Quaternions and Rigid Movements in 3D

Hamilton found the quaternions H as a very useful tool for modelling Mechanics in 3D. The quater-
nions are in fact the vectors in R* equipped with a product, and with a complex structure (C?). More
importantly S? are the quaternions of norm 1. S with this product is a Lie group, the geometry is the
one coming from the Euclidean 4D-space, (a la Riemann).

If we want to do animation we are interested in expressing isometries (movements) of the Euclidean
space in 3D. but we know that any isometry in 3D is the product of at most 4 reflections (for exactly
4 reflections the isometry is a screw motion). In fact, I am interested in the isometries of S2, but I can
see them as the isometries in 3D that fix the origin (a la Riemann). If we are interested in orientation
preserving isometries that fix the origin, then we have the product of two reflections in intersecting
reflection planes: i.e. a rotation whose axis is the intersection line of the reflecting planes.
Remember that a rotation of R3 is given by an orthogonal 3 x 3-matrix with determinant 1.

I learnt about S?,S* and the group of rotations of R? : SO(3) in this building (linear algebra,
general topology and diff geometry of surfaces).

The goal of this talk is to convince you that the quaternions of norm 1 (I heard Artal saying
the norm of a vector), S* and SO(3) are the same, pardon, the second is the quotient of the first by
the antipodal map. This gives a fast algorithm to draw rotations in 3D: SLERP (Spherical Linear
IntERPolation).

The following references are good:

(1) A. Beardon, Algebra & Geometry, Cambridge University Press, 2005

(2) J.N. Cederberg, A Course in Modern Geometry, Springer-Verlag 2001

(3) J.I. Cogolludo, L. Ugarte, Apuntes de Geometria Lineal, Universidad de Zaragoza, 2021-2022.
(4) D. Marsh, Applied Geometry for Computer Graphics and CAD, Springer-Verlag, 2005.

()

5) M. Arribas, A. Elipe, M. Palacios, Quaternions and the rotation of a rigid body, Celestial Mech
Dyn Astr (2006) 96, 239-251

1. Quaternions
1.1. Definitions. We begin with Hamilton’s definition of quaternions H = {¢q = (ao, (a1, az,as3)); a; €
R,0 < i < 3}, we write ¢ = (ag,x), con x = (a1, ag, az).
ag is the scalar, or real part, and x = (a1, as, as) is the vectorial part we say that a quaternion
q = (ap, (a1, as,as3)) es pure or purely vectorial if ag =0
Some notation: 0 = (0, (0,0,0)),1 = (1,(0,0,0)),7 = (0, (1,0,0)),5 = (0,(0,1,0)) y k = (0,(0,0, 1)).
Recall that {1,4, 5, k} form a basis for vector space R*.

The norm of a quaternion ¢ = (ao, (a1,a2,a3)) is |q| = \/aZ + a} + a3 + a3. Recall that the only
quaternion with 0 norm is 0.

Given a quaternion g = (ap, x), the conjugate of ¢ is § = (ag, —x). We have that |¢| = [g|.

We can see the 3-sphere as S? = {q = (ag,x) € H; |q| = 1}, the unitary quaternions.
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We can write a unitary quaternion g = (cos(6/2),sin(0/2)(uy, uz,us)) with u = (uy, ug, uz) a unit

vector.

Now a2 + [x|?> = 1, so ag = cos(6/2), |x| = sin(f/2). We have the polar coordinates for unitary
quaternions q = (cos(0/2),sin(f/2)n), with n a unit vector in R3.

The sum of quaternions is the sum as vectors:

q = (GO»X)aCD = (507}’),(11 +CI2 = (aO + b07X+y)'

The external action of R is the same (H is the vector space R?).

