
Quaternions and Rigid Movements in 3D

Hamilton found the quaternions H as a very useful tool for modelling Mechanics in 3D. The quater-
nions are in fact the vectors in R4 equipped with a product, and with a complex structure (C2). More
importantly S3 are the quaternions of norm 1. S3 with this product is a Lie group, the geometry is the
one coming from the Euclidean 4D-space, (à la Riemann).

If we want to do animation we are interested in expressing isometries (movements) of the Euclidean
space in 3D. but we know that any isometry in 3D is the product of at most 4 reflections (for exactly
4 reflections the isometry is a screw motion). In fact, I am interested in the isometries of S2, but I can
see them as the isometries in 3D that fix the origin (à la Riemann). If we are interested in orientation
preserving isometries that fix the origin, then we have the product of two reflections in intersecting
reflection planes: i.e. a rotation whose axis is the intersection line of the reflecting planes.
Remember that a rotation of R3 is given by an orthogonal 3× 3-matrix with determinant 1.

I learnt about S2,S3 and the group of rotations of R3 : SO(3) in this building (linear algebra,
general topology and diff geometry of surfaces).

The goal of this talk is to convince you that the quaternions of norm 1 (I heard Artal saying
the norm of a vector), S3 and SO(3) are the same, pardon, the second is the quotient of the first by
the antipodal map. This gives a fast algorithm to draw rotations in 3D: SLERP (Spherical Linear
IntERPolation).

The following references are good:

(1) A. Beardon, Algebra & Geometry, Cambridge University Press, 2005

(2) J.N. Cederberg, A Course in Modern Geometry, Springer-Verlag 2001

(3) J.I. Cogolludo, L. Ugarte, Apuntes de Geometŕıa Lineal, Universidad de Zaragoza, 2021-2022.

(4) D. Marsh, Applied Geometry for Computer Graphics and CAD, Springer-Verlag, 2005.

(5) M. Arribas, A. Elipe, M. Palacios, Quaternions and the rotation of a rigid body, Celestial Mech
Dyn Astr (2006) 96, 239-251

1. Quaternions

1.1. Definitions. We begin with Hamilton’s definition of quaternionsH = {q = (a0, (a1, a2, a3)); ai ∈
R, 0 ≤ i ≤ 3}, we write q = (a0,x), con x = (a1, a2, a3).

a0 is the scalar, or real part, and x = (a1, a2, a3) is the vectorial part we say that a quaternion
q = (a0, (a1, a2, a3)) es pure or purely vectorial if a0 = 0

Some notation: 0 = (0, (0, 0, 0)), 1 = (1, (0, 0, 0)), i = (0, (1, 0, 0)), j = (0, (0, 1, 0)) y k = (0, (0, 0, 1)).
Recall that {1, i, j, k} form a basis for vector space R4.

The norm of a quaternion q = (a0, (a1, a2, a3)) is |q| =
√
a20 + a21 + a22 + a23. Recall that the only

quaternion with 0 norm is 0.

Given a quaternion q = (a0,x), the conjugate of q is q = (a0,−x). We have that |q| = |q|.

We can see the 3-sphere as S3 = {q = (a0,x) ∈ H; |q| = 1}, the unitary quaternions.
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We can write a unitary quaternion q = (cos(θ/2), sin(θ/2)(u1, u2, u3)) with u = (u1, u2, u3) a unit
vector.

Now a20 + |x|2 = 1, so a0 = cos(θ/2), |x| = sin(θ/2). We have the polar coordinates for unitary
quaternions q = (cos(θ/2), sin(θ/2)n), with n a unit vector in R3.

The sum of quaternions is the sum as vectors:

q1 = (a0,x), q2 = (b0,y), q1 + q2 = (a0 + b0,x+ y).

The external action of R is the same (H is the vector space R4).

But now we have a product that satisfies that any quaternion with non-zero norm has multiplicative
inverse:

q1q2 = (a0b0 − x • y, a0y + b0x+ x× y)

1.2. Properties and Examples.

(1) qq = |q|2

(2) q−1 = q
|q|2

(3) If |q| = 1, then q−1 = q

(4) The unitary quaternions: S3, the quaternions with norm 1, form a group with this product;
moreover the product, and the inverse, are differentiable maps for S3.

