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A.I The gcd and Bézout . . . . . . . . . . . . . . . . . . . . . . 1

A.II Two Divisibility Theorems . . . . . . . . . . . . . . . . . . 7

A.III Unique Factorization . . . . . . . . . . . . . . . . . . . . . 9

A.IV Residue Classes, Congruences . . . . . . . . . . . . . . . . . 12

A.V Order, Little Fermat, Euler . . . . . . . . . . . . . . . . . . 21

A.VI A Brief Account of RSA . . . . . . . . . . . . . . . . . . . . 33

B Congruences. The CRT. 37

B.I The Chinese Remainder Theorem . . . . . . . . . . . . . . 37

B.II Euler’s Phi Function Revisited . . . . . . . . . . . . . . . . 44

* B.III General CRT . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B.IV Application to Algebraic Congruences . . . . . . . . . . . . 53

B.V Linear Congruences . . . . . . . . . . . . . . . . . . . . . . 54

B.VI Congruences Modulo a Prime . . . . . . . . . . . . . . . . . 56

B.VII Modulo a Prime Power . . . . . . . . . . . . . . . . . . . . 60

C Primitive Roots 69

iii



iv CONTENTS

C.I False Cases Excluded . . . . . . . . . . . . . . . . . . . . . 69

C.II Primitive Roots Modulo a Prime . . . . . . . . . . . . . . . 72

C.III Binomial Congruences . . . . . . . . . . . . . . . . . . . . . 76

C.IV Prime Powers . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.V The Carmichael Exponent . . . . . . . . . . . . . . . . . . . 88

* C.VI Pseudorandom Sequences . . . . . . . . . . . . . . . . . . . 92

C.VII Discrete Logarithms . . . . . . . . . . . . . . . . . . . . . . 94

* C.VIII Computing Discrete Logarithms . . . . . . . . . . . . . . . 95

D Quadratic Reciprocity 107

D.I The Legendre Symbol . . . . . . . . . . . . . . . . . . . . . 107

D.II The Jacobi Symbol . . . . . . . . . . . . . . . . . . . . . . 118

D.III A Cryptographic Application . . . . . . . . . . . . . . . . . 123

D.IV Gauß’ Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 123

D.V The “Rectangle Proof” . . . . . . . . . . . . . . . . . . . . 127

D.VI Gerstenhaber’s Proof . . . . . . . . . . . . . . . . . . . . . 129

* D.VII Zolotareff’s Proof . . . . . . . . . . . . . . . . . . . . . . . 131

E Some Diophantine Problems 143

E.I Primes as Sums of Squares . . . . . . . . . . . . . . . . . . 143

E.II Composite Numbers . . . . . . . . . . . . . . . . . . . . . . 150

E.III Another Diophantine Problem . . . . . . . . . . . . . . . . 156

E.IV Modular Square Roots . . . . . . . . . . . . . . . . . . . . . 160

E.V Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 165

F Multiplicative Functions 167

F.I Definitions and Examples . . . . . . . . . . . . . . . . . . . 167



CONTENTS v

F.II The Dirichlet Product . . . . . . . . . . . . . . . . . . . . . 169
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Preface

My last new assignment at Linköping University was to a course in Elemen-
tary Number Theory. While somewhat removed from my algebraic interests
and competence, that course (which I conducted for five years) turned out
to be an extremely rewarding and challenging experience, largely due to the
enthusiasm of the students.

Never content to just copy text books, I put a lot of energy into finding
new proofs, new ways of organizing the material, and some at least unusual
topics. This quest for inspiration produced a lot of notes that I decided to
compile into a short text on retiring from the University. As you might have
guessed, the project grew into a full-size book.

What I hoped to contribute to the existing literature is a perhaps slimmer
and more affordable volume. At the same time I wished to include some
exciting and challenging, yet completely elementary, material not found in
current texts.

“Elementary” means that almost no Analysis is used, and almost no “Ab-
stract” Algebra. Algebra really becomes abstract only with the introduction
of techniques like homomorphisms, direct sums and quotient constructions.
We do, however, speak of (number) rings, fields, and residue classes of inte-
gers, and their arithemetic.

Among the more unusual material is a reasonably complete account of Cor-
nacchia’s algorithm for solving x2 +Dy2 = p, using Euclid’s Algorithm, and
that of Lagrange (revived by Matthews and Mollin) for x2 −Dy2 = N , us-
ing infinite continued fractions. There are strong analogies between the two
theories, which I emphasize by using exactly the same wording in several
parallel passages. Modular square roots is another of my favorite topics,
and I present two algorithms for them, that of Berlekamp and the one using
Lucas sequences (or, equivalently, Cipolla’s algorithm) each exploiting some
interesting theoretical item.

ix



x PREFACE

To keep the material within bounds I had to make some clear decisions what
not to include. One main decision was to not give proofs of the statistics and
complexity of algorithms. There are comprehensive accounts in the books by
Riesel, Bach-Shallit, and Crandall-Pomerance cited in the Bibliography.

Another decision was to give fewer applications. The motivational value
of applications does not depend on their quantity; besides, who wants to
compete with such excellent texts (in Cryptography) as Trappe-Washington,
or Buchmann? To be sure, almost all of the math relevant to these accounts,
is included here. Whenever I found an application worthy of inclusion it was
usually because it strengthened some of the main theoretical ideas of the
text.

A few words about style. For the most part I stick to the strict Definition-
Example-Theorem-Proof-Example format simply because I want to make it
clear where things begin and end. Also, many readers (like me) will want to
skip longer proofs on a first reading.

Having dabbled in journalism I try to paragraph and display often. I have
also tried to minimize the number of cross-references. Further , by numbering
everything in one sequence, and boxing theorems and definitions I hope to
make it easier on the reader. As I never refer back to a subsection, these are
un-numbered.

Finally, there is no numbering of equations, as reference to them is strictly
local. They are labeled by one to three stars. I simply hate references like
“we now return to the study of the differential operator (17) in Section XVII
of Chapter Q” (that operator of course being the Laplacian).

Books are referred to by author name. Very few articles are cited; in these
cases I give full reference in the text, but I have also collected them at the
end of the text.

I strongly advocate the use of computers as a means of generating and inves-
tigating examples. To really understand an algorithm, or a result, it helps
to program it. There are suggestions for computer projects, ranging in com-
plexity from a few lines to maybe one or two pages.

Hopefully the suggested projects still allow the math to dominate over more
delicate programming issues. Ideally much more work should be spent on
checking and tracing, and varying the input and the parameters, than on de-
vising the program. This text is not conceived as a book on “computational”
number theory.



xi

There are “suggestions for computing” sprinkled throughout the exercises,
and the reader will often have the option to use programs of his own design
or rely on existing packages, such as Maple, Mathematica, and PARI. To
ascertain the feasibility of the algorithms to anyone with moderate program-
ming experience I have written and run simple programs on just about any
algorithm persented here,

In my courses students could choose their programming language freely (but
multi-precision arithmetic is imperative). A very popular language is Python,
which is the language I used in constructing and checking all my examples,
and the tables at the end of the book.

You are never alone. Students, friends, and former colleagues helped and
inspired me in several ways. Mikael Langer and Jan-Åke Larsson graciously
aided the traumatic transition from Plain TEX to LATEX. Hans Lundmark and
Niels Möller read large chunks of the text and offered suggestions and cor-
rections, immensely enhancing the readability of the text. Hans also helped
me with a number of programming issues.

Pär Kurlberg (Erdös number two) read an early version of Chapter L, and
offered valuable insights and comments. I am also grateful to him for intro-
ducing me to the Python programming language several years ago. I have
also received valuable input and support from an email correspondence with
Keith Matthews of Brisbane, Australia.

Finally, I wish to acknowledge the generous help from Thomas Bellman in
explaining some of the mysteries of Python.

It is my hope that this text will give something back to the subject that
brightened the last five years of my career.

Linköping, Sweden, October 2007,

Peter Hackman
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Chapter A

Divisibility, Unique
Factorization

A.I The gcd and Bézout

We assume you are familiar with the integers, their addition, subtraction, and
multiplication. We will later introduce algebraic integers, especially complex
integers. When we want to distinguish ordinary integers from more general
ones we use the expression “rational integer”.

We will make repeated use of division with remainder: Given integers n > 0,
and m, there are (unique) integers q and r, 0 ≤ r < n, such that m = qn+ r.

The existence of q, r is easily proved. The set of numbers m − qn, q ∈ Z
contains non-negative numbers. If m ≥ 0, m itself is one such number. If
m < 0, pick m−mn. r is then chosen as the smallest non-negative number of
the form m−qn. If r ≥ n, then m−(q+1)n is smaller and still non-negative,
contradiction.

We have invoked the Well-ordering Principle:

“Every non-empty set of non-negative integers contains a smallest element.”

On a few occasions we use the absolutely least remainder, satisfying |r| ≤
n/2, or more precisely, −n/2 < r ≤ n/2. If m = qn + r, n/2 < r < n, then
also m = (q + 1)n+ (r − n), with −n/2 < r − n < 0.

We start with a very simple definition:

1



2 CHAPTER A. DIVISIBILITY, UNIQUE FACTORIZATION

A.I.1 Definition. The integer m is a factor of the integer n, or m
divides n, or n is divisible by m, if there is an integer q, satisfying
n = mq.

Notation: m|n. The notation for “m does not divide n” is m - n.

The number 0 is obviously divisible by any integer. If a divides m and n,
then a also divides all rm, sn, rm+ sn, for integers r, s.

A.I.2 Definition. The greatest common divisor of the two integers
m,n (not both =0) is the greatest integer d which divides both. Notation:
d = (m,n) or d = gcd(m,n).

A.I.3 Example. (8,−4) = 4, (7, 11) = (4, 9) = 1. �

By convention (0, 0) = 0. In all other cases (m,n) is positive (“positive” in
this text means “> 0”).

For m 6= 0 obviously (m, 0) = |m|, the absolute value of m.

We have defined the greatest common divisor with reference to the usual
total ordering of the integers.

More significantly, it is also the greatest common divisor according to the
partial ordering of divisibility. That is, every other common divisor of m and
n is not only smaller than d = (m,n), but also divides it.

That is part c) of the following Theorem:

A.I.4 Theorem.

a) Let d = (m,n). There are integers r, s such that d = rm+ sn.

b) The linear Diophantine equation e = xm + yn is solvable in integers
x, y if and only if (m,n)|e.
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c) Every common divisor of m,n divides their greatest common divisor.

Proof. We first show how b) follows from a). If d = (m,n), d = rm + sn,
and e = qd, then e = qrm+ qsn, proving one direction of the equivalence.

Conversely, assume e = xm+ yn. Since d = (m,n) divides xm, yn, xm+ yn
it follows immediately that d|e. This was the easier direction, as we never
used a).

For the proof of a) we can assume that m,n 6= 0. Let d = rm + sn be
the least positive number of that form. Such integers do indeed exist, e.g.,
|m|, |n|, and every non-empty set of positive integers has a smallest element.

We first show that d divides both m and n. Perform the division:

m = qd+ t = q(rm+ sn) + t; 0 ≤ t < d.

The remainder t = (1− qr)m− qsn is of the same form as d but smaller, and
t ≥ 0. The minimality of d thus forces t = 0, i.e., d|m.

In the same manner we show d|n. But every common factor of m,n obviously
divides d = rm + sn. Therefore, d must be divisible by all common factors
in m,n, hence d is the greatest among them. This finishes the proof of both
parts a) and c) of the Theorem. �

Remark: The word Diophantine always refers to solvability in integers.

A.I.5 Definition. The integers m,n 6= 0 are relatively prime if
(m,n) = 1, i.e., if their only common factors are ±1.

For relatively prime m,n, by the Theorem above, the equation xm+ yn = 1,
Bézout’s Identity, is solvable in integers. Trivially, xm+ ny = 1, for integers
x, y, implies (m,n) = 1.

The Euclidean Algorithm is a very old and fast method for determining
(m,n). If m ≥ n, the number of bit operations required is quadratic in
the number of bits in the binary representation of m. For detailed discus-
sions of complexity questions of this kind I refer to more comprehensive texts
in Number Theory.
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We explain by example why Euclid gives the greatest common divisor. Then
we redo our solution in a way that simultaneously, in the case (m,n) = 1,
solves Bézout’s identity.

A closer analysis of our Examples could be formalized into a computational
proof of our previous Theorem.

A.I.6 Example (Euclidean Algorithm). Let us compute (37, 11) = 1.
We start by dividing one number by the other:

37 = 3 · 11 + 4.

By the principles we have used repeatedly above, each common factor of 37
and 11 is also one of 11 and 4 = 1 · 37− 3 · 11.

On the other hand, each common factor of 11 and 4 is one of 37 = 3 ·11+1 ·4
and 4 as well. Hence, the two pairs 37, 11, and 11, 4, have the same common
factors. In particular their greatest common divisors are the same.

The pattern continues:

37 = 3 · 11 + 4

11 = 2 · 4 + 3

4 = 1 · 3 + 1

whence

(37, 11) = (11, 4) = (4, 3) = (3, 1) = 1.

The following is a simple example with (m,n) > 1:

77 = 3 · 21 + 14

21 = 1 · 14 + 7

14 = 2 · 7 + 0

whence

(77, 21) = (21, 14) = (14, 7) = (7, 0) = 7.

�

Clearly, the gcd is the last non-zero remainder in this division scheme.
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A.I.7 Example (Extended Euclid). We now show how to modify the al-
gorithm so as to simultaneously solve Bézout (“Extended Euclidean Algo-
rithm”). We start with two relations no one could possibly challenge:

1 · 37 + 0 · 11 = 37

0 · 37 + 1 · 11 = 11.

We then divide the first right member by the second: 37−3 ·11 = 4 and per-
form the corresponding row operation: “equation 1 minus 3 times equation
2”.

We arrive at 1 · 37− 3 · 11 = 4.

We now drop the first equation above and add the one just derived:

0 · 37 + 1 · 11 = 11

1 · 37− 3 · 11 = 4

These we combine in the same way as above. Divide: 11 − 2 · 4 = 3. Form
“(new) equation 1 minus 2 times (new) equation 2”, yielding−2·37+7·11 = 3.
After one more step we arrive at:

1 · 37 + 0 · 11 = 37

0 · 37 + 1 · 11 = 11 37− 3 · 11 = 4

1 · 37− 3 · 11 = 4 11− 2 · 4 = 3

−2 · 37 + 7 · 11 = 3 4− 3 = 1

3 · 37− 10 · 11 = 1

and we have solved Bézout! �

Note that each step only requires that the coefficients of two equations be
stored. After division, the first equation is dropped, the second equation
moves to the top, and a new equation takes its place. The algorithm is
eminently programmable.

A.I: Exercises

1. Solve Bézout for each of the following pairs: (17,29), (33,81), (48,81).
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2. Using the identity Xnd−1 = (Xd−1)(X(n−1)d+X(n−2)d+· · ·+1), determine
the gcd’s (215−1, 23−1), (210−1, 215−1), (215−1, 29−1), or, quite generally,
(2m − 1, 2n − 1). If you represent these numbers in binary, what will Euclid
look like?

3. Let m,n be integers. Show that

(m,n) =
(

m− n

2
, n

)
if both are odd.

What can be said about (2m, 2n), and (2m,n), assuming n odd in the second
case?

From these observations, devise an alternative Euclidean algorithm using
no divisions (division by 2 is a right shift in binary representation, checking
parity is a bitwise “and” with 1).



A.II. TWO DIVISIBILITY THEOREMS 7

A.II Two Divisibility Theorems

We will make repeated use of the following two Divisibility Theorems. Note
the decisive role played by Bézout.

A.II.1 Theorem (First Divisibility Theorem). If m|ab, and
(m, a) = 1, then m|b.

Proof. Bézout gives us x, y with xm + ya = 1. Multiplication by b yields
b = bxm + yab. The terms of the right member are divisible by m, the first
one trivially, the second one by asssumption. Hence m divides their sum,
i.e., m|b. �

A.II.2 Theorem (Second Divisibility Theorem). If both m,n di-
vide a, and (m,n) = 1, then their product mn divides a.

Proof. The divisibility assumptions may be written n|a = qm. We are
also assuming (m,n) = 1. The previous Theorem immediately gives n|q,
hence mn|mq = a. �

A.II: Exercises

1. If x divides my, ny, and (m,n) = 1, then x divides y.

2. Let a, b be relatively prime integers. Suppose x0a+y0b = 1. Find the general
solution to the linear Diophantine equation xa + yb = 1. Then generalize to
the situation (a, b) = d > 1.

3. Suppose the positive integers m,n satisfy n3 + n = m4. Show that m,n are
even; hence or otherwise, 16|n.

4. The polynomial f(X) = a0X
d + a1X

d−1 + · · · + ad has integer coefficients.
Let X = p/q, (p, q) = 1, be a rational root. Show that p|ad, and q|a0. Hint:
rewrite the relation f(p/q) = 0 as a relation between integers.
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5. A common way of factoring a number is to write it as a difference of two
squares: a2 − b2 = (a + b)(a− b).