But now we have a product that satisfies that any quaternion with non-zero norm has multiplicative

inverse:

192 = (apbp —x @y, apy + box +x X y)

. Properties and Examples.

qq = |q?
-1_ q_
T = e

If |g| = 1, then ¢! =7
The unitary quaternions: S, the quaternions with norm 1, form a group with this product;
moreover the product, and the inverse, are differentiable maps for S3.
A quaternion ¢ = (ag,x) is a pure quaternion iff ¢> = —a? a € R.
If 4 = (0,%x),92 = (0,y) are pure quaternions, then ¢1go = (—x ey, x X y), the energy and
the moment in mechanics!!!
Notice that gaq1 = (—x ey, —x X y)
i2=j2=k?=-1, ij=kjk=iki=j, ji=-kkj=—iik=—j
Given the quaternion ¢ = (ag, (a1, as,as)); the multiplication with ¢ to the left is a linear
ap —a; —ag —as
ar Gy —az a2
az as ap —a
az —az a1 ago

transformation, L,, in R* with matrix

In the same way: the multiplication with ¢ to the right is a linear transformation, D,, in R*
Gy —aip —az —asg

. . aj Q a —az
with matrix 0 3
a2 —az Qo ai
az  az —ay ag

Finally the linear map fiq : H — H given by R,(z) = qzq~' has matrix

1 0 0 0
2, 2 2 9
0 agtaj—az—ajz 2a1a2—2a0a3 2a;a3+42a9az
R — I 0\ la? a? lal?
q — 0 A\ - 0 2a1a2+2apas ag—aj+taz;—ajz 2aza3—2apa1
ol o L,
0 2a1a3—2apasz 2aga1+2aszas3 ag—ay—artay

lq|? lq|? lq]?



Observations:

(a) Observe first that the “fourth dimension ”(the scalar part) is fixed by Ry, as R, is
invertible it means that R, preserves the vectorial part (pure quaternions are taken to
pure quaternions), i.e. R, |: R®> — R? is an invertible linear map (an affinity fixing the
origin)

(b) Notice that if ¢ = Ag, with A real, (# 0,) then R; = Rz Have you seen this kind of
quotient in general topology or linear geometry?

(c) The property above tells us that we need to work with S, the unitary quaternions.

(d) The matrix A given above is orthogonal, i.c. R, | is an isometry of R3 with the Euclidean

-~

metric. Moreover det(A) = 1, so we are talking of rotations with center the origin, i.e.
rotations of S2.

2. The rotations of S?

2.1. Isometries of the Euclidean space in 3D. The rotations of S? = {x € R?;|x|?> = 1} are in

fact rotations of the vector space R? (fixing the origin). Why is it so interesting to see rotations of R3
fixing the origin as rotations of S?? Because of the stereographic projection(s) we recover all rotations
in 2D (with any centrel!l)

But if we are interested in applications (as we are in this lecture), to see the rotations of S? is to

see angles needed in navigation.

You have learnt, or will learn, in Linear Geometry two fundamental facts on isometries in 3D:

a) First, the translations T, : R® — R3 given by Ty (x) = (x) + (v), with vector v = (v1,v2,v3)

1 0 0 O

- vy 1 0 0

and matrix: v 0 1 0
V3 0 0 1

b) Any isometry T is given by T(x) = f(x) + v, with 7 an orthogonal map of R3. In the way

. . 1 0
we write the matrix: ~ .
v A

c) Any isometry is the product of at most four reflections.

d) A reflection in a plane with equation x e n = d, with n a unit normal vector to the plane
(a point in S%, or a pure, unitary quaternion n = (0,n)) is the transformation S, (x) =
x + 2(d — x e n)n. The matrix

1 0 ~N Tt 1 _ At
<2dn g), de(A) = -1, AAt—1, A=A

We can calculate the matrix A of the reflection with unitary pure quaternions:
e) Exercise: Given a pure unitary quaternion n = (0,n), the map S, : R® — R3 given by
Sp(z) = —nam = nzn,x = (0,x) is the reflection in the plane with equation x e n = 0.
Si(j) =iji =ki=j, Si(k)=iki=—ji=k, S;(i)=iii=—i.

