of a point on the plane in terms of the angles at the junctions.
 - 2. Considering the robot arm above: What are the angles at the junctions to reach a point with coordinates (2,2) in the coordinate system associated to the hand and $(-1,-1+30\sqrt{3}+\sqrt{3})$ in the controller coordinate system?.