(a) Let h be an odd positive integer. Show that

24k+2 + 1
5

, k > 1, and 32h+2 + 3h+1 + 1

are composite. Hint: a2 + b2 = (a + b)2 − 2ab.

(b) In the case of the first number of the previous item, you will be able
to decompose 24k+2 + 1 into two factors one of which is divisible by
5. Which of them? The answer will depend on the remainder of k on
division by some small positive integer. Determine the cases.

(c) Show that a2 + 4a is composite, if a is an odd positive integer > 1
(trivial for even a).
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A.III Unique Factorization

We recall a familiar concept.

A.III.1 Definition. A prime number is an integer p > 1 divisible only
by the trivial factors ±1 and ±p.

The set of prime numbers is infinite. If p1 < p2 < · · · < pd are prime numbers,
then the smallest divisor p > 1 of 1 + p1p2 · · · pd is a prime number different
from all of these.

Lest you jump to conclusions, note that 1+2 ·3 ·5 ·7 ·11 ·13 = 30031 = 59 ·509
is composite.

You will be familiar with the following results, but maybe not with their
proofs.

A.III.2 Theorem (Prime Factorization, Existence). Every inte-
ger n > 1 is a product of prime numbers.

Proof. Induction on n. Let p be the smallest divisor > 1 of n. It is a
prime number. If p = n we are through. Otherwise we apply induction to
the quotient 1 < n/p < n. �

The uniqueness part is preceded by a little Lemma, a special case of our First
Divisibility Theorem (A.II.1).

A.III.3 Lemma. Let q be a prime number, a, b integers. Assume that
q divides their product ab. Then q divides either a or b.

Proof. If q does not divide a, then (q, a) = 1 is the only possibility. The
First Divisibility Theorem then immediately gives q|b. �
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A.III.4 Corollary. If n = p1 · p2 · p3 · · · pk is a prime factorization of n,
and the prime number q divides n, then q equals one of the pj’s.

Proof. If k = 1, then obviously q = p1. If k > 1, and q 6= p1, then q
divides p2 · · · pk and we can proceed by induction on k. �

A.III.5 Theorem (Unique Factorization). The prime factorization
of n > 1 is unique, up to the order of the factors.

Proof. Suppose n = p1 · · · pk = q1 · · · ql, k ≤ l, are two prime factorizations
of n. If k = 1, then n is a prime number, and obviously l = 1, q1 = p1.

If k > 1, then q1 equals one of the pj’s, say q1 = pj, by the Corollary. Dividing
both members by this common factor we are reduced to studying the shorter
factorizations of n/pj, and the result now follows by induction on k. �

A.III: Exercises

1. If u, v, x > 0 are integers, (u, v) = 1, and uv = x2, then u, v, too, are perfect
squares. Can you prove this without using unique factorization in prime
factors? Generalize to arbitrary powers.

2. Let a, b be positive integers satisfying aj = bk for positive and relatively
prime integers j, k. Show that a = rk, b = rj for some positive integer r.

3. Let p be a prime number, n a positive integer. Let vp(n) denote the largest
integer k ≥ 0 such that pk|n. Further, let the floor bac denote the largest
integer m ≤ a.

(a) Express the number of integers m, 1 ≤ m ≤ n, divisible by p, as a
floor.

(b) Express vp(n!) as a sum of floors.

(c) Find the number of final zeros, v5(n!), for n = 2006.
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4. Pythagorean triples. Suppose x, y, z are positive integers satisfying x2+y2 =
z2. Suppose also that they are without common factors > 1, forcing them
to be pairwise relatively prime. We say that x, y, z is a proper, or primitive,
Pythagorean triple.

Suppose further, as we may, that x is odd, and y is even. From the rela-
tion (z − x)(z + x) = y2 deduce a parametric representation of all proper
Pythagorean triples x, y, z. Start by determining (x + z, z − x).

(You may wish to connect this with the rational representation of the points
on the circle x2 + y2 = R2 obtained by intersecting the circle with a line
through the point (−R, 0) of given rational slope – your parameters will have
a familiar trigonometric interpretation.)

5. Let a0, a1, . . . , an−1 be given (positive) distinct integers. Show that there
are (positive) integers D,E such that the numbers Daj + E are pairwise
relatively prime.

Hint: If p is a prime dividing two of the numbers Daj+E, then it also divides
their difference. Construct D as the product of certain prime numbers, and
let E be some other prime.
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A.IV Residue Classes, Congruences

A.IV.1 Definition. We fix an integer n > 0. The (residue) class of
m, modulo n, denoted [m], or m + (n), is the set of all numbers of the
form m+ rn, r ∈ Z.

Note that the class symbol [m] contains no reference to the given integer,
the modulus n. Some writers affix a subscript n to the class symbol in case
of ambiguity. In that case I prefer the notation m+ (n). For one thing, it is
easier to type.

The class of zero, modulo 3, is [0] = {. . . ,−12,−9,−6,−3, 0, 3, 6, . . . } con-
sisting of all multiples of 3. You can think of them as equidistant points on
the line, 3 units apart. Each of the numbers is said to represent the class.

The class of 1,

[1] = {. . . ,−11,−8,−5,−2, 1, 4, 7, . . . },

is obtained by shifting the zero class one step to the right along the line. It
consists of the numbers that yield the remainder 1, on division by 3.

Another shift to the right gives us the class

[2] = {. . . ,−10,−7,−4,−1, 2, 5, . . . }.

These are the numbers yielding the remainder 2 on division by 3.

A third shift gives us back the class [3] = [0].

For general n > 0 we obtain n different, and pairwise disjoint, classes

[0], [1], [2], . . . , [n− 1].

Shifting one class n unit steps in either direction gives us back the same class.

Each integer belongs to exactly one class modulo n. We say that the n classes
constitute a partition of the set Z.

Those who have taken a course in Discrete Math will ask, what is the equiv-
alence relation belonging to this partition. More concretely, the question is:
when (for given n > 0) is a+ (n) = b+ (n)?
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Equality clearly holds if and only if either of a and b belongs to the class of
the other, i.e., if a and b differ by a multiple of n.

Another way of expressing this condition is that n divide the difference:
n|(a− b).

A third way of phrasing the condition is that a and b leave the same remainder
on division by n.

We introduce a name and notation for this condition.

A.IV.2 Definition. The integers a and b are congruent modulo n if
n|(a− b). Notation: a ≡ b (mod n).

Anyone familiar with the concept (from Discrete Math) verifies easily that
this is indeed an equivalence relation (symmetric, transitive, reflexive). Oth-
ers can safely ignore the issue.

More important is the fact that we can do arithmetic on classes.

A.IV.3 Lemma. Fix n > 0. Assume a1 ≡ b1 (mod n), a2 ≡ b2
(mod n). Then a1 ± a2 ≡ b1 ± b2 (mod n) and a1 · a2 ≡ b1 · b2 (mod n).

Proof. We content ourselves with proving the second property – the first
one is even easier.

We are assuming that n|(a1 − b1) and n|(a2 − b2). Then n also divides
a1a2 − b1b2 = a2(a1 − b1) + b1(a2 − b2). �

In words, the Lemma just proved states that the class of a sum, difference,
or product of two numbers depends only on the class of the terms or factors.

Therefore the following definition is meaningful:

A.IV.4 Definition.

[a]± [b] = [a± b]; [a] · [b] = [a · b].
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As the arithmetic operations are derived from operations on integers one eas-
ily proves that the usual laws hold. Addition and multiplication are commu-
tative (independent of the order of the terms or factors). They are associative
(no need for parentheses). And we have a distributive law :

[a]([b] + [c]) = [a][b] + [a][c].

A.IV.5 Example. Most of the time we want to represent our classes by
the numbers 0, 1, . . . n− 1. Adding, subtracting or multiplying two represen-
tatives usually leads outside this set; we remedy this by dividing by n and
keeping the remainder.

For our first set of examples we fix n = 8. Then

[4] + [6] = [10] = [2]; [4] · [6] = [24] = [0]; [5] · [9] = [45] = [5],

as 45 = 5 · 8 + 5. Finally, [5] · [5] = [25] = [1].

In the second example the multiplication of two non-zero classes yields the
zero class. We say that the non-zero classes [4] and [6] are zero-divisors.
If the product of two classes equals [1] they are said to be inverses of one
another; the two classes are then invertible. For n = 8 the classes of 1,3,5,7
are their own inverses.

For n = 7 all non-zero classes are invertible:

[1] · [1] = [1]; [2] · [4] = [1]; [3] · [5] = [1]; [6] · [6] = [1].

Notation (n = 7): [3]−1 = [5]; [5]−1 = [3]. We sometimes use the notation
a−1 for a representative of the class [a]−1.

�

Let us record the formal definitions:

A.IV.6 Definition.

a) The class [a] modulo n > 0 is invertible if there exists a class [b]
satisfying [a][b] = [1].

b) The class [a] 6= [0] is a zero-divisor if there exists a class [b] 6= [0]
satisfying [a][b] = [0].
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How do we recognize invertible classes and zero-divisors?

A.IV.7 Theorem. Fix n > 0. The class [m] = m + (n) is invertible if
and only if (m,n) = 1.

Proof. The relation [r][m] = [1] is equivalent to n|(rm − 1), i.e., to the
existence of an integer s with sn = rm − 1, rm − sn = 1. Therefore the
inverse [r] exists if and only if there are integers r, s such that rm− sn = 1,
i.e., if and only if (m,n) = 1. �

A.IV.8 Corollary. For a prime number n all non-zero classes modulo
n are invertible.

�

We have already seen the example n = 7.

The proof is constructive. Inverse classes may be computed by solving
Bézout, (A.I.7), i.e., by performing the Extended Euclidean Algorithm.

A.IV.9 Example. Fix n = 37. Let us determine the inverse class to [11]
(modulo 37).

In an earlier example we solved Bézout:

3 · 37− 10 · 11 = 1, −10 · 11 ≡ 1 (mod 37).

At the class level this translates to [11][−10] = [1]. This gives us our inverse
class [11]−1 = [−10] = [27]. �

An invertible class cannot be a zero-divisor. For if [r][m] = [1]; [q][m] =
[0], [q] 6= [0], then [0] 6= [q] = [q][1] = [q][r][m] = [r][0] = [0], contradiction.

Our next result therefore shows that each non-zero class is either invertible
or a zero-divisor.
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A.IV.10 Theorem. n as before. The class [m] 6= [0] is a zero-divisor if
and only if (m,n) > 1.

Proof. We already know “only if”: a zero-divisor [m] is non-invertible, i.e.,
(m,n) > 1.

For the “if” part, suppose (m,n) = d > 1. We then have

m · n
d

= n · m
d

so the product in the left member is divisible by n.

At the class level we therefore get:

[m] · [n
d
] = [0].

The second factor is clearly not the zero class; since d > 1, n/d < n is not
divisible by n. �

A.IV.11 Example. This time we let n = 15 = 3 · 5. The invertible classes
are those [m], 0 < m < n, for which (m,n) = 1, i.e., for which m is divisible
by neither 3 nor 5, i.e., the classes of 1, 2, 4, 7, 8, 11, 13, 14;. In fact:

[1] · [1] = [2] · [8] = [4] · [4] = [7] · [13] = [11] · [11] = [14] · [14] = [1].

(note, e.g., that

[14][14] = [−1][−1] = [1]; [11][11] = [−4][−4] = [16] = [1].)

The remaining classes are zero-divisors. If m is divisible by 3, multiplication
by [5] yields the zero class. If m is divisible by 5, we multiply by [3] to get
the zero class. For instance, [10][3] = [0]. �

We will move back and forth between class notation and congruences, choos-
ing whatever seems more convenient at the moment. Congruence notation is
often preferable when several different moduli are involved.

We will use the following simple idea repeatedly:
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A.IV.12 Lemma (Cancellation). If ac ≡ bc (mod n), and (c, n) = 1,
then a ≡ b (mod n)

Proof. At the class level we are assuming [a][c] = [b][c], and [c] invertible.
Multiplying the equation by [c]−1 gives [a] = [b]. �

A.IV.13 Example (Tournaments). We want to schedule a tournament
involving 10 teams, numbered 0, 1, . . . , 9 = N . The tournament is to be in
9 rounds, each team playing in each round and meeting every other team
exactly once.

A classical scheme is the following. Order the 10 teams in circular fashion
like this:

0 1 2 3 4
9 8 7 6 5

This setup represents round number 0. The team in the top row plays the
team below it, e.g., teams 3 and 6 meet in the zeroth round.

We now fix the zero in its place and shift the other numbers cyclically counter-
clockwise:

0 2 3 4 5
1 9 8 7 6

This will be round number 1. Another cyclic shift, still fixing the zero, gives
us round number 2:

0 3 4 5 6
2 1 9 8 7

The process is repeated. After eight shifts we get:

0 9 1 2 3
8 7 6 5 4
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and this is to be our round number 8, the final round. The next cyclic shift
will bring back the original arangement.

The reader is invited to devise his or her graphical explanation why this
scheme works, that is, why no team plays any other team more than once.

Here we offer our explanation in terms of the modulo-calculus. The crucial
fact is that 9 is odd, so that (2, 9) = 1, i.e., the class 2 + (9) is invertible.
(Explicitly, the inverse class of 2 + (N), N odd, is (N + 1)/2 + (N).)

Obviously team 0 meets every other team exactly once; it meets team r, r <
9, in round r, and team 9 in round 0.

Now look at a number in some other fixed position in the upper row. Call
it m. After a cyclic shift it is replaced either by m′ = m + 1 or (if m = 9)
by m′ = 1 = m − 8, that is, m′ ≡ m + 1 (mod 9). The same goes for the
number n just below it, it is replaced by n′, where n′ ≡ n+ 1 (mod 9). The
sum, s = m+ n, thereby changes into s′ ≡ s+ 2 (mod 9).

As the sum in round 0 is ≡ 0 (mod 9), the sum in round r, 0 ≤ r ≤ 8, is
≡ 2r (mod 9).

So here is how we devise our tournament. In round m, team m opposes team
0 (except team 9 opposes team 0 in round 0, note that 9 ≡ 0 (mod 9).)

In round r, r 6= m, team m opposes the unique team n satisfying

m+ n ≡ 2r (mod 9). (∗)

In order to justify this, we first note the symmetry of the condition. If team
m plays team n, then certainly team n plays team m by (*).

Also, each team m 6= 0 meets team 0 exactly once.

Team m 6= 0 is never scheduled to meet itself. For if n = m, then 2m ≡ 2r
(mod 9). As 2 is invertible modulo 9, this means m ≡ r (mod 9), m = r.
But in (*) we are assuming r 6= m.

Team m, 0 < m < 9, gets to play every other team n, 0 < n < 9, exactly
once. We prove this by determining which round: simply solve 2r ≡ m + n
(mod 9), multiplying again by the inverse of 2 modulo 9. The solution (in
this case r ≡ 5(m + n) (mod 9)) is unique modulo 9, hence r, 0 ≤ r ≤ 8, is
uniquely determined.

The reader will note that we never used N = 9 except in the explicit Example
above. It could be any odd positive number. �
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A.IV: Exercises

1. Determine, whenever possible, the inverses of 11, 25, 26, modulo 1729.
(Short hand calculation.)

2. Verify that the classes of 11, 20 modulo 73 are inverses of one another. Run
Extended Euclid for the two pairs (73,20), (73,11). Do you see a pattern?
Can you explain it?

3. Let a, b be relatively prime integers.

(a) Show that (a + 2b, 2a + 3b) = 1.

(b) Show that (a + 2b, 2a + b) = 1 or 3. Exemplify the two cases!

(c) Can you generalize to (pa + qb, ra + sb), ps− qr 6= 0?

4. Verify that 10k ≡ 1 (mod 9) for all positive integers k. Use this fact to
explain the divisibility test known as “casting out nines”, using the sum of
the digits to check divisibility by 3 or 9.

Then, by computing the residues of 10k modulo 11, devise a similar test for
divisibility by 11.

Then suggest a simple test for detecting errors in multiplying two integers.

5. Can you find a test for divisibility by 13 and 7? Hint: Look at 103.

6. (a) Find those n that can be expressed as n ≡ x2 (mod 7), and (mod 8),
respectively.

(b) Find those n that can be expressed as n = x2 + y2 (mod 8), x, y
integers.

(c) Let f(X) = a0X
d + a1X

d−1 + · · · + ad be a polynomial with integer
coefficients. Show that f has no integer roots if the constant ad and
the sum of the coefficients are both odd.

(d) Show that x3
1 + x3

2 + x3
3 ≡ 0 (mod 9) implies that at least one xi ≡ 0

(mod 3).

(e) Show that numbers n ≡ 7 (mod 8) cannot be expressed as a sum of
three squares.

(f) More generally, show the same for all numbers of the form 4k(8n + 7).
(A difficult theorem by Gauß states that all other positive integers are
sums of three squares).

7. (a) Assume that the prime number p 6= 2, 7 can be be expressed as p =
a2 + ab + 2b2, a, b integers. Show that p ≡ 1, 2, or 4 (mod 7). Very
useful trick: multiply by 4 and complete the squares.
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(b) Assuming p = a2 + ab + 2b2, show that p = u2 + 7v2, u, v integers.
Hint: Use previous exercises to show that b is even.