(5) A quaternion q = (a0,x) is a pure quaternion iff q2 = −a2, a ∈ R.
(6) If q1 = (0,x), q2 = (0,y) are pure quaternions, then q1q2 = (−x • y, x × y), the energy and

the moment in mechanics!!!

Notice that q2q1 = (−x • y, −x× y)

(7) i2 = j2 = k2 = −1, ij = k, jk = i,ki = j, ji = −k,kj = −i, ik = −j

(8) Given the quaternion q = (a0, (a1, a2, a3)); the multiplication with q to the left is a linear

transformation, Lq, in R4 with matrix


a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

.

(9) In the same way: the multiplication with q to the right is a linear transformation, Dq, in R4

with matrix


a0 −a1 −a2 −a3
a1 a0 a3 −a2
a2 −a3 a0 a1
a3 a2 −a1 a0

.

(10) Finally the linear map R̂q : H → H given by Rq(x) = qxq−1 has matrix

Rq =

(
1 0

0 Â

)
=


1 0 0 0

0
a2
0+a2

1−a2
2−a2

3

|q|2
2a1a2−2a0a3

|q|2
2a1a3+2a0a2

|q|2

0 2a1a2+2a0a3

|q|2
a2
0−a2

1+a2
2−a2

3

|q|2
2a2a3−2a0a1

|q|2

0 2a1a3−2a0a2

|q|2
2a0a1+2a2a3

|q|2
a2
0−a2

1−a2
2+a2

3

|q|2


.
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Observations:

(a) Observe first that the “fourth dimension ”(the scalar part) is fixed by Rq, as Rq is
invertible it means that Rq preserves the vectorial part (pure quaternions are taken to
pure quaternions), i.e. Rq |: R3 → R3 is an invertible linear map (an affinity fixing the
origin)

(b) Notice that if q = λq̂, with λ real, (̸= 0, ) then Rq = Rq̂. Have you seen this kind of
quotient in general topology or linear geometry?

(c) The property above tells us that we need to work with S3, the unitary quaternions.

(d) The matrix Â given above is orthogonal, i.e. Rq | is an isometry of R3 with the Euclidean

metric. Moreover det(Â) = 1, so we are talking of rotations with center the origin, i.e.
rotations of S2.

2. The rotations of S2

2.1. Isometries of the Euclidean space in 3D. The rotations of S2 = {x ∈ R3; |x|2 = 1} are in
fact rotations of the vector space R3 (fixing the origin). Why is it so interesting to see rotations of R3

fixing the origin as rotations of S2? Because of the stereographic projection(s) we recover all rotations
in 2D (with any centre!!)

But if we are interested in applications (as we are in this lecture), to see the rotations of S2 is to
see angles needed in navigation.

You have learnt, or will learn, in Linear Geometry two fundamental facts on isometries in 3D:

a) First, the translations Tv : R3 → R3 given by Tv(x) = (x) + (v), with vector v = (v1, v2, v3)

and matrix:


1 0 0 0
v1 1 0 0
v2 0 1 0
v3 0 0 1


b) Any isometry T is given by T (x) = T̂ (x) + v, with T̂ an orthogonal map of R3. In the way

we write the matrix:

(
1 0

v Â

)
.

c) Any isometry is the product of at most four reflections.

d) A reflection in a plane with equation x • n = d, with n a unit normal vector to the plane
(a point in S2, or a pure, unitary quaternion n = (0,n)) is the transformation Sn(x) =
x+ 2(d− x • n)n. The matrix(

1 0

2dn Â

)
, de(Â) = −1, ÂÂt = I3, Â = Ât.

We can calculate the matrix Â of the reflection with unitary pure quaternions:

e) Exercise: Given a pure unitary quaternion n = (0,n), the map Sn : R3 → R3 given by
Sn(x) = −nxn = nxn, x = (0,x) is the reflection in the plane with equation x • n = 0.