The example is the reflection in the yz-plane expressed in quaternions.
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f) Product of two reflections fixing the origin R,,,, (z) = (—1)?naniz(nani) !, with ¢ = nan; a

unitary quaternion.

g) Considering orientation preserving isometries: they are the product of two or four reflections.
The product of two reflection are translations (reflections in parallel planes) or rotations (re-
flections in intersecting planes, the axis is the intersecting line). The product of four reflections
is a screw motion: T'(x) = R(x) + v, with R a rotation and v a directing vector of the axis of
R.

h) Of course we can express any rotation of S? as a product of the so called Euler angles (Tait-
Bryan in navigation), rotations around the axis i, j, k:

1 0 0 cos(p) 0 sin(p) cos(yp) —sin(yp) 0
yvaw | 0 cos(#) —sin(f) |, pitch. 0 1 0 ,roll | sin(¢))  cos(yp) 0
0 sin(f)  cos(f) —sin(p) 0 cos(yp) 0 0 1

A first issue is to choose the order of multiplication. But a major problem is that we have
singularities when any of the angles is 7/2, —m/2, then we loose degree of freedom. This
singularity is called the gimbal lock. By the way the problem of Apollo 11.

The trace of a screw motion (a helix) The three Euler angles

2.2. Rotations, Quaternions and SLERP. Now, we look at Properties e) and f) above with
detail, to obtain the beautiful result:

THEOREM 2.1. Let ¢ = (cos(0/2),sin(6/2)u) with u = (u1,u2,u3) a unit vector. The map Ry :
R3 — R3 R, (z) = qzq™? is a clockwise rotation of R® around the azis directed by u and by angle 6.
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To prove it we have to look again at Properties e) and f): Take two pure quaternions ni,ng in
S? (two umit vectors in R3) such that ny e n; = cos(#/2) and ny x n; = sin(f/2)u. We can calculate
nany = (0 — cos(6/2),sin(6/2)u) = —q. Now S,, S, (x) = (=1)%(nani)z(ngny)~! = —qr(—q)~! =
qrq = Ry(x).

This allows us to see rotations of S? as points in S?, in fact classes, of points {g, —¢}, and it gives
us a fast procedure to render animation (or to control with a computer the orientations of a rigid body
for navigation). The procedure is called SLERP, Spherical Linear Interpolation.

We have seen these animations for instance when in television it is shown the most probable tra-
jectory of a throw in basket.

If we see an animation of a rotation of a rigid body as the fastest way of going in S? from the start
orientation (a rotation from the standard reference system in 3D) given by a (unitary) quaternion gs to
the final orientation of the rigid body, given by a (unitary) quaternion gs. We can think that we have
an arc of a great circle in S? joining ¢, and ¢s. An intermediate orientation/quaternion

q = o(t)qs + p(t)gs, t € [0,1].

In S? as subspace of R* we have g; e qs = cos(). If g q; = cos(tf), qr e q: = cos((1—1t)0), t € [0,1],
we have:

cos(tf) = a(t) + p(t) cos(f), cos((1 —1t)0) = a(t)cos(f) + pu(t)

Solving the system of LINEAR equations we obtain
_sin((1 —1)0) __sin(t0)

sin(6) K sin(6)

Then
sin((1 —t)6) sin(t0)

"= sin(6) Gs sin(6) 1

Observation/Exercise: In fact ¢; € S for t € [0, 1] (Hint: We must remember some trigonometric
equalities).

Notice that from the point of view of the calculations, the animation consists in multi-
plying a number of 3D-points/3-vectors by a “double ”family of unitary quaternions, each
of them a linear combination (with easy functional coefficients) of two given quaternions
and their conjugates.

Disclaimer: The functional coefficients are trigonometric functions. Any numerical calculation
will begin with a truncation, so if one does not use high resolution, the animation will be defficient.

Finally, I used the 4x4-matrices because in that way I can write at once rotations and translations
in 3D. But to do that I must look at the affine space in 3D as the affine part of the (real) projective
3-space. But the Theorem tells us that

SO(3) = RP? = S*/(antipodal)