8. (a) Find all integer solutions to a2−ab+ b2 = 1. Hint: Multiply by 4, and
complete the squares.

(b) Assume that the prime number p > 3 can be expressed as
p = a2 − ab + b2. Show that p ≡ 1 (mod 3).

(c) Assume that the integer m can be expressed as m = a2 − ab + b2, a, b
integers. Show that it can also be expressed as m = x2 + 3y2, x, y
integers. Distinguish the cases a or b even, and a, b both odd.

(d) Assume that the integer m can be expressed as m = a2 + ab− b2, a, b
integers. Show that it can also be expressed as m = x2 − 5y2, x, y
integers. Distinguish the cases a or b even, and a, b both odd.

9. Let a > 1 be an integer. Prove that(
a− 1,

ad − 1
a− 1

)
= (a− 1, d)

by noting, for instance, that ak ≡ 1 (mod a− 1).

Then state and prove a similar statement about(
a− b,

ad − bd

a− b

)
.

10. There are infinitely many prime numbers ≡ 3 (mod 4). Assume the con-
trary. Let P be the product of all prime numbers ≡ 3 (mod 4) and derive a
contradiction by studying the prime factors of 4P + 3.

Similarly, prove that there are infinitely many primes ≡ 5 (mod 6), and ≡ 2
(mod 3).

11. N is an odd number. Can 1 + N2 be a perfect square? Or a cube? Or an
arbitrary perfect (positive) power? Hint: look at a suitable congruence.

12. Let m,n be positive integers.

(a) Show that the congruence x2 − y2 = (x + y)(x − y) ≡ m (mod n) is
unsolvable in integers if 4|n and m ≡ 2 (mod 4).

(b) Show that it is solvable if m or n is odd (in the first case the equation
x2 − y2 = m is solvable!)

(c) After these warm-ups, prove that x2−y2 = (x+y)(x−y) ≡ m (mod n)
is solvable if and only if 4 - n or m 6≡ 2 (mod 4).

13. Suggestions for computing: Extended Euclid, solving Bézout, finding
modular inverses. You may also want a very simple routine computing only
the gcd of two integers.
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A.V Order, Little Fermat, Euler

The concept of order is basic to several primality tests. We often relate the
order of a class to the Euler Function so we give its definition right away.

A.V.1 Definition. The Euler Function, denoted φ, is defined by the
following, for positive integers n:

For n = 1, φ(1) = 1.

For n > 1, φ(n) is the number of invertible classes modulo n; in other
words, the number of integers m, 0 ≤ m ≤ n− 1, satisfying (m,n) = 1.

A.V.2 Example. By one of the last results of the previous Section (Corol-
lary A.IV), φ(p) = p− 1 for all prime numbers p, as all non-zero classes are
invertible.

For a prime power n = pk start by noting that (m,n) > 1 if and only p|m.
So we start with the pk classes and delete those corresponding to multiples
of p. There are pk/p = pk−1 of these, so φ(pk) = pk − pk−1 = pk(1− 1/p).

We have studied n = 15 in an earlier example. The non-invertible classes
correspond to multiples of 3 and 5. There are 5 multiples of 3 between 0
and 14, and 3 multiples of 5. So we delete these, and put back the zero class
which we deleted twice: φ(15) = 15− 5− 3 + 1 = 8.

The invertible classes are, once again, [1], [2], [4], [7], [8], [11], [13], [14]. �

In the context of the Chinese Remainder Theorem (B.I.4) we will prove a
result enabling us to compute φ(n) once we know the prime factorization of
n.

A.V.3 Definition. Fix the positive integer n. The order of m modulo
n, denoted

ordn(m),

is defined as the least positive exponent d for which

[m]d = [1].

If clear from the context, the subscript n may be omitted.



22 CHAPTER A. DIVISIBILITY, UNIQUE FACTORIZATION

The existence of such an exponent will be proved presently. Before we give
the proof, let us give the orders of the invertible classes modulo 15:

A.V.4 Example.

a 1 2 4 7 8 11 13 14
ord15(a) 1 4 2 4 4 2 4 2

Note, for instance, that

72 ≡ 49 ≡ 4 (mod 15); 73 ≡ 13 (mod 15); 74 ≡ 1 (mod 15).

�

The following Theorem gives the basic facts about the order concept. It will
be convenient to define negative powers of an invertible class. For positive
k, set [a]−k = ([a]−1)k, a positive power of the inverse class.

A.V.5 Theorem (Main Theorem on Order). Fix n > 0, let [a] be
an invertible class modulo n, i.e., (a, n) = 1. Then:

a) There is at least one exponent d > 0 for which [a]d = [1].

b) Let d denote the least positive exponent with that property. Then:

[a]e = [1] ⇐⇒ d|e.

c) For integers j, k,

[a]j = [a]k ⇐⇒ j ≡ k (mod d).

Proof. a) As there are a finite number of classes, there are exponents
0 ≤ j < k for which [a]j = [a]k = [a]j · [a]k−j. Multiplying by (the negative
power) [a]−j yields [1] = [a]k−j, k − j > 0

b) Divide: e = qd + r, 0 ≤ r < d. We then have [1] = [a]e = ([a]d)q · [a]r =
[1]q · [a]r, i.e., [a]r = [1]. The minimality of d forces r = 0, whence d|e.



A.V. ORDER, LITTLE FERMAT, EULER 23

c) By the same argument as in part a), the assumption implies [a]k−j = [1].
Part b) then gives d|(k − j) as desired. �

If we know that some power of a class equals [1] we need not compute every
positive power below it in order to determine the true order:

A.V.6 Theorem. Fix the modulus n > 0. Suppose [a]d = [1] for some
positive exponent d. Then d = ordn(a) if and only if

[a]d/q 6= [1]

for all prime factors q in d.

Proof. Denote the true order by k. We know by the previous Theorem
that k|d. If k < d, then by unique factorization some prime factor q in d is
missing in k (or appears with lower multiplicity), i.e., k divides d/q for that
factor.

Then, contrary to our assumption, [a]k = [1] yields [a]d/q = [1]. This contra-
diction proves the Theorem. �

A.V.7 Example. One simple example is offered by the prime number n =
13. We will presently see (“Little Fermat”) that all invertible classes modulo
13 have orders dividing 13− 1 = 12 = 2 · 2 · 3.

To check whether a class [a] has order 12, we need therefore only compute
[a]12/2 and [a]12/3. For instance, [2]6 = [12] = [−1]; [2]4 = [3], so ord13(2) =
12.

As we have not proved Little Fermat yet we had better check [2]12 = [1] as
well: [2]12 = ([2]6)2 = [−1]2 = [1]. �

Fermat’s Little Theorem is a special case of Euler’s Theorem, to be proved
below. As it allows an independent proof we give that first. (Those familiar
with elementary Group Theory from a course in Abstract Algebra will rec-
ognize Fermat and Euler as special cases of Lagrange’s Theorem on orders
of subgroups.)
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A.V.8 Lemma (“Freshman’s Dream”). Let p be a prime number,
a, b integers. Then

(a+ b)p ≡ ap + bp (mod p)

Proof. We refer to the Binomial Theorem. The expansion of (a + b)p

consists of terms of the form(
p

k

)
ak · bp−k;

(
p

k

)
=

p!

k!(p− k)!
; 0 ≤ k ≤ p.

If 0 < k < p the numerator contains the prime factor p which does not cancel,
as it does not appear in either factor of the denominator. So all binomial
coefficients except the first and the last are divisible by p. This proves that
the two members of the stated congruence differ by a multiple of p. �

A.V.9 Theorem (Fermat’s Little Theorem). Let p be a prime
number

a) For any integer a,
ap ≡ a (mod p).

b) If p - a, i.e., if [a] is invertible, then

ap−1 ≡ 1 (mod p).

c) For invertible [a], ordp(a)|p− 1.

Proof.

a) It is enough to prove this for 0 ≤ a ≤ p− 1. Writing a = 1 + 1 + · · ·+ 1,
and using the Lemma repeatedly, we get

ap ≡ (1 + 1 + · · ·+ 1)p ≡ 1p + 1p + · · ·+ 1p ≡ a (mod p).

b) At the class level we can write part a) as [a]p = [a]. Multiplying both
members by [a]−1 gives [a]p−1 = [1] which is the class formulation of b).
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c) This follows immediately from part b) and the Main Theorem. �

We now turn to the general theorem. First a useful little Lemma:

A.V.10 Lemma. Fix the integer n > 0. Let f = φ(n) and let
a1, a2, . . . , af represent all the f invertible classes modulo n. Suppose
(a, n) = 1. Then the products aa1, aa2, . . . , aaf also represent all the
invertible classes modulo n.

Proof. There are two things to prove. The first is that the classes [aaj]
are indeed invertible. The second is that they are all different.

If the classes [x], [y] are invertible, [x][r] = [1], [y][s] = [1] then so is their
product: [x][y][r]|s] = [1]. That takes care of the first part.

For the second part, assume that [a][aj] = [a][ak]. Multiplying both members
by [a]−1 immediately gives [aj] = [ak]. So different [aj] produce different [aaj].
�

A.V.11 Example. Let n = 15, a = 7. Then:

[aj] 1 2 4 7 8 11 13 14
[aaj] 7 14 13 4 11 2 1 8

The second row is a re-ordering of the first. �

A.V.12 Theorem (Euler’s Theorem). Let n > 0 as before. The or-
der of each invertible class modulo n is a factor in φ(n), in other words:

aφ(n) ≡ 1 (mod n) for (a, n) = 1.

Proof. Let f, a1, a2, . . . , af be as in the Lemma. The Lemma gives:

[a1][a2] · · · [af ] = [aa1][aa2] · · · [aaf ],

[a1][a2] · · · [af ] = [af ][a1][a2] · · · [af ].
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Multiplying both members by the inverse classes of all the [aj], we are left
with [a]f = [1], as claimed. �

A.V.13 Example. We have seen that φ(15) = 8. Therefore each invertible
class modulo 15 has an order dividing 8. We tabulated the orders at the
beginning of this Section; they were 1, 2, or 4.

For the prime number 7 the theoretical maximum, φ(7) = 7 − 1 = 6, is
indeed achieved, by a = 3, 5 (their classes are inverses of one another). For
instance, 32 ≡ 2 6≡ 1 (mod 7); 33 ≡ 6 6≡ 1 (mod 7). The order 1 (as always)
is achieved by [1] only, and only the class of 6 ≡ −1 (mod 7) has order 2|6.
Only the classes of 2, 4 (again inverses of one another) remain; their order is
3|6. Check! �

A.V.14 Example (Decimal Fractions, Prime Denominator). Let p be
prime number 6= 2, 5. As (10, p) = 1 the class 10 + (p) is invertible, and has
an order d, satisfying 10d ≡ 1 (mod p), i.e.,

10d = 1 + ap, a < 10d. (∗)

According to Little Fermat, d|(p− 1). We rewrite (*) as follows:

1

ap
=

1

10d − 1
;

1

p
=

a · 10−d

1− 10−d
.

If a = a0 · 10d−1 + a1 · 10d−2 + · · ·+ ad−1 the numerator is α = a0 · 10−1 + a1 ·
10−2 + · · ·+ ad−1 · 10d−1; in decimal notation: α = 0.a0a1 . . . ad−1.

Recalling the geometric series:

a

1− k
= a(1 + k + k2 + · · ·+ kn + · · · ); |k| < 1

we expand:

1

p
= α+ α · 10−d + α · 10−2d + · · ·+ α·10−nd + · · ·

resulting in the periodic decimal expansion:

1

p
= 0.a0a1 . . . ad−1a0a1 . . . ad−1a0a1a2a3 . . . (∗)

Conversely, suppose (*) holds for some period d. Then

10d · 1

p
= a0a1a2 . . . ad−1.a0a1 . . . ad−1a0a1 . . .

= a.a0a1 . . . ad−1a0a1 . . .
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and
10d − 1

p
= a = a0 · 10d−1 + a1 · 10d−2 + · · ·+ ad−1

so that 10d ≡ 1 (mod p). From this emerges that the shortest period must
equal the exact order of 10 modulo p.

E.g., for p = 13 it is 6 =(p− 1)/2 , as 102 ≡ 9, 103 ≡ −1, 106 ≡ 1 (mod 13),
and 1/13 = 0.0769230769 . . . . And for p = 7 it is p− 1 = 6, as 102 ≡ 32 ≡ 2
(mod 7), 103 ≡ 6 (mod 7), 1/7 = 0.1428571428 . . . �

A.V.15 Example (Decimal Fractions, Composite Denominator). For
composite N a similar result holds. The decimal expansion of 1/N is purely
periodic if (10, N) = 1, i.e., if neither 2 nor 5 divides N . The period d equals
the order of 10 modulo N and is a factor in φ(N).

If (10, N) > 1 the decimal expansion cannot be purely periodic. By the
reasoning above, the period d would entail 10d ≡ 1 (mod N). But if ad ≡ 1
(mod N), then clearly a and ad−1 are inverse to one another modulo N . And
invertibility means (a,N) = 1.

Let us look at an example, N = 840 = 23 · 3 · 5 · 7. The expansion is
1/N = 0.001190476190476109 . . . . It has a preperiod of three places, 001,
followed by a periodic part, of period 6. How do we explain this?

Multiplying by 103 gives: 103/N = 1.190476190467 . . . ,

103

N
− 1 =

103 − 1 ·N
N

=
1000− 840

840
=

4

21
= 0.190476190476 . . .

and (10, 21) = 1. The evil factors of N , the three 2’s and the single 5, cancel,
because 103 is divisible by all of them.

The order of 10 modulo 21 is 6, (1020 − 1)/21 = 47619, and
1/21 = 0.0476190476190 . . . .

And, finally, 4 · 47619 = 190476.

We have already explained the period 6. The new modulus, 21, is the result
of dividing out all factors 2 and 5 from N , and 6 is the order of 10 modulo
21.

103 is the smallest power of 10 divisible by all the 2- and 5-factors of 840
=23 ·5·21. It is therefore also the smallest power 10e for which 840|10e(106−1)
(as 106 − 1 is not divisible by 2 or 5).
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So, from that power on, but not earlier, the powers of 10 modulo 840 repeat
periodically, with period 6. �

What is the order of a power? The following Theorem answers that question.
It is again preceded by a very useful Lemma.

A.V.16 Lemma. Let m,n be integers, not both = 0. Let further d =
(m,n). Then (m

d
,
n

d

)
= 1.

Proof. By Bézout, there are integers r, s with rm+ sn = d. Dividing both
members by d gives

r
m

d
+ s

n

d
= 1,

and the result is immediate. �

A.V.17 Theorem (Order of a Power). Still considering classes
modulo n > 0. Suppose ordn(a) = d. Then

ordn(ak) =
d

(d, k)
.

Proof. By our Main Theorem

(ak)e ≡ 1 (mod n) ⇐⇒ d|ke⇐⇒ d

(d, k)
|e · k

(d, k)
.

As d/(d, k) and k/(d, k) are relatively prime by the Lemma, our First Divis-
ibility Theorem then shows that

(ak)e ≡ 1 (mod n) ⇐⇒ d

(d, k)
|e.

So the least positive e with the property stated in the left member is e =
d/(d, k). Hence, ordn(ak) = d/(d, k). �
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A.V.18 Example. There are two extreme cases, (d, k) = 1 and k|d.

For instance, modulo 13 we have verified that ordn(2) = 12. The Theorem
then shows that the classes [2]5 = [6], [2]7 = [11], [2]11 = [7] have that same
order, as the exponents are relatively prime to 12.

The class of [2]6 = [64] = [−1] has order 2 = 12/6 as predicted by the
Theorem. �

We have exemplified the fact that mutually inverse classes have the same
order – we leave the simple general proof as an exercise.

A natural question regards the order of a product. The answer is simple if
the orders of the two factors are relatively prime.

A.V.19 Theorem (Order of a Product). Still working modulo n >
0. Suppose the orders of a, bmodulo n are r, s respectively, with (r, s) = 1.
Then ordn(ab) = rs.

Proof. Often a natural way of proving equality between two numbers is
to prove mutual divisibility.

ordn(ab) divides rs:

([a][b])rs = ([a]r)s · ([b]s)r = [1][1] = [1].

rs divides ordn(ab):

Let the order of the product be e. We then have ([a][b])e = [1], [a]e[b]e = [1].
Raising both members to the power r (remembering that [a]r = [1]) gives
[b]re = [1]. So the order of [b] divides re: s|re.

As (s, r) = 1, our First Divisibility Theorem (A.II.1) gives s|e. Similarly,
raising the first equation to the power s, we get r|e. As (r, s) = 1, the two
divisibility relations, r|e, s|e, give rs|e, by the Second Divisibility Theorem
(A.II.2). �

A.V.20 Example. n = 7. ord7(2) = 3, ord7(6) = 2, so ord7(2 · 6) =
ord7(5) = 6.