Si(j) = iji = ki = j, Si(k) = iki = −ji = k, Si(i) = iii = −i.
The example is the reflection in the yz-plane expressed in quaternions.
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f) Product of two reflections fixing the origin Rn2n1
(x) = (−1)2n2n1x(n2n1)

−1, with q = n2n1 a
unitary quaternion.

g) Considering orientation preserving isometries: they are the product of two or four reflections.
The product of two reflection are translations (reflections in parallel planes) or rotations (re-
flections in intersecting planes, the axis is the intersecting line). The product of four reflections
is a screw motion: T (x) = R(x) + v, with R a rotation and v a directing vector of the axis of
R.

h) Of course we can express any rotation of S2 as a product of the so called Euler angles (Tait-
Bryan in navigation), rotations around the axis i, j, k:

yaw

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

, pitch .

 cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)

, roll

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


A first issue is to choose the order of multiplication. But a major problem is that we have
singularities when any of the angles is π/2,−π/2, then we loose degree of freedom. This
singularity is called the gimbal lock. By the way the problem of Apollo 11.

The trace of a screw motion (a helix) The three Euler angles

2.2. Rotations, Quaternions and SLERP. Now, we look at Properties e) and f) above with
detail, to obtain the beautiful result:

Theorem 2.1. Let q = (cos(θ/2), sin(θ/2)u) with u = (u1, u2, u3) a unit vector. The map Rq :
R3 → R3, Rq(x) = qxq−1 is a clockwise rotation of R3 around the axis directed by u and by angle θ.
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To prove it we have to look again at Properties e) and f): Take two pure quaternions n1, n2 in
S2 (two unit vectors in R3) such that n2 • n1 = cos(θ/2) and n2 × n1 = sin(θ/2)u. We can calculate
n2n1 = (0 − cos(θ/2), sin(θ/2)u) = −q. Now Sn2Sn1(x) = (−1)2(n2n1)x(n2n1)

−1 = −qx(−q)−1 =
qxq = Rq(x).

This allows us to see rotations of S2 as points in S3, in fact classes, of points {q,−q}, and it gives
us a fast procedure to render animation (or to control with a computer the orientations of a rigid body
for navigation). The procedure is called SLERP, Spherical Linear Interpolation.

We have seen these animations for instance when in television it is shown the most probable tra-
jectory of a throw in basket.

If we see an animation of a rotation of a rigid body as the fastest way of going in S3 from the start
orientation (a rotation from the standard reference system in 3D) given by a (unitary) quaternion qs to
the final orientation of the rigid body, given by a (unitary) quaternion qf . We can think that we have
an arc of a great circle in S3 joining qs and qf . An intermediate orientation/quaternion

qt = α(t)qs + µ(t)qf , t ∈ [0, 1].

In S3 as subspace of R4 we have qs •qf = cos(θ). If qs •qt = cos(tθ), qf •qt = cos((1− t)θ), t ∈ [0, 1],
we have:

cos(tθ) = α(t) + µ(t) cos(θ), cos((1− t)θ) = α(t) cos(θ) + µ(t)

Solving the system of LINEAR equations we obtain

α =
sin((1− t)θ)

sin(θ)
, µ =

sin(tθ)

sin(θ)

Then

qt =
sin((1− t)θ)

sin(θ)
qs +

sin(tθ)

sin(θ)
qf

Observation/Exercise: In fact qt ∈ S3 for t ∈ [0, 1] (Hint: We must remember some trigonometric
equalities).

Notice that from the point of view of the calculations, the animation consists in multi-
plying a number of 3D-points/3-vectors by a “double ”family of unitary quaternions, each
of them a linear combination (with easy functional coefficients) of two given quaternions
and their conjugates.

Disclaimer: The functional coefficients are trigonometric functions. Any numerical calculation
will begin with a truncation, so if one does not use high resolution, the animation will be defficient.

Finally, I used the 4x4-matrices because in that way I can write at once rotations and translations
in 3D. But to do that I must look at the affine space in 3D as the affine part of the (real) projective
3-space. But the Theorem tells us that

SO(3) ∼= RP 3 = S3/⟨antipodal⟩