When (r, s) > 1 little can be said. Take n = 17. It is easy to check that the
classes of 3, 5, 6, 11, 12 all have order 16 – one need only check that their
8th powers equal [−1] 6= [1], as 2 is the only prime factor in 16, and 8=16/2.
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You are invited to check that the classes of [3][6] = [1], [3][11] = [−1], [6][12] =
[4], and [3][5] = [−2] have orders 1,2,4, and 8, respectively.

The reader is invited to explain these orders by writing 3, 5, 6,11,12, and
their products, as powers of 3, modulo 17.

�

A.V: Exercises

1. (a) Compute 515 (mod 7) and 713 (mod 11). Short hand calculation.

(b) Compute (597 + 1133)8 (mod 24).

(c) Show that 5, 7, 35|n13 − n and 170|(n17 − n) for all integers n.

(d) Show that the classes [m], [m]−1 modulo n > 0 have the same order.

(e) The prime factors of n > 0 are all greater than 61. Show that n60 − 1
is divisible by 16 · 9 · 25 · 7 · 11 · 13 · 31 · 61.

(f) Let p be a prime ≥ 7. Show that p4 ≡ 1 (mod 240)

2. Determine φ(70), and enumerate the invertible classes modulo 70.

3. Let a be a positive integer. Show that the last digits of a and a10 are the
same.

Show that there is no corresponding result for the last k digits, k = 2, 3,
unless (a, 10) = 1. Under the latter condition, what is the least exponent
d > 1 such that ad and a have the same k last digits?

4. (a) Let p, q be two different prime numbers. Show that pq−1 + qp−1 ≡ 1
(mod pq).

(b) Let m be a positive integer. Show that m143−m13−m11+m is divisible
by 143.

(c) Let p, q be two different primes such that 2p ≡ 2 (mod q) and 2q ≡ 2
(mod p). Show that 2pq ≡ 2 (mod pq).

5. (a) Determine, by hand calculation, the order of 2 modulo 7, 9, 11, 13.

(b) Using the previous item, determine the order of 2 modulo 77, 91, 99
and 143.

6. (a) p is a prime, ordp(a) = 3. Show that ordp(1 + a) = 6. Hint: Compute
a2 + a + 1 modulo p.
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(b) Suppose the prime number p divides n4−n2 +1. Show that ordp(n) =
12. Hence, or otherwise, prove that p = 12k + 1 for some integer k.

7. Let p be an odd prime. Show that p|(bn − 1) implies p|(bd − 1) where d is
a proper divisor of n, or that p ≡ 1 (mod n). Use this to factor 312 − 1
completely.

8. Show by hand calculation that x81 ≡ x (mod 935) for all integers x (using
the factorization of 935, of course). Generalize!

9. Let p be a prime > 2. Show that the relation 2p ≡ 1 (mod 2p + 1) implies
that 2p + 1 is a prime number.

Example: p = 1103.

10. Suppose p is a prime factor of bn +1. Show that p is a factor of bd +1 where
d|n and the quotient n/d is odd, or that p ≡ 1 (mod 2n). You might start
by considering the least k for which p|(bk + 1).

11. Let n > 1 be a composite number, and let p be a simple prime factor of n
(meaning that p, but not p2, divides n). Then

p -
(

n

p

)
.

Hint: Write the binomial coefficient as a quotient of two products of exactly
p factors each.

How would you modify the statement and the solution in the case pk|n,
pk+1 - n?

12. Let n > 1 be an integer. Show that n - 2n − 1. Hint: Look at the smallest
prime factor of n.

13. Let a be an integer, 1 ≤ a ≤ 34 = 5 · 7 − 1. Let m = 12 = 5 + 7. Find the
least positive integer d such that mda ≡ a (mod 35). The answer depends
on (a, 35).

14. The composite number N is a pseudoprime to the base a, (a,N) = 1, if
aN−1 ≡ 1 (mod N). Determine whether the number 45 is a pseudoprime to
the bases 17 or 19 respectively. Hand calculation, use the prime factorization
of 45.

15. Determine the number of incongruent bases for which 91 is a pseudoprime.

16. Let n = pq be the product of two different odd primes. Show that n is
a pseudoprime to the base b if and only if bd ≡ 1 (mod n) where d =
(p− 1, q − 1).
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17. Show that p2, where p is an odd prime, is a pseudoprime to the base n if
and only if

np−1 ≡ 1 (mod p2).

18. (a) Let a > 1 be an integer, and p - a(a2 − 1) a prime. Put

n =
a2p − 1
a2 − 1

.

Show (geometric sums!) that n is a composite integer (two assertions!)

(b) Show that an−1 ≡ 1 (mod n).

(c) Conclude that infinitely many integers n are pseudoprimes to the base
a.

Why did we not use n = (ap − 1)/(a− 1)?

19. Suggestions for computing: At this point you could read up on fast
exponentiation, Section L.V, and the probabilistic Miller-Rabin primality
test in the last Chapter, and write a simple program. The problems in
Section L.VI. require very little in the way of programming.
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A.VI A Brief Account of RSA

In this Section we briefly describe the RSA public key cryptographic scheme.
As there are many excellent comprehensive accounts in the literature (Buch-
mann, Trappe-Washington) we dwell on the number theory involved, leaving
most of the practical issues aside.

The mathematics behind RSA is summed up in the following two Lemmas.
The first is a special case of a general Theorem to be proved in the next
Chapter.

A.VI.1 Lemma. Let n = pq be the product of two different prime num-
bers. Then φ(n) = (p− 1)(q − 1).

Proof. We can prove this the same way we did in the special case n =
15 = 3 · 5. There are n = pq classes modulo pq, represented by the numbers
m with 0 ≤ m ≤ n− 1. The non-invertible classes are represented by those
m with (m, pq) > 1, i.e., those divisible by p or q. There are q and p of
these, respectively. Only m = 0 is divisible by both p and q: by our Second
Divisibility Theorem (A.II.2) a number divisible by both must be divisible
by their product, as (p, q) = 1.

So we subtract q and p classes and put back the zero class, which we sub-
tracted twice. Therefore:

φ(pq) = pq − q − p+ 1 = (p− 1)(q − 1).

�

The second Lemma is sometimes overlooked in the literature, probably be-
cause the probability of randomly choosing an a with (a, pq) > 1 is very small
when p, q are large.

A.VI.2 Lemma. Still assuming n = pq. For all integers a, and positive
integers k, we have

akφ(n)+1 ≡ a (mod n),

whether (a, n) = 1 or not.
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Proof. If (a, n) = 1, Euler’s Theorem (A.V.12) states that aφ(n) ≡ 1
(mod n), so the result follows on raising both members to the power k, and
multiplying them by a.

Next consider the case where (a, n) > 1. This means that a is divisible by
p or q. If a is divisible by both, it is divisible by their product n, and the
result is trivial in this case. So we can assume that p|a and q - a.

Consider the difference
b = akφ(n)+1 − a.

Under our assumption it is trivially divisible by p. The exponent is f =
kφ(n) + 1 = k(p− 1)(q − 1) + 1. So by Fermat’s Little Theorem

af − a = (aq−1)k(p−1) · a− a ≡ 1k(p−1) · a− a ≡ 0 (mod q).

So b is divisible by both p and q, hence by their product, by our Second
Divisibility Theorem (A.II.2). �

We now briefly describe the RSA scheme. Bob expects a message from
Alice. She codes the message into a number a according to some simple
scheme known to both. Bob chooses two big prime numbers p, q (big =
at least 100 decimal digits), and publishes their product n. He chooses an
encryption exponent e, (e, φ(n)) = 1, which is also made public.

Alice sends ae (reduced modulo n). Bob, knowing p, q, hence also φ(n) =
(p−1)(q−1), easily determines the inverse class [d], of [e], modulo φ(n). We
then have the relation de ≡ 1 (mod φ(n)); de = kφ(n) + 1. By the second
Lemma he can recover a as ade ≡ a (mod n).

It is assumed to be difficult to recover a from a knowledge of ae (mod n)
without factoring n, but no one has proved it. It is almost impossible to
determine d from e without factoring n. In fact, there is a probabilistic
algorithm (see exercise in Section L.VI) that cracks n with great probability
once an inverse pair modulo φ(n) is known.

Many larger books include comprehensive discussions on the practical prob-
lem of generating large prime numbers, on their choice, on the choice of
exponents, etc. Many texts also discuss various attacks on RSA.

The letters R, S, A are the initials of Rivest, Shamir, and Adleman.

A critical point is how to perform modular exponentiations economically.
This is discussed in our last Chapter, on Factorization and Primality Tests,
where further applications of Little Fermat and the order concept are given.
See, e.g., Section L.V.
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A.VI: Exercises

1. (a) Let n > 0 be a square-free integer, i.e., not divisible by a square > 1.
Show that aφ(n)+1 ≡ a (mod n), even if (a, n) > 1. Start by looking
at the prime factors of n.

(b) Suppose, conversely, that

aφ(n)+1 ≡ a (mod n)

for all a. Show that n is square-free. Hint: If p2|n, p prime, look at
the congruence taken modulo p2.

2. Let n = pq, where p 6= q are two (large) prime numbers. Show that p, q
may be determined if n and φ(n) are known. Hint: Knowing their sum and
product you can derive a quadratic equation for them.

3. Let a be a non-zero integer, n > m positive integers. Show that the greatest
common divisor of a2n

+ 1 and a2m
+ 1 is 1 or 2. Describe the cases. Hint:

If p is an odd prime, and p|(a2m
+ 1), then p|(a2n − 1).

4. Let N > 1 be an odd integer. Show that the congruence aN−1 ≡ −1
(mod N) is impossible. Hint: Let vq(n) denote the multiplicity k of q in
the factorization of n, i.e., qk|n, qk+1 - n. Consider the order of a modulo
each prime factor p in N , and modulo N . Show that aN−1 ≡ −1 (mod N)
implies that v2(p− 1) > v2(N − 1) and derive a contradiction.
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Chapter B

Congruences. The CRT.

B.I The Chinese Remainder Theorem

This is as good a place as any to introduce the least common multiple of two
integers.

B.I.1 Definition. Let m,n be non-zero integers. The least common
multiple of m and n, denoted [m,n], or lcm(m,n), is the smallest (pos-
itive) integer divisible by both m and n.

B.I.2 Example. [3, 4] = [3,−4] = [4, 6] = 12. �

The example shows that the lcm of two positive numbers may be their prod-
uct or not. The following Theorem gives the full story.

B.I.3 Theorem. The lcm of two positive integers is given by

[m,n] =
m · n
(m,n)

.

It therefore equals their product if and only if m and n are relatively
prime, (m,n) = 1. Furthermore, any common multiple of m and n is
divisible by their least common multiple.

37
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Proof. Let e be any common multiple, m|e, n|e. This is clearly equivalent
to

m

(m,n)
| e

(m,n)
,

n

(m,n)
| e

(m,n)
.

Asm/(m,n) and n/(m,n) are relatively prime (Lemma A.V.16), the two con-
ditions are equivalent to e/(m,n) being divisible by their product, according
to the Second Divisibility Theorem, (A.II.2). That is, to:

m

(m,n)
· n

(m,n)

∣∣∣ e

(m,n)
.

Multiplying by (m,n) we therefore see that e is a common multiple of m,n
if and only if

m · n
(m,n)

∣∣∣e
which proves both parts of the Theorem. �

We now turn to the simplest case of the Chinese Remainder Theorem, that
involving two simultaneous congruences.

B.I.4 Theorem (CRT, Two Congruences). Let n1, n2 be two posi-
tive integers. The pair of simultaneous congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

is solvable if and only if (n1, n2)|(a1−a2). The solution is unique modulo
m = [n1, n2], i.e., the solution set is a single residue class modulo m.

In particular, the pair of congruences is solvable if (n1, n2) = 1. The
solution is then unique modulo the product n1 · n2.

Proof. The solution set to the first congruence is {x = a1 + r · n1, r ∈ Z},
that of the second congruence is {x = a2 + s · n2, s ∈ Z}.

The two sets have at least one element x in common if and only if there are
integers r, s with a1+r ·n1 = a2+s·n2, i.e., if and only there are r, s satisfying
a1− a2 = s ·n2− r ·n1. By our early results on linear Diophantine equations
(A.I.4), this is equivalent to (n1, n2)|a1 − a2. This settles the existence part.
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As for uniqueness, fix one solution x. Then y is another solution if and only
if x− y ≡ 0 (mod n1) and x− y ≡ 0 (mod n2), i.e., if and only if x− y is a
common multiple of n1, n2, i.e., if and only if x− y is divisible by their lcm,
i.e., if and only if x ≡ y (mod [n1, n2]). �

The case of two congruences will suffice for our purposes in several theoretical
instances. However, it is only fair to answer the obvious question about the
solvability of l > 2 simultaneous congruences. A necessary condition is that
each subsystem of two congruences be solvable. We prove the most important
case now, and save the general case for later.

B.I.5 Theorem (CRT, l > 2 Congruences). The system of simulta-
neous congruences

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ al (mod nl)

is solvable if the nj are pairwise relatively prime, i.e., if (nj, nk) = 1
whenever j 6= k.

The solution is unique modulo n1n2 · · ·nl.

Proof. We have already settled the case l = 2. Now let l > 2. Suppose,
by way of induction, that the Theorem has been proved for l− 1. Let x ≡ b2
(mod n2 · · ·nl) be the general solution of the last l − 1 congruences. We
combine this with the first congruence into

x ≡ a1 (mod n1)

x ≡ b2 (mod n2 · · ·nl).

The induction step will follow at once if we can prove that (n1, n2 · · ·nl) = 1.
We have assumed (n2, n1) = · · · = (nl, n1) = 1, i.e., that the classes of
n2, . . . , nl are invertible modulo n1. Then, by the same argument as in the
proof of Lemma (A.V.10) just before Euler’s Theorem so is their product,
which is the same as saying that (n1, n2 · · ·nl) = 1.

That last part could also be proved using the prime factorizations of the
various nj. �
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The running time of the CRT, as given, is quadratic in the bitlength of the
product modulus.

B.I.6 Example. At least for hand calculations there are two ways to solve
a Chinese Congruence System.

Suppose we are to solve the system

x ≡ 1 (mod 3)

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

with 3, 5, 7 obviously relatively prime in pairs. We start by solving Bézout
for the first two moduli:

r1 · 3 + r2 · 5 = 1, 2 · 3− 1 · 5 = 6− 5 = 1,

with

−5 ≡ 1 (mod 3)

−5 ≡ 0 (mod 5)

and

6 ≡ 0 (mod 3)

6 ≡ 1 (mod 5).

We then get the solution to the first two congruences by multiplying the first
pair by 1, the second by 2, and adding:

x ≡ 1 · (−5) + 2 · 6 ≡ 7 (mod 3 · 5).

This is then combined with the third congruence, and the two together are
treated exactly the same way as the first two:

x ≡ 7 (mod 15)

x ≡ 3 (mod 7).

Solve Bézout again:

1 · 15− 2 · 7 = 1, 15− 14 = 1

and another superposition gives us:

x ≡ 7 · (−14) + 3 · 15 ≡ −53 ≡ 52 (mod 15 · 7),
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i.e.,
x ≡ 52 (mod 105)

We could also solve three Bézout identities. Let n1 = 3, n2 = 5, n3 = 7
Putting M = n1n2n3,Mi = M/ni, we determine ri, si i = 1, 2, 3 such that

riMi + sini = 1, i = 1, 2, 3

Putting xi = riMi we see that xi ≡ 1 (mod ni) and xi ≡ 0 (mod Mi), i.e.,
xi ≡ 0 (mod nj), j 6= i.

The solution is then

x ≡ a1x1 + a2x2 + a3x3 (mod n1n2n3).

In our numerical example, with a1 = 1, a2 = 2, a3 = 3, we get:

−1 · (5 · 7) + 12 · 3 = −35 + 36 = 1

1 · (3 · 7)− 4 · 5 = 21− 20 = 1

1 · (3 · 5)− 2 · 7 = 15− 14 = 1

and
x ≡ 1 · (−35) + 2 · 21 + 3 · 15 ≡ 52 (mod 105)

�

Remark: The quantities xi = riMi are called the idempotents (“like-potent
elements”) of the Chinese congruence system, as x2

i ≡ xi modulo the product
modulus. They are orthogonal meaning that the product of any two different
xi is congruent to zero modulo the product modulus.

B.I.7 Example. It is instructive to tabulate the solutions of a pair of con-
gruences for any combination of right members a1, a2. In the case n1 = 3, n2 = 5,
the special pairs

10 ≡ −5 ≡ 1 (mod 3)

10 ≡ −5 ≡ 0 (mod 5)

and

6 ≡ 0 (mod 3)

6 ≡ 1 (mod 5)
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combine to give the solution x ≡ a1 · 10 + a2 · 6 (mod 15) to the general pair

x ≡ a1 (mod 3)

x ≡ a2 (mod 5).

We tabulate the result for all possible pairs a1, a2:

a1\a2 0 1 2 3 4
0 0 6 12 3 9
1 10 1 7 13 4
2 5 11 2 8 14

The first row (below the horizontal line) gives the multiples of 6 modulo 15.
The first column (to the right of the vertical line) gives the multiples of 10
modulo 15. The remaining elements are the sum modulo 15 of the leftmost
element in the same row and the uppermost element in the same column.

Here is the corresponding table for n1 = 4, n2 = 5:

a1\a2 0 1 2 3 4
0 0 16 12 8 4
1 5 1 17 13 9
2 10 6 2 18 14
3 15 11 7 3 19

We leave it to the reader to contemplate the result of reading off the results
diagonally. Do you see a pattern? Can you explain it? �

B.I: Exercises

1. Determine all solutions of the congruence system x ≡ 1 (mod 7); x ≡ 4
(mod 9); x ≡ 3 (mod 5).

2. Find all integers x such that 5x + 8 is divisible by 11 and 13.

3. Find all solutions to

x ≡ 2 (mod 7)
4x ≡ 5 (mod 11)
3x ≡ 2 (mod 13).



B.I. THE CHINESE REMAINDER THEOREM 43

4. Determine the least positive remainder of

21379

modulo 77 = 7 · 11.

Hand calculation!
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B.II Euler’s Phi Function Revisited

In this Section we prove a property that allows us to compute φ(n) (A.V.1)
whenever a full prime factorization of n is known. The CRT plays a decisive
role in the proof. The following Lemma reformulates an earlier observation:

B.II.1 Lemma. Suppose the integers n1, n2 > 0 are relatively prime.
Let 0 ≤ a1 < n1, 0 ≤ a2 < n2 and let 0 ≤ x < n1 · n2 be the unique
solution to the congruence pair

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

Then the class x+ (n1n2) is invertible if and only if the classes a1 + (n1)
and a2 + (n2) are.

Proof. As a1 + (n1) = x + (n1), and a2 + (n2) = x + (n2) we are stating
that the class x+ (n1n2) is invertible if and only if x+ (n1) and x+ (n2) are,
or equivalently:

(x, n1n2) = 1 ⇐⇒ (x, n1) = (x, n2) = 1.

We proved the left arrow in the course of proving the CRT, B.I.5.

The right arrow is trivial. �

An immediate consequence of the Lemma is that we have a bijection between
invertible classes x+(n1n2) and pairs of invertible classes (a1 + (n1), a2 + (n2)),
whenever (n1, n2) = 1. As there are φ(n1n2) of the former, and φ(n1)φ(n2)
of the latter, we have proved the following Theorem:

B.II.2 Theorem (Multiplicativity of φ). Let n1, n2 be positive inte-
gers satisfying (n1, n2) = 1. Then:

φ(n1n2) = φ(n1)φ(n2).

�
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B.II.3 Example. Let us return to the example n1 = 4, n2 = 5, where we
arrived at the following table:

a1\a2 0 1 2 3 4
0 0 16 12 8 4
1 5 1 17 13 9
2 10 6 2 18 14
3 15 11 7 3 19

By the proof of the Theorem, we get the invertible classes modulo 20 by
selecting only those a1 that are invertible modulo 4, i.e., a1 = 1, 3, and those
a2 that are invertible modulo 5, i.e., a2 = 1, 2, 3, 4.

We are left with:

a1\a2 1 2 3 4
1 1 17 13 9
3 11 7 3 19

clearly illustrating not only φ(4 · 5) = φ(4) · φ(5) = 2 · 4 = 8, but also why.�

B.II.4 Example. It is now clear how to compute φ(n) whenever a prime
factorization

n = pe1
1 p

e2
2 · · · p

ek
k

is known. Here the pj are k different prime numbers, and the exponents ej are
positive. In an earlier example (A.V.2) we have computed φ(pk) = pk−pk−1.

Repeated application of the Theorem yields

φ(n) = φ(pe1
1 )φ(pe2

2 ) · · ·φ(pek
k )

= pe1
1 (1− 1

p1

)pe2
2 (1− 1

p2

) · · · pek
k (1− 1

pk

)

= n(1− 1

p1

)(1− 1

p2

) · · · (1− 1

pk

)

Let, more concretely, n = 105 = 3 · 5 · 7. The Theorem gives φ(n) =
φ(3)φ(5)φ(7) = 2 · 4 · 6 = 48.

The form we arrived at last has a nice combinatorial interpretation:

φ(3 · 5 · 7) = 3 · 5 · 7(1− 1

3
)(1− 1

5
)(1− 1

7
)
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Multiplying the parentheses, and expanding, we get the alternating sum

φ(3 · 5 · 7) = 3 · 5 · 7− 5 · 7− 3 · 7− 3 · 5 + 3 + 5 + 7− 1.

The interpretation is the following:

We start with all of the 105 classes. We then delete all classes corresponding
to multiples of 3, 5, and 7, respectively. Their numbers are 5 · 7, 3 · 7, 3 · 5
respectively.

This however results in deleting the 3 classes corresponding to multiples of
5 · 7 twice; those corresponding to multiples of 3 · 7 (5 in number) also twice,
and the same for the 7 classes corresponding to multiples of 3 · 5. So we put
them back again.

But then we have deleted the zero class three times, and put it back three
times, so we have to delete that one class again.

Those who have taken a course in Discrete Math may recognize this as a
special application of the Principle of Inclusion-Exclusion. Of course, the
alternating sum is not suitable for computation. �

B.II: Exercises

1. m, p are positive integers, (m, p) = 1. Show that m divides φ(pm− 1). Hint:
It is a one-line proof.

2. Show that there are no numbers n with φ(n) = 14 and ten satisfying φ(n) =
24. Determine these, and be careful to prove you found them all.

3. r, d, k are positive numbers, (r, d) = 1, and d|k. Consider the arithmetic
sequence r + td, t = 0, 1, 2, . . . , k/d− 1. Show that the number of elements
that are relatively prime to k is φ(k)/φ(d). Note the special case (d, k/d) = 1
allowing a simple proof.

Hint: Let p1, p2, . . . , ps be those primes that divide k but not d. Look
for those t that satisfy a certain set of congruence systems r + td ≡ yi

mod pi, i = 1, 2, . . . , s.

4. Show that there are arbitrarily long sequences of integers, x, x + 1, x +
2, . . . x + n, that are divisible each by a square > 1.

5. Suggestions for computing: A routine solving a Chinese congruence sys-
tem, issuing a warning when the data are incompatible.
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A sequential program for solving systems of more than two congruences,
checking compatibility at each step.

Or a program computing the idempotents (in the case of pairwise relatively
prime moduli). You may prefer a recursive program.
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* B.III General CRT

We now proceed to proving the CRT in its full generality. We prepare the
proof by generalizing the lcm and gcd to include the case of more than two
numbers, and by formally introducing multiplicities of prime factors. For
non-zero numbers m1,m2, . . . ,mn we naturally let (m1,m2, . . . ,mn) denote
the greatest (positive) number dividing all the mj. Obviously,

(m1,m2, . . . ,mn) = (m1, (m2, . . . ,mn)).

And for non-zero numbers m1,m2, . . . ,mn we let [m1,m2, . . . ,mn] denote the
least number divisible by all the mj. Obviously,

[m1,m2, . . . ,mn] = [m1, [m2, . . . ,mn]].

We now turn our attention to multiplicities.

B.III.1 Definition. For any non-zero integer n, and any prime number
p, we denote by vp(n) the largest exponent e ≥ 0 such that pe divides n.
It is called the multiplicity of p in (the factorization of) n.

We record a few elementary observations:

B.III.2 Lemma.

a) The positive integers m,n are equal if and only if vp(m) = vp(n) for
all prime numbers p.

b) m divides n if and only if vp(m) ≤ vp(n) for all prime numbers p.

c) For non-zero integers m,n, all primes p, vp(mn) = vp(m) + vp(n).

d) For all but finitely many prime numbers p, we have vp(n) = 0.
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�

We will be concerned with the multiplicities of primes entering the gcd and
lcm of two numbers.

B.III.3 Lemma. Let m,n be non-zero integers. Then, for all prime
numbers p:

a) vp((m,n)) = min(vp(m), vp(n)),

b) vp([m,n]) = max(vp(m), vp(n)).

Proof. For the first part, note that pe divides (m,n) if and only if pe divides
both m and n, i.e., if and only if e ≤ both vp(m) and vp(n). This proves that
vp((m,n)) must equal the smaller of these two numbers.

For the second part, note that pe is divisible by the p-power entering [m,n] if
and only if pe is divisible by the corresponding factors of both m and n, i.e.,
if and only if e ≥ both vp(m) and vp(n). This proves that vp([m,n]) must
equal the greater of these two numbers. �

Before going on with the CRT we pause to reprove an earlier result.

B.III.4 Theorem. For positive integers m,n,

[m,n] =
mn

(m,n)
.

Proof. It is enough to compare the multiplicities of any prime p. By the
result above, the multiplicity for the left member is:

vp([m,n]) = max(vp(m), vp(n)).

And the multiplicity for the right member is

vp(mn)−vp((m,n)) = vp(m)+vp(n)−min(vp(m), vp(n)) = max(vp(m), vp(n)).

�
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The next, very special, Lemma unlocks the induction step in the proof of the
general CRT.

B.III.5 Lemma. Let m1,m2, . . . ,mn, n ≥ 3, be positive integers.
Then:[

(m1,m2), (m1,m3), . . . , (m1,mn)
]

=
(
m1, [m2,m3, . . . ,mn]

)
.

Proof. Let p be an arbitrary prime. It suffices to prove that p enters both
members with the same multiplicity in their respective factorizations. We
may arrange that vp(mn) is the greatest among vp(m2), vp(m3), . . . , vp(mn).

Consider the left member first. A moment’s reflection makes it clear that
the multiplicity of p in that lcm equals the multiplicity of p in the last term,
i.e., it equals vp((m1,mn)), as p can enter the preceding terms with at most
that multiplicity.

As for the right member, by our arrangement, and the previous Lemma,
vp([m2,m3, . . . ,mn]) = vp(mn). Then

vp

(
(m1, [m2,m3, . . . ,mn])

)
= min

(
vp(m1), vp([m2,m3, . . . ,mn]

)
= min

(
vp(m1), vp(mn)

)
= vp

(
(m1,mn)

)
.

�

We can now prove the CRT in the desired full generality:

B.III.6 Theorem (General CRT, l > 2 Congruences). The sys-
tem of simultaneous congruences

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ al (mod nl)

is solvable if and only if the congruences are solvable in pairs, i.e., if and
only if (nj, nk)|(aj − ak) whenever j 6= k. The solution is unique modulo
[n1, n2, . . . , nl].
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Proof. The proof proceeds by induction on l. The conditions are clearly
necessary.

We have already proved the case l = 2. For the induction step, assume l ≥ 3.
Assume we have established the solution x = a0 + ([n2, . . . , nl]) for the last
l − 1 congruences.

It remains to prove the solvability of the pair

x ≡ a1 (mod n1),

x ≡ a0 (mod [n2, . . . , nl]).

By the case l = 2 we must prove that (n1, [n2, . . . , nl]) divides a1 − a0.

By the preceding Lemma, (n1, [n2, . . . , nl]) is the lcm of all the (n1, nk), k >
1. Therefore it suffices to prove that each (n1, nk), k > 1, divides a1 −
a0. However, a1 − a0 ≡ a1 − ak ≡ 0 (mod nk), k > 1, by the induction
assumption.

So, a fortiori, a1−a0 ≡ 0 (mod (n1, nk)), by the assumption of the Theorem,
and we have proved the solvability part.

By the case l = 2, the solution is unique modulo

[n1, [n2, . . . , nl]] = [n1, n2, . . . , nl],

which settles the uniqueness part. �

B.III.7 Example. Let us look at a simple example:

x ≡ 3 (mod 6)

x ≡ 12 (mod 15)

x ≡ 6 (mod 21).

The compatibility conditions are easily verified. For instance, (6, 15) = 3
divides 9 = 12− 3. The first pair requires the determination of r, s such that
x = 6r + 3 = 15s + 12, 6r − 15s = 9. Extended Euclid gives −2 · 6 + 1 ·
15 = (6, 15) = 3. Multiplication by 3 gives the solution r = −6, s = −3,
x = −33 ≡ 27 (mod 30), where 30 = [6, 15]. This is then combined in the
same manner with the last congruence, yielding x ≡ 27 (mod 210). �
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B.III: Exercises

1. Determine the least positive integer n such that n ≡ k − 1 (mod k) for
k = 1, 2, . . . , 10.

2. Consider a quadratic form Q(x, y) = ax2+bxy+cy2 with integer coefficients.
x, y are integers.

Suppose the coefficients are relatively prime (not necessarily in pairs), i.e.,
(a, b, c) = 1. Let p be a prime number. Show that Q assumes at least one
value not divisible by p.

Now let M be an arbitrary integer. Show that there are x, y such that
Q(x, y) and M are relatively prime.

3. y, M are positive integers, (y, M) = 1. m is another positive integer. Show
that there is an integer x such that (y +Mx,m) = 1. Start with m = prime
power.

4. (a) Let m, p1, p2, . . . , pr be positive integers, relatively prime, but not nec-
essarily in pairs. Example: 2 · 3, 3 · 5, 25̇.
q1, q2, . . . , qr are given integers. Show that the congruence system

pjx ≡ qj (mod m), j = 1, 2, . . . r,

is solvable if and only if

piqj ≡ pjqi (mod m) i, j = 1, 2, . . . , r.

Hint: Start by deriving a Bézoutian identity for q1, q2, . . . , qr,m

(b) Show that the solution (when it exists) is unique modulo m.
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B.IV Application to Algebraic Congruences

The CRT is a convenient tool for reducing algebraic congruences, f(x) ≡ 0
(mod n), modulo composite n, to the case of, e.g., prime powers. We will
deal with that special case later.

The following result will be used in the Chapter on Primitive Roots.

B.IV.1 Lemma. Let n = n1n2 where the factors are relatively prime,
and ≥ 3. The congruence x2 ≡ 1 (mod n) then has at least four solutions
modulo n, i.e., the solution set consists of at least four different residue
classes modulo n.

Proof. Consider the four different congruence pairs

x ≡ ±1 (mod n1)

x ≡ ±1 (mod n2).

Each of the pairs is uniquely solvable modulo n, by the CRT, producing four
different residue classes modulo n. In each case the solutions x satisfy

x2 ≡ 1 (mod n1)

x2 ≡ 1 (mod n2),

i.e., x2−1 is divisible by both n1 and n2. By the Second Divisibility Theorem,
this implies that x2 − 1 is divisible by their product, i.e. x2 ≡ 1 (mod n). �

Where did the assumption ni ≥ 3 enter the proof? It is needed to ensure
that 1 and −1 are incongruent modulo ni.

B.IV.2 Example. Let us return to the example n = 4 · 5 = 20, and the
table we derived:

a1\a2 0 1 2 3 4
0 0 16 12 8 4
1 5 1 17 13 9
2 10 6 2 18 14
3 15 11 7 3 19
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We display the four cases by keeping a1 = 1, a1 = 3 ≡ −1 (mod 4) and
a2 = 1, a2 = 4 ≡ −1 (mod 5):

a1\a2 1 4

1 1 9
3 11 19

�

B.V Linear Congruences

The number n, as usual, is a positive integer.

In this short section we study linear congruences , ax ≡ b (mod n). No really
new theory is required.

B.V.1 Theorem. The congruence ax ≡ b (mod n), a - n, is solvable if
and only if (a, n)|b.

The solution, in this case, is unique modulo n/(a, n). In other words, the
solution set is a residue class modulo n/(a, n), or, equivalently, is made
up of (a, n) different residue classes modulo n.

As usual, we express this by saying that the congruence has (a, n) solu-
tions modulo n.

Proof. The congruence ax ≡ b (mod n) is equivalent to the existence of
an integer y with ax− b = ny; b = ax− ny. Thus the congruence is solvable
if and only if there are x, y satisfying b = ax − ny. This, as we have noted
many times before, is equivalent to (a, n)|b. That takes care of the existence
part.

For the uniqueness part, assuming the condition of the Theorem, we get an
equivalent congruence by dividing everything by (a, n). Letting a′ = a/(a, n),
b′ = b/(b, n), n′ = n/(a, n), our congruence is equivalent to

a′x ≡ b′ (mod n′).
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Now note that (a′, n′) = 1 (Lemma A.V.16), i.e., a′ is invertible modulo n′.
Letting r′ represent the inverse class of a′ + (n′), r′a′ ≡ 1 (mod n′), this last
congruence is equivalent to

x ≡ r′a′x ≡ r′b′ (mod n′),

so the solution set is indeed the residue class r′b′ + (n′) = r′b′ + (n/(a, n)).�

The modulus n′ = n/(a, n) is sometimes called the period of the solution.

B.V.2 Example. A very simple example is given by 27x ≡ 18 (mod 36)
with (27, 36) = 9 | 18. Dividing by 9 we get the equivalent congruence 3x ≡ 2
(mod 4). The class of 3 modulo 4 is its own inverse, 3 · 3 ≡ 1 (mod 4).
Multiplying by 3 gives us the equivalent congruence x ≡ 3 · 2 ≡ 2 (mod 4).

So the solution set is the residue class 2+(4). Modulo 36 we get the 9 residue
classes 2 + (36), 6 + (36), 10 + (36), . . . , 34 + (36). �

B.V: Exercises

1. Which of the following linear congruences are solvable? Solve those that are.
Be careful to give the right period.

(a) 21x ≡ 12 (mod 35)

(b) 21x ≡ 14 (mod 35)

(c) 15x ≡ 21 (mod 36)
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B.VI Congruences Modulo a Prime

We now turn to algebraic congruences of higher degree. It is convenient to
start with the simplest modulus possible, a prime number p. The main result
is known as Lagrange’s Theorem

(Luigi Lagrange, 1776-1813, Piemontese mathematician. Lagrange was chris-
tened Giuseppe Lodovico, but wrote in French and published under the name
Joseph-Louis. The inscription on his statue at Piazza Lagrange in Turin
reads: “A Luigi Lagrange - La Patria”).

Most proofs given in the literature are somewhat specialized – here we try
to connect with some more general principles.

We fix a prime number p and a polynomial f(X) = a0X
d + a1X

d−1 + · · · +
ad−1X + ad, of degree d, with integer coefficients, and a0 not divisible by p.
We first state a Lemma on polynomial division:

B.VI.1 Lemma. Let a be an integer. Then there are an integer r and
a polynomial q(X), with integer coefficients, such that

f(X) = q(X)(X − a) + r.

�

In place of formal proof we remind the reader that division of one polynomial
by another, in this case X − a, leaves a remainder of lower degree, a rational
constant r. As X − a has leading coefficient 1, we never divide coefficients,
so all numbers appearing in the process are integers.

We now state and prove Lagrange’s Theorem:

B.VI.2 Theorem (Lagrange on Congruences mod p). The alge-
braic congruence f(x) ≡ 0 (mod p) has at most d solutions modulo p.

Proof. The case d = 1, i.e., a linear congruence, is covered by the result
of the previous Section. The solution set to ax + b ≡ 0 (mod p), p - a, is a
single residue class modulo p/(p, a) = p.
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We now turn to the case d > 1. Let a + (p) be one solution class (if there
are no solutions there is nothing to prove!). Perform the division f(X) =
q(X)(X − a) + r, according to the Lemma, with q of degree d − 1. Modulo
p we get 0 ≡ f(a) ≡ q(a)(a− a) + r (mod p), so r ≡ 0 (mod p).

Therefore f(X) ≡ q(X)(X − a) (mod p) in the sense of coefficientwise con-
gruence. If b+(p) is a solution class of the congruence, then f(b) ≡ q(b)(b−a)
(mod p).

If a prime number divides a product, it divides one of the factors, b ≡ a
(mod p) or q(b) ≡ 0 (mod p). By induction we may assume that the con-
gruence q(x) ≡ 0 (mod p) has at most d− 1 solutions modulo p. Hence the
congruence f(x) ≡ 0 (mod p) has at most d− 1 + 1 solutions modulo p. �

B.VI.3 Example. Let us solve the congruence f(x) = x2 +x+5 (mod 11).

We start by completing the square:

0 ≡ x2 + x+ 5 ≡ x2− 10x+ 5 ≡ (x− 5)2 + 5− 25 ≡ (x− 5)2− 9 (mod 11).

So we are reduced to

y2 ≡ (x− 5)2 ≡ 9 (mod 11).

The congruence y2 ≡ 9 (mod 11) has the two obvious solutions y ≡ ±3
(mod 11). By Lagrange there can be no more solutions. So our original
problem reduces to x−5 ≡ ±3 (mod 11), giving us the solutions x = 8+(11)
and x = 2 + (11). �

Note that we do not introduce “classroom formulas” involving “square roots”.
First, such “modular square roots” may not exist: e.g., the congruence x2 ≡ 2
(mod 11) has no solutions at all. Second, if they do exist they come in pairs,
and there is no canonical way to choose one of the two roots, in such a
way that, e.g., the product rule for square roots holds. In the real case, by
contrast, the (positive) square root of a non-negative number is unique, with
a nice multiplicativity property,

√
ab =

√
a ·
√
b.

It should perhaps be noted that solving the quadratic congruence x2 ≡ m
(mod p) is far from trivial, for large p, except for those p belonging to certain
congruence classes. We will return to that question later on.

The following Theorem shows the power of polynomial congruences in prov-
ing numerical ones.
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B.VI.4 Theorem (Wilson’s Theorem). Let p be a prime number.
Then (p− 1)! ≡ −1 (mod p).

Proof. The case p = 2 is trivial, so let us assume p odd.

Consider the polynomial f(X) = Xp−1 − 1. By Little Fermat we have
f(k) ≡ 0 (mod p) for k = 1, 2, . . . , p − 1, giving p − 1 incongruent solutions
modulo p. By Lagrange there can be no further solutions.

By the proof of Lagrange each root produces a factor, e.g.,

f(X) ≡ (X − 1)q(X) (mod p)

(coefficientwise congruence), with q of degree p − 2. As there are no zero-
divisors modulo p we must have q(k) ≡ 0 (mod p) for k = 2, 3, . . . , p − 1.
Repeating the argument several times we arrive at the factorization

f(X) ≡ (X − 1)(X − 2) · · · (X − (p− 1)) (mod p),

again in the sense of coefficientwise congruence.

Putting X = 0 we get −1 ≡ (−1)(−2) · · · (−(p − 1)) (mod p). As p − 1 is
even we get our result. �

An alternative proof is given in the exercises. The converse is also true. If
−(n − 1)! ≡ 1 (mod n), then every non-zero class modulo n is invertible.
Namely, the inverse is minus the product of the other non-zero classes. And
this can only happen if n is prime, by Corollary A.IV.

B.VI: Exercises

1. Show that (n− 1)! ≡ 0 (mod n) if n is composite and not equal to 4.

2. Prove Wilson’s Theorem (B.VI.4) by pairing factors and noting that only
the classes of ±1 are their own inverses modulo p (why?).

3. p is an odd prime. Show that (p− 3)! ≡ (p− 1)/2 (mod p).

4. Let p > 5 be a prime. Show that (p − 1)! + 1 has at least two different
prime factors (one of them is given by Wilson’s Theorem). One possible
route would be to show that (p − 1)! is divisible by (p − 1)2. Assume that
(p− 1)! + 1 is a power of p and derive a contradiction.
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5. (a) f(X) is a polynomial with integer coefficients, of degree d. Show that
g(X) = Xdf(1/X) also is a polynomial with integer coefficients. De-
scribe them in terms of f .

(b) Consider f(X) modulo n > 0. Let a, (a, n) = 1 be an invertible root
modulo n. Show that its inverse modulo n is a root of g

(c) Let p be a prime number. Suppose the constant term of f is 1, and that
f has d roots modulo p. Show that its first-degree coefficient equals
minus the sum of the inverses (mod p) of the roots of f .

(d) Consider the integer
p−1∑
k=1

(p− 1)!
k

Show that it is divisible by p2. Consider the polynomial
f(X) = Xp−1 − 1, use the previous item, and the value of f(p) mod-
ulo p.
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B.VII Modulo a Prime Power

The main obstacle to solving a polynomial congruence modulo the prime
power pk is finding the solutions modulo p. Once they are found, the problem
reduces to the linear case.

The general theory is preceded by an Example (continuing B.VI.3.)

B.VII.1 Example. We want to solve the algebraic congruence f(x) = x2 +
x+ 5 ≡ 0 (mod 112).

Any x satisfying the congruence also satisfies the same congruence taken
modulo 11. So it is quite natural to start with the solution classes to the
latter congruence and then seek to “refine” or “modify” them, so that they
work modulo 112 as well.

So we plug x = x0 + r · 11, with x0 = 2 or 8, into the congruence:

(x0 + r · 11)2 + (x0 + r · 11) + 5 ≡ 0 (mod 112).

Expanding, and sorting terms, we get:

(x2
0 + x0 + 5) + r · (2x0 + 1) · 11 ≡ 0 (mod 112).

The sum in the first pair of parentheses is f(x0) ≡ 0 (mod 11) by the choice
of x0. The second one contains the derivative f ′(x0) = 2x0 + 1.

Writing f(x0) = s·11 we see, dividing by 11, that our congruence is equivalent
to:

s+ r · f ′(x0) ≡ 0 (mod 11),

which is a linear congruence (in r), modulo 11. We now separate the two
cases.

x0 = 2: In this case f(2) = 1 · 11, s = 1, and f ′(2) = 2 · 2 + 1 = 5 so we get
the following:

1 + 5r ≡ 0 (mod 11).

The inverse class of 5 + (11) is 9 + (11). Multiplying the congruence by 9
therefore gives:

r+ 9 ≡ 0 (mod 11), r ≡ 2 (mod 11), x ≡ 2 + 2 · 11 ≡ 24 (mod 112).

x0 = 8: This time f(x0) = f(8) = 77 = 7 · 11, s = 7, and f ′(x0) = 2 · 8 + 1,
so we are led to the following linear congruence:

7 + 17r ≡ 7 + 6r ≡ 0 (mod 11).
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The inverse class of 6 + (11) is 2 + (11) yielding

14 + r ≡ 3 + r ≡ 0 (mod 11), r ≡ 8 (mod 11),

and the solution is

x ≡ 8 + r · 11 = 96 (mod 112).

�

In both cases each solution class x0 + (11) refined to a unique solution class
modulo 112. Essential to both cases was the fact that f ′(x0) 6≡ 0 (mod 11).

We now turn to the general theory. We start with a very basic case of Taylor’s
Theorem.

B.VII.2 Theorem (Short Taylor). Let f(x) be polynomial with in-
teger coefficients, x0 and h integers. Then

f(x0 + h) ≡ f(x0) + f ′(x0)h (mod h2).

Proof. By linearity (e.g., of differentiation), it is enough to deal with mono-
mials f(x) = xk, f ′(x) = kxk−1. By the Binomial Theorem,

f(x0 + h) = (x0 + h)k = xk
0 + khxk−1

0 + terms containing higher powers of h

≡ f(x0) + f ′(x0)h (mod h2).

�

The main result of this Section is known as Hensel’s Lemma (Kurt Hensel,
Prussian mathematician, 1861-1941). We have already exemplified the The-
orem in the case p = 11, k = 1.

B.VII.3 Theorem (Hensel’s Lemma). Let f(x) be polynomial with
integer coefficients, Suppose the integer a, hence the whole class a+(pk),
satisfies the congruence

f(a) ≡ 0 (mod pk), k ≥ 1.
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We seek to modify a to a solution x = a+ r · pk of the congruence

f(x) ≡ 0 (mod pk+1).

Such a modification is uniquely determined modulo pk+1 if and only if
f ′(a) 6≡ 0 (mod p).

Proof. We rewrite the assumption f(a) ≡ 0 (mod pk) as f(a) = s · pk.

We seek to determine r (uniquely, modulo p) so that

f(a+ r · pk) ≡ 0 (mod pk+1).

By Taylor’s Theorem,

f(a+ r · pk) ≡ f(a) + r · f ′(a)pk (mod r2p2k)

with 2k ≥ k + 1, so the condition can be re-written as

f(a) + r · f ′(a)pk ≡ 0 (mod pk+1),

i.e.,
s · pk + f ′(a) · rpk ≡ 0 (mod pk+1).

Dividing everything by pk we see that this is equivalent to the following linear
congruence in r:

s+ f ′(a) · r ≡ 0 (mod p).

If f ′(a) 6≡ 0 (mod p) this congruence is uniquely solvable modulo p, hence
the refinement a′ = a+ rpk exists, and is uniquely determined modulo pk+1.

If f ′(a) ≡ 0 (mod p), and s 6≡ 0 (mod p), the congruence is obviously not
solvable.

And if s ≡ f ′(a) ≡ 0 (mod p), any r will do, i.e., the whole class a + (pk)
satisfies the congruence f(x) ≡ 0 (mod pk+1). The congruence is solvable,
but we do not get a unique solution modulo pk+1. �

B.VII.4 Example. We illustrate the pathological last two cases of the proof.

a) We start with the congruence f(x) = x3 + x2 + 3 ≡ 0 (mod 5). The
solutions are easily found by trial and error: they are x = 1+(5) and 2+(5).
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We now try to modify the first class to a solution for the same congruence
taken modulo 52 = 25.

In this case we have f(1) = 5 = s · 5, where s = 1, and f ′(1) = 5. Trying
x = 1 + r · 5 the procedure of the proof leads to the linear congruence
s+ 5 · r = 1 + 5 · r ≡ 1 + 0 · r ≡ 5, which is clearly impossible.

b) Now we study instead f(x) = x3 + x2 + 23 ≡ 0 (mod 25). Modulo 5 it is
the same congruence as above, so again one solution class is 1 + (5).

This time f(1) = 5 · 5, f ′(1) = 5.

Trying x = 1 + r · 5 leads to the linear congruence 5 + 5 · r ≡ 0 (mod 5),
which is visibly true for all r. So we obtain the solution class 1 + (5) for this
congruence as well.

Modulo 25 we get five solution classes, of course: 1 + (25), 6 + (25), 11 +
(25), 16 + (25), 21 + (25).

The solution class 2 + (5) does not give rise to these pathologies. In the first
example it refines to 12 + (25), in the second to 17 + (25). �

B.VII.5 Example. This example shows how the pathology noted above can
be used to advantage, sometimes.

We study the congruence f(x) = x2 − b ≡ 0 (mod 2e) where b is an odd
integer, and e ≥ 3. Suppose we have found a solution a, obviously odd. Does
it refine to a solution for the congruence f(x) = x2 − b ≡ 0 (mod 2e+1)?

As f ′(x) = 2x ≡ 0 (mod 2), for all x, no solution can have a unique refine-
ment modulo 2e+1. Therefore it is somewhat pointless (and messy) to try
x = a+ r · 2e– much better to try x = a+ r · 2e−1 instead!

As always, we rewrite the assumption on a as a2 − b = s · 2e. With the x we
are trying we get

f(x) = (a+ r · 2e−1)2 − b

= a2 − b+ 2ar · 2e−1 + r2 · 22e−2

= s · 2e + 2ar · 2e−1 + r2 · 22e−2.

By assumption, e ≥ 3, so 2e− 2 = e+ (e− 2) ≥ 3 + (e− 2) = e+ 1. Hence
the congruence f(x) = x2 − b ≡ 0 (mod 2e+1) translates into

s · 2e + 2ar · 2e−1 ≡ 0 (mod 2e+1).
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Dividing everything by 2e we get the equivalent linear congruence s+ar ≡ 0
(mod 2). Recall that a ≡ 1 (mod 2). So our solution indeed refines – simply
take r ≡ s (mod 2)!

Now it is easy to determine those odd b for which the congruence x2 ≡ b
(mod 23) is solvable. As 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 (mod 8) it is solvable iff
b ≡ 1 (mod 8).

The above argument then shows how any of these solutions can be refined
inductively modulo higher and higher powers.

So, for odd b, and e ≥ 3, the congruence x2 ≡ b (mod 2e) is solvable if and
only if b ≡ 1 (mod 8). �

Remark: We note that the solution set modulo 8, in the case of solvabil-
ity, is given by two classes modulo 4: 1 + (4), and 3 + (4). Following
the procedure of the Example, we see inductively that the solution set of
x2 ≡ b (mod 2)e, e ≥ 3, is given by two classes modulo 2e−1, or, equivalently,
4 classes modulo 2e.

The case of an odd prime presents no pathologies, as f ′(x) = 2x ≡ 0 (mod p)
if and only if x ≡ 0 (mod p). The case of p = 2 is in many contexts the source
of some very stimulating confusion.

Once we have dealt with prime powers, the case of an arbitrary modulus
presents no problems. By the Chinese Remainder Theorem (B.I.4, B.I.5),
it can be reduced to congruences modulo the prime powers entering the
factorization of n. This is clear from our last Theorem of this Chapter:

B.VII.6 Theorem. Suppose n = n1n2, where n1, n2 > 0; (n1, n2) = 1.
The algebraic congruence f(x) ≡ 0 (mod n) is solvable if and only the
two congruences f(x) ≡ 0 (mod n1), and f(x) ≡ 0 (mod n2), are.

If the first of these has e1 solutions modulo n1, and the second has e2
solutions modulo n2, the original congruence has e1e2 solutions modulo
n1n2.

Proof. Any x satisfying the original congruence must satisfy the two aux-
iliary ones, so the “only if” part is trivial.
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Now suppose xi + (ni), i = 1, 2 satisfy the two auxiliary congruences. Then
the Chinese congruence pair

x ≡ x1 (mod n1)

x ≡ x2 (mod n2)

produces a unique class x+(n1n2) satisfying f(x) ≡ f(xi) ≡ 0 (mod ni), for
i = 1, 2. The Second Divisibility Theorem (A.II.2) then shows that this is
equivalent to f(x) ≡ 0 (mod n1n2).

The “if” part, and the quantitative statement, both follow from this obser-
vation. �

B.VII.7 Example. A simple example is afforded by the congruence x2 ≡ 25
(mod 72 = 23 · 32).

The congruence x2 ≡ 25 ≡ 1 (mod 3) has the solution classes ±1 + (3).
Using Hensel’s Lemma (B.VII.3), these refine uniquely to the two solution
classes ∓5 + (9) for x2 ≡ 25 ≡ 7 (mod 9).

The congruence x2 ≡ 25 ≡ 1 (mod 8) has the four solution classes 1 +
(8), 3 + (8), 5 + (8), 7 + (8), as noted above. So the original congruence has
2 · 4 = 8 solution classes modulo 72. The reader might like to determine
them, or at least check them. Their least positive representatives modulo 72
are 5, 13, 23, 31, 41, 49, 59, 67. �

B.VII: Exercises

1. Suppose that x is inverse to a modulo pk, where p is a prime. Show how to
refine x into an inverse to a modulo pk+1.

2. The conclusion of Hensel’s Lemma may be strengthened, so as to speed up
the refining process for large powers of p. Show this.

If you are familiar with Newton’s Method from (numerical) Analysis you
will perhaps see a close analogy (quadratic convergence).

3. We wish to solve the congruence 2x ≡ 3 (mod 5e), e ≥ 1. Hensel’s Lemma
leads us to putting x = k0 + k15 + k252 + · · ·+ ke−15e−1, where the ki are to
be determined.

4. Find all solutions to x3 ≡ 8 (mod 31) and x3 ≡ 8 (mod 312). Hand calcu-
lation: the first part can be reduced to a quadratic congruence, completion
of squares, and a (short) simple linear search.
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5. (a) Solve the congruence x2 + x + 34 ≡ 0 (mod 3, 9, 27, 81) (short hand
calculation).

(b) Solve the same congruence modulo 51, 25, 153.

(c) Solve x2 + x + 5 ≡ 0 (mod 17) and (mod 172).

6. (a) The congruence x2 ≡ 1 (mod 91) has exactly four solution classes;
determine these.

(b) How many solution classes does the congruence

x2 ≡ 1 (mod 1729)

possess? Determine at least one 6≡ ±1 (mod 1729).

7. Consider the congruence X4 − 15X2 + 1 ≡ 0 (mod 16). Show that the
left member can be factored into to quadratic factors. Explain how this
factorization proves the non-solvability of the congruence. Also show that
the left member does not factor into a linear and a cubic factor (note that
16 is not a prime number!)

Finally show that the left member does not factor modulo 32.

8. p is an odd prime not dividing D or k. Suppose the congruence

x2 −Dy2 ≡ k (mod pn)

has m solution pairs (x, y) modulo pn. Show that

x2 −Dy2 ≡ k (mod pn+1)

has mp solutions modulo pn+1.

Try to generalize to arbitrary quadratic forms ax2 + bxy + cy2 – can you
find the proper condition on the coefficents or some quantity derived from
them?

9. (a) Derive the full Taylor expansion (cf. B.VII.2) f(X + h) = f(X) +
hf ′(X) + · · · , by using the Binomial Theorem on each monomial.

(b) Let f be an integer polynomial, and m an integer. Show, using the
Taylor expansion of f(m + h) that there is some n such that f(n) is
properly divisible by f(m). Hence conclude that f cannot assume only
prime values.

10. Let p be an odd prime. Consider the product p(X) =
∏

(X − t) where t
runs over a full system of representatives of the invertible classes modulo
n = pk, k ≥ 1. The degree of that polynomial is φ(pk). It is not congruent
to Xφ(n)− 1 for k ≥ 2, in the sense of coefficientwise congruence – note that
Lagrange does not apply as there are zero-divisors modulo pk.
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Instead it holds that

p(X) ≡ (Xp−1 − 1)pk−1
(mod pk)

One possible route may be the following:

(a) Prove that

Y (Y − 1 · pk)(Y − 2 · pk) · · · (Y − (p− 1) · pk) ≡ Y p (mod pk+1),

in the sense of coefficientwise congruence.

(b) Using the last congruence, for Y = X − a, 0 < a < pk, p - a, and
induction on k, prove the congruence stated above. For instance, in
the case k = 2, combine (a) with the identity

(X − 1)(X − 2) · · · (X − (p− 1)) = Xp−1 − 1 + pg(X).
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Chapter C

Primitive Roots

C.I False Cases Excluded

Primitive roots are an important theoretical tool, e.g., in our discussion of
power residues later on. Their existence, or non-existence, explains some of
the phenomena we have already encountered. In the case of existence they
lead to the concept of discrete logarithms, and some cryptographic schemes
connected with them.

First we give their definition.

C.I.1 Definition. Let n be a positive integer, and put f = φ(n).
A primitive root modulo n (or “for n”) is an integer g such that
ordn(g) = f , in other words, such that the powers 1, g, g2, . . . , gf−2, gf−1

are pairwise incongruent modulo n.

Clearly, the property of being a primitive root only depends on the class
g + (n) of g modulo n. Yet another way of phrasing the definition is to
demand that the powers [1], [g], [g2], . . . , [gf−2], [gf−1] exhaust the invertible
classes modulo n. Or, equivalently: that for each m, with (m,n) = 1, there
exist an exponent k such that

m ≡ gk (mod n).

69
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That exponent k, the index (or discrete logarithm) of m modulo n, w.r.t. g,
is then uniquely determined modulo f :

gl ≡ gk (mod n) ⇐⇒ l ≡ k (mod f).

Before discussing the question of existence, let us give a simple example.

C.I.2 Example. Let n = 7. In an earlier Example (A.V.13) we noted that
the orders of 3 and 5 modulo 7 are 6, so these two are primitive roots modulo
7. The following table lists the indices of 1, 2, . . . , 6 with respect to these
primitive roots.

g\m 1 2 3 4 5 6
3 0 2 1 4 5 3
5 0 4 5 2 1 3

Note that the classes 3 + (7), 5 + (7) are inverses of one another, and that
the indices w.r.t to these two bases add up to 6. �

We now prove a Lemma on binomial congruences that will help us exclude
all those n for which there are no primitive roots. The letter f still denotes
φ(n).

C.I.3 Lemma. Suppose g is a primitive root modulo n. Then the con-
gruence

xk ≡ 1 (mod n)

has (k, f) ≤ k solutions modulo n.

Proof. Put x ≡ gy (mod n), with y yet to be determined. Our binomial
congruence is then equivalent to a linear congruence modulo f :

xk ≡ 1 (mod n) ⇐⇒ gky ≡ 1 (mod n) ⇐⇒ ky ≡ 0 (mod f).

In the Section on linear congruences, B.V, we noted that this is equivalent
to

k

(k, f)
y ≡ 0 (mod

f

(k, f)
),

with (k, f) solution classes modulo f . �
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C.I.4 Lemma. In the following cases there are no primitive roots mod-
ulo n:

a) n = n1n2, with n1, n2 ≥ 3 and (n1, n2) = 1.

b) n = 2e, e ≥ 3.

Proof. In case a), we proved in Lemma B.IV.1 that the congruence x2 ≡ 1
(mod n) possesses at least 4 > 2 solutions modulo n. So that case is excluded
by the Lemma above.

In case b) we easily exhibit the following four incongruent solutions to the
congruence x2 ≡ 1 (mod n):

x ≡ ±1 (mod 2e); x ≡ ±1 + 2e−1 (mod 2e).

We check the last two:

(1± 2e−1)2 = 1± 2 · 2e−1 + 22e−2 ≡ 1 (mod 2e)

as 2e− 2 > e for e ≥ 3.

So that case, too, is excluded by the previous Lemma. �

The first case implies that n cannot have two different odd prime factors. If
n has one odd prime factor, the factor 2 can enter its factorization only with
multiplicity one, as 22 > 3. So we have proved the following:

C.I.5 Theorem (Provisional). A primitive root modulo n can exist at
most in the following cases:

n = 2, n = 4, n = pk, and n = 2 · pk,

where p is an odd prime.

�

For n = 2 obviously g = 1 is a primitive root. For n = 4, take g = 3.
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In the remaining cases the existence of primitive roots is far from obvious.
We will devote one Section to proving the case n = p, and then return to
odd prime powers later on. The extra factor 2 will then present no problem,
according to the following Theorem.

C.I.6 Theorem. Suppose g is an odd primitive root modulo the odd
positive integer n. Then g is also a primitive root modulo 2n.

Remark: If g is an even primitive root, then g + n is an odd one.

Proof. We first note that, for odd g, (g, n) = 1 =⇒ (g, 2n) = 1.

Next we note that φ(2n) = φ(2)φ(n) = φ(n) = f . So, by Euler’s Theorem,
gf ≡ 1 (mod 2n).

And gk 6≡ 1 (mod n) for 0 < k < f trivially implies gk 6≡ 1 (mod 2n). So
the exact order of g modulo 2n must equal f . �

C.II Primitive Roots Modulo a Prime

Let p be a prime number. This section is devoted to a proof of the existence
of a primitive root modulo p. As in all known proofs a main ingredient is
Lagrange’s Theorem (B.VI.2) on algebraic congruences modulo p. You may
want to review that Theorem. Other important ingredients are the Theorems
on the order of a power and a product.

C.II.1 Theorem (Primitive Roots mod p). Let p be a prime num-
ber. Then there is a primitive root modulo p, i.e., an element g satisfying
ordn(g) = φ(p) = p− 1.

Proof. Choose an element a such that ordn(a) = d is maximal. We wish to
prove that d = f = p− 1. We assume that d < f and derive a contradiction.

According to Lagrange, the congruence xd ≡ 1 (mod p) has at most d < p−1
solutions modulo p. So we let b be a non-solution. This is the same as saying
that e := ordp(b) does not divide d.
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Consider the prime factorizations of d, e. The fact that e - d translates to
the existence of a prime factor q dividing e to higher multiplicity than d. In
other words, there exist a prime number q and exponents k > j ≥ 0, such
that

d = qj · r, (q, r) = 1

e = qk · s, (q, s) = 1.

By the Theorem on the order of powers (A.V.17), we then have

ordp(a
qj

) = r,

ordp(b
s) = qk.

As (qk, r) = 1, by the Theorem on the order of a product (A.V.19), we then
get

ordp(a
qj · bs) = qk · r > qj · r = d,

contradicting the maximality of d. This contradiction proves the Theorem.
�

By exactly the same reasoning one can prove the following

C.II.2 Corollary (of Proof). Let n be a positive integer, and let a +
(n) be an invertible class modulo n, of maximal order e. Then the order
of any other class b+ (n) divides e.

�

The proof given above is obviously non-constructive. Can primitive roots be
computed?

Indeed they can, if we know how to decompose p−1 into prime factors. One
naive method is then to select r = 2, 3, . . . , and compute their various powers

r(p−1)/q (mod p)

for all prime factors q|(p− 1).

As soon as all these powers, for a given a, are incongruent to 1 (mod p),
we have found a primitive root, in fact the least positive one (we are using
Theorem A.V.6.) The chances of a small primitive root are fairly good.
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One will then need an algorithm for fast exponentiation, e.g., the one given
in Section L.V. It is a built-in feature in Python and Maple, by the way.

C.II.3 Example. Let p = 40487, a prime. We have the factorization p−1 =
2 · 31 · 653. Using fast exponentiation one verifies that r = 2, 3 satisfy

r(p−1)/2 ≡ 1 (mod 40487)

so neither 2 nor 3 is a primitive root. The above congruence reflects the fact
that both 2 and 3 are squares modulo p:

341052 ≡ 2 (mod p), 213952 ≡ 3 (mod p)

so that
2(p−1)/2 ≡ 340105p−1 ≡ 1 (mod p),

by Little Fermat, and similarly for 3.

No use testing r = 4 = 22!

r = 5 is more successful:

5(p−1)/2 ≡ −1 (mod p)

5(p−1)/31 ≡ 32940 (mod p)

5(p−1)/653 ≡ 4413 (mod p)

so 5 is the least positive primitive root modulo 40487. �

C.II.4 Example (Decimal Fractions, Continued). In one of Robert Rip-
ley’s (1890-1949) “Believe It Or Not” books the number N = 142857 is cited
as having a remarkable property. When multiplied by 2, 3 ,4, 5, 6, its digits
are simply shifted cyclically, e.g., 5 · 142857 = 714258. How remarkable is
that, and what is the explanation?

Well, 7 · 142857 = 999999, i.e., (106− 1)/7 = 142857, so 142857 is the period
in the decimal expansion of 1/7.

For instance, the relation 5 · 142857 = 714258 can be rewritten as 5/7 =
5·0.1428571428 · · · = 0.7142587142 · · · = 105·(1/7)−14285, 105 = 5+7·14285,
so that:

105 ≡ 5 (mod 7).

The fact that all the multiples N, 2N, 3N, . . . , 6N are cyclical shifts of N
similarly reflects the fact that 1, 2, 3, 4, 5, 6 are powers of 10 modulo 7, i.e.,
10 ≡ 3 (mod 7) is a primitive root modulo 7.
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Modulo 13, by contrast, the order of 10 is 6, and the powers of 10 are
1, 3, 4, 9, 10, 12. The expansion of 1/13 is 0.076923076 . . . , and the ex-
pansion of 9/13 is 0.692307692 . . . a shift by two places, corresponding to
102 ≡ 9 (mod 13).

On the other hand 5/13 = 0.38461538 . . . , 7/13 = 0.538461538 . . . are not
cyclic shifts of 1/13, but they are cyclic shifts of one another, reflecting the
fact that 7 · 10 ≡ 5 (mod 13).

A moment’s reflection makes it clear that the invertible classes modulo 13
are partitioned into two sets, the powers of 10 modulo 13, and the classes of
7 · 10k, k = 0, 1, 2, 3, 4, 5, 6, modulo 13, with each of the two sets having the
cyclic shift property. Here the factor 7 can be replaced by any non-power of
10 modulo 13.

Those who have taken a course in Abstract Algebra will recognize the two
sets as the cosets of the subgroup generated by 10, in the group of invertible
classes modulo 13.

Now, it is easy to write a program finding small primes for which 10 is a
primitive root. The first few examples are 7, 17, 19, 23, 29, 47, 59, 61, 97,
109, 113, 131, 149, 167, 179, 181, 193.

For instance,

N =
1016 − 1

17
= 588235294117647

and

2 ·N = 1176470588235294,

not quite a cyclic shift! The explanation is simple: as 1/17 < 1/10 the
decimal expansion begins with a zero:

1

17
= 0.058823529411764705 . . .

so we would have to put that zero in front of N . That, I suppose, is the
reason N = 588235294117647 did not make it into Ripley’s book.

Mathematically, the significance of 10 being a primitive root modulo the
prime p is that the expansion of 1/p has the maximum possible period, p−1.
�
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C.III Binomial Congruences

In this Section we study binomial congruences, i.e., congruences of the form
bxn ≡ a (mod n). Most of the time b = 1, and we can reduce to that case if
(b, n) = 1, of course.

We assume that n possesses a primitive root. We already know this is the
case when n = 2, 4, p, 2p, for an odd prime p. In the next Section we will
prove the remaining cases n = pk, 2 · pk.

Now assume (a, n) = 1, and let f = φ(n). By far the most important case is
that of n = p, an odd prime, p - a, and f = p − 1. The reason is that the
case of a prime power may, often more conveniently, be reduced to that of a
prime, using Hensel’s Lemma (B.VII.3).

We now give a general condition for the solvability of the congruence xm ≡ a
(mod n). An important special case, m = 2, will be used repeatedly in later
Chapters.

C.III.1 Theorem (Euler’s Criterion). Assumptions as above. The
congruence

xm ≡ a (mod n)

is solvable if and only if

af/(f,m) ≡ 1 (mod n).

Proof. Let g be a primitive root. We can write a ≡ gk (mod n). We put
x ≡ gy (mod n), and turn the given congruence into a linear one:

xm ≡ a (mod n) ⇐⇒ gmy ≡ gk (mod n) ⇐⇒ my ≡ k (mod f).

By our Theorem on linear congruences this linear congruence is solvable in
y if and only if (m, f)|k. As also (m, f)|f , this is equivalent to

(m, f)|(k, f).

The latter divisibility relation is equivalent to

f

(k, f)
| f

(m, f)
,
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i.e., to

ordn(a) = ordn(gk)| f

(m, f)
.

According to the basic theory of “order” (A.V.5), this is equivalent to

af/(m,f) ≡ 1 (mod n).

�

C.III.2 Example.

a) We first study the congruence x5 ≡ 2 (mod 13). Here f = 13 − 1 = 12,
and f/(f, 5) = 12/1 = 12. The congruence is solvable, as

a12 ≡ 1 (mod 13),

by Little Fermat. Clearly, the congruence x5 ≡ a (mod 13) is solvable for all
a, 13 - a (and trivially for 13|a).

b) What about x4 ≡ 10 (mod 13)? Here f/(f,m) = 12/4 = 3. Trying Euler
we get

103 ≡ (−3)3 ≡ −1 6≡ 1 (mod 13).

So this congruence is not solvable.

c) Our next example is x2 ≡ 10 (mod 13). Here f/(m, f) = 12/(12, 2) = 6
and

106 ≡ (−3)6 ≡ (−27)2 ≡ (−1)2 ≡ 1 (mod 13)

so the congruence is solvable. It is easy to find the solution classes 6 + (13)
and −6 + (13) = 7 + (13)

The Legendre/Jacobi symbol (D.I.2, D.II.1), and Quadratic Reciprocity
(D.I.12) will supply us with a faster method for deciding whether a given
quadratic congruence is solvable or not.

d) In contrast with the case p = 13, let us show that the congruence x2 ≡ a
(mod 19), 19 - a, is solvable if and only if x4 ≡ a (mod 19) is.

This is immediate from Euler’s Criterion, as (18, 2) = (18, 4) = 2 whence
18/(18, 2) = 18/(18, 4) = 9. �
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C.III: Exercises

1. Verify that 2 is a primitive root modulo 29. Determine all solutions to the
congruences xm ≡ 1 (mod 29), where m = 7, 14, 21, 4, 12.

2. Let p ≡ 1 (mod 8) be a prime number. Show that the polynomial X4 + 1
divides Xp−1 − 1, hence (Fermat, Lagrange!) that it has exactly four roots
modulo p – do this without using primitive roots.

Then express the roots in a primitive root. Give at least two examples.

3. 5 is a primitive root modulo p = 23, 3 ditto modulo p = 17, and 2 is one
modulo p = 13. Use these primitive roots to determine in each case those
numbers m, (m, p) = 1, for which there exists some d such that md ≡ −1
(mod p).

Compare the results and explain the difference between 23 on the one hand,
and 13,17 on the other. And what is the crucial difference between 13 and
17?

4. Careless reasoning – and carelessly chosen examples! – may mislead one
into believing that the smallest positive root modulo p is itself a prime. The
smallest counterexample is p = 41; you can find other examples in the table
at the end of the book.

Verify that the orders of 2,3,5 modulo p are 20, 8, and 10, respectively.
Hand calculation possible. Note, for instance, that 210 = 28 · 22 where the
residue of 28 is obtained by repeated squaring modulo p. How do the above
computations show that the order of 6 is 40? Can you state a general result?
(We will prove it later.)

5. p is an odd prime, d is a positive integer. Describe, using primitive roots, the
solutions to the congruence xd ≡ 1 (mod p) (be careful to give the correct
period) and show that they are powers of one single solution.

6. For which invertible right members (i.e., (y, 91)= 1, etc.) are the following
congruences solvable?

(a) x6 ≡ y (mod 91).

(b) x7 ≡ y (mod 77).

(c) x5 ≡ y (mod 55).

Hand calculation. Be careful to give the correct periods, and proper theo-
retical explanation.
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7. Let p be an odd prime number, and k a positive integer, not divisible by
p− 1. Show that

1k + 2k + · · ·+ (p− 1)k ≡ 0 (mod p).

Hint: Turn the sum into a geometric one.

8. Let g be a primitive root modulo p, and u 6≡ 0 (mod p). Compute the
expression

p−2∑
j=1

uj · (1− gj)−1 (mod p).

One way to do this is to convert the expression into one of the form

−
p−1∑
m=1

(m + 1)k ·m−1 (mod p)

and use the previous exercise. The answer may be given in terms of the
discrete logarithm k of u modulo p, given by the condition

gk ≡ u (mod p).

The expression is useless for computing k. In later Sections we will discuss
some algorithms.

9. What can be said about the product of all primitive roots modulo p?

10. Prove Wilson’s Theorem (B.VI.4) by expressing everything in primitive
roots.

11. (a) n is a positive integer, (y, n) = 1. Show that the congruence xk ≡ y
(mod n) has a solution of the form x ≡ yu (mod n) if and only if
ordn(y) is relatively prime to k.

(b) Let n = 29 and consider the congruence x4 ≡ 16 (mod n). Verify that
the solutions can be written x = x0z

k, k ∈ Z (what is their number?)
and that exactly one of them is of the form yu, y = 16.

12. Let p, q be different odd primes.

(a) Show that there is some r that is a primitive root for both p and q.

(b) Determine the number of incongruent powers of r modulo m = pq.
What is the condition that this number is the maximal possible portion
of φ(pq)?

(c) Give the condition for the existence of an r such that every x, (x,m) = 1
is congruent to plus or minus a power of r modulo pq.
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13. Let p 6= q be two (large) odd primes, and e an odd number. Show that the
number of solutions (mod pq) to the congruence

te
n ≡ t (mod pq)

equals
g(n) =

(
1 + (en − 1, p− 1)

)(
1 + (en − 1, q − 1)

)
and is at least 9. Can you give a lower estimate of g(n) in terms of the prime
factorizations of p− 1, q − 1?

Do you see the cryptological significance of this result in connection with
RSA (Section A.VI,) for e = the encryption key? You might like to check
up on “fixed points” in Riesel’s book.
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C.IV Prime Powers

It is convenient to prepare the general case by studying the case p2, p odd,
first.

C.IV.1 Theorem. Let p be an odd prime. Let g be a primitive root
modulo p. Then either g or g + p is a primitive root modulo p2.

Proof. Let r denote g or g+ p. By assumption, the order of r modulo p is
p−1. If re ≡ 1 (mod p2), then, a fortiori, re ≡ 1 (mod p), so ordp(r) divides
e: p− 1|e.

By Euler’s Theorem (A.V.12), we also have e|φ(p2) = p(p− 1), which means
that e equals p− 1 or p(p− 1). We will show that gp−1 ≡ 1 (mod p2) implies
(g + p)p−1 6≡ 1 (mod p2).

That is, if the order of g is less than p(p− 1), then the order of g + p equals
that number. That will complete the proof of the Theorem.

Now, by the Binomial Theorem,

(g + p)p−1 ≡ gp−1 + (p− 1) · gp−2p (mod p2),

as the omitted terms contain higher powers of p. By assumption, gp−1 ≡ 1
(mod p2), yielding

(g + p)p−1 ≡ 1 + (p2 − p) · gp−2 (mod p2),

(g + p)p−1 ≡ 1− p · gp−2 (mod p2).

If the two members were congruent to 1 modulo p2, we would get:

p2|p · gp−2,

which is impossible, as the prime number p does not divide g. �

C.IV.2 Example. Let us return to the example p = 40487. In an earlier
example (Ex. C.II.3) we determined its least positive primitive root, g = 5.
Using fast exponentiation (Section L.V) we get

5p−1 ≡ 1 (mod 404872)
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so 5 is not a primitive root modulo p2.

The Theorem instead supplies us with the primitive root g + p = 40492.

The smallest positive primitive root is 10. For r = 6, 7, 8, r(p−1)/2 ≡ 1
(mod p), so these are not even primitive roots modulo p. But 10(p−1)/k ≡
−1, 36722, 11601 (mod p) for k = 2, 31, 653 (the prime factors of p−1) shows
that 10 is a primitive root modulo p, and 10p−1 ≡ 580947964 6≡ 1 (mod p2)
then shows that 10 is a primitive root modulo p2 (no need to test 9, as 9 is
a square).

This is the smallest odd prime having the property that its smallest primitive
root modulo p is not a primitive root modulo p2.

The next larger example, p = 6692367337 was found by Andrzej Paszkiewicz
several years ago and was communicated to me by Juliusz Brzezinski. The
smallest positive primitive root modulo p is 5, the smallest modulo p2 is 7.

�

Before proving the general case, we recall a convenient piece of notation. Let
p be a prime number. If pk, but not pk+1, divides n, we put

vp(n) = k

(the multiplicity of p in n, B.III.1). An important observation is the following:

C.IV.3 Lemma. If vp(m) = k, and vp(n) > k, then vp(m+ n) = k.

Proof. Writing m = pkq, p - q, and n = pk+1r, we get m+n = pk(q+p ·r),
and obviously p does not divide the second factor. �

The result we want to prove is:

C.IV.4 Theorem (Primitive Roots mod pk). If g is a primitive
root modulo p2, where p is an odd prime, then it is also one modulo
every power pk, k ≥ 2.
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The Theorem will follow from the following Lemma and its Corollary.

C.IV.5 Lemma. Let p be an odd prime. Suppose a = 1 + t where
vp(t) = j ≥ 1. Then ap = 1 + u where vp(u) = j + 1.

Proof.

(1 + t)p = 1 + p · t+

(
p

2

)
· t2 +

(
p

3

)
· t3 + · · · = 1 + u

Obviously vp(pt) = j+1. The last displayed term, and the omitted terms, are
divisible by p3j > pj+1 at least, and the third term is divisible by p2j+1 > pj+1

(we are using p 6= 2) so their sum s satisfies vp(s) > j + 1. By our Lemma
above,

vp(u) = 1 + vp(pt) = j + 1.

�

C.IV.6 Corollary. If g is a primitive root modulo p2, then, for j ≥ 1,
we have

gpj−1(p−1) = 1 + t where vp(t) = j,

hence
gpj−1(p−1) 6≡ 1 (mod pj+1).

We first prove the Corollary:

Proof. The proof is by induction, starting with j = 1. By Little Fermat,
gp−1 ≡ 1 (mod p), and by assumption, gp−1 6≡ 1 (mod p2). This means that
gp−1 = 1 + t where p, but not p2, divides t, i.e., vp(t) = 1. That is the base
step. The induction step follows by repeated application the Lemma. �

And now we prove the Theorem.

Proof. Observe that the order of g modulo pk must divide φ(pk) = pk−1(p−
1), and be divisible by ordp2(g) = p(p − 1). It is therefore of the form
pj−1(p− 1), j ≥ 2. The Corollary makes it clear that j = k. �
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We now deal with the case n = 2e, e ≥ 3. In the first Section we proved
that there is no primitive root in this case, i.e., there is no class of the
order φ(n) = 2e/2 = 2(e−1). There is however one of the next best possible
order. That is the content of the following Theorem. Like the odd case, it is
preceded by a divisibility Lemma.

C.IV.7 Lemma. If a = 1 + t, v2(t) = k ≥ 2, then a2 = 1 + u, v2(u) =
k + 1.

Proof.

(1 + t)2 = 1 + 2t+ t2; v2(2t) = k + 1; v2(t
2) = 2k > k + 1.

�

C.IV.8 Theorem. Let n = 2e, e ≥ 3. Then ordn(5) = 2e−2 = n/4.

The classes of ±5j, 0 ≤ j < 2e−2, exhaust the invertible classes modulo
n (i.e., the odd ones).

Proof. Repeated application of the Lemma and its proof with
k = 2, 3, . . . , j yields

(1 + 22)2j ≡ 1 + 2j+2 (mod 2j+3), j ≥ 0,

proving the first statement.

As for the second statement, we note that the number of the classes indicated
is 2e−1. Having determined the order of 5 modulo n, all that remains is to
prove

5j 6≡ −5k (mod 2e),

for integers j, k.

That, however, is true already modulo 4. �

C.IV.9 Example. Let n = 2e, e ≥ 3, and a an odd integer. We return to
the congruence

x2 ≡ a (mod n),
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which we studied in the context of Hensel’s Lemma, B.VII.3. Setting

x ≡ ±5y (mod n); 0 ≤ y < n/4,

and

a ≡ ±5k (mod n); 0 ≤ k < n/4,

we are led to the following

52y ≡ ±5k (mod n).

By the proof of the last Theorem, only the plus sign can hold. So, remem-
bering that ordn(5) = n/4, we obtain the following linear congruence:

2y ≡ k (mod
n

4
).

As n/4 is even, this congruence is solvable if and only if k is even, k = 2m.
It is then equivalent to

y ≡ m (mod
n

8
)

So the given congruence is solvable if and only if a is of the form

a ≡ 52m ≡ 25m (mod 2e)

Clearly, all the admissible a are congruent to 1 modulo 8, so the condition

a ≡ 1 (mod 8)

is necessary for solvability.

Is it sufficient? The condition just given is satisfied by exactly 1/8 of the
classes modulo n, or, equivalently, by 1/4 of the invertible (odd) ones.

However, selecting the plus sign in the beginning of the solution, and then
selecting the even powers, also means selecting 1/4 of the invertible classes.
So the number of classes a+(n) satisfying the last two conditions is the same,
and the two conditions are indeed equivalent. �

As the main result of this Chapter is scattered all over the place we repeat
it here for ease of reference:
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C.IV.10 Theorem (Existence of Primitive Roots). A primitive
root modulo n exists in the following cases, and only these:

n = 2; n = 4; n = pk, and n = 2pk; where p is an odd prime.

The maximal order modulo n = 2e, e ≥ 3, is φ(n)/2 = 2e−2, and is
achieved by the class of 5.

C.IV: Exercises

1. Find a primitive root for each of p = 11, 13, 17, 22, 121, 35, then in each
case describe all primitive roots in a suitable manner – in particular give
their number.

2. If g is a primitive root modulo n, φ(n) = f , which powers of g are also
primitive roots? Deduce that the number of primitive roots equals φ(f).

3. Considering φ(f) for f = φ(p), φ(p2) . . . explain why we should expect the
step from p to p2 to be special when proving the existence of primitive roots.

4. p is a prime number, with primitive root g. Describe those powers of g the
orders of which equal a given q|(p− 1), hence determine their number.

5. p is a prime number, q divides p−1. Determine the number of classes modulo
p of order divisible by q, as a sum. Then give a simple upper estimate and
a simple condition for equality.

6. Review the proof for p2. Let g be a primitive root modulo p. Consider the
elements r = g + kp, 0 ≤ k ≤ p − 1, congruent modulo p, but not modulo
p2. Show that if one of them is not a primitive root modulo p2, then the
remaining ones are. Hence show that exactly one element in each such class
is not a primitive root modulo p2. Hint: Look at the expression for φ(p2).

7. Let g be a primitive root modulo the odd prime power pk, k ≥ 3. Show
that g + p2 is a primitive root, too. What is the corresponding result for
2k, k ≥ 4?

8. Let p be an odd prime. Prove, without using primitive roots (e.g., by induc-
tion), that the congruence xd ≡ 1 (mod pm) has at most d roots modulo pm.
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Then copy the proof for p to prove that there are primitive roots modulo pm.
It is probably convenient to write d = q · pk, p - q and reduce the exponent
k using Euler’s Theorem, A.V.12.

9. p is an odd prime. Suppose that

xp ≡ 1 (mod pb).

Show that
x ≡ 1 (mod pa)

for 1 ≤ a ≤ b− 1.

10. (a) p is an odd prime, p - y. Show that the congruence xp2 ≡ y (mod p2)
is solvable if and only if xp ≡ y (mod p2) is.

(b) Show that xp ≡ y (mod p3) is solvable if and only if xp ≡ y (mod p2)
is.

(c) Does the previous part hold if xp is replaced by xp2
in the two congru-

ences?

(d) n is an odd integer, q = pe is a prime power, with p odd, or e ≥ 2.
Show that the number of solutions to xn ≡ −1 (mod q) equals the
number of solutions to xn ≡ 1 (mod q).
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C.V The Carmichael Exponent

Let n be an integer > 1. Euler’s Theorem (A.V.12) states that the order of
any invertible class divides φ(n). In many cases that is a very crude estimate.

C.V.1 Example. n = 1729 = 7 · 13 · 19. Here φ(n) = 6 · 12 · 18 = 1296. But
according to Little Fermat, for (a, 1729) = 1 it holds that

a6 ≡ 1 (mod 7); a12 ≡ 1 (mod 13); a18 ≡ 1 (mod 19).

As [6, 12, 18] = 36 we get a36 ≡ 1 (mod 7, 13, 19); a36 ≡ 1 (mod 7 · 13 · 19),
a much smaller exponent. �

In the course of proving the existence of primitive roots modulo a prime we
established the following (cf. C.II.2):

C.V.2 Lemma. Let a, with (a, n) = 1, have maximal order r modulo
n. Then the order of any other b, (b, n) = 1, divides r.

�

This leads us to the following Definition:

C.V.3 Definition. The exponent, or Carmichael function, of n, de-
noted λ(n), is the maximal order of an invertible class modulo n. (By
convention, λ(1) = 1.)

(R. D. Carmichael, American mathematician, 1879-1967.)

We have established the following basic cases:

λ(2) = 1

λ(4) = 2

λ(2e) = 2e−2 =
φ(2e)

2
, e ≥ 3

λ(pe) = pe−1(p− 1) = φ(pe), p odd prime.
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Our reduction to these basic cases is based on the following two Lemmas:

C.V.4 Lemma. Let n = n1n2, n1, n2 > 1, (n1, n2) = 1. Assume
ordni

(a) = ri, i = 1, 2. Then ordn(a) = [r1, r2]. (Recall the notation
[r, s] for the least common multiple.)

Proof. Assume ae ≡ 1 (mod n), then the same congruence must hold
modulo n1, n2; therefore e must be divisible by both r1 and r2, hence by
their least common multiple r = [r1, r2].

Conversely, from ari ≡ 1 (mod ni), i = 1, 2, follows immediately that ar ≡ 1
(mod ni), i = 1, 2, hence ar ≡ 1 (mod n1n2).

Therefore e = r is the smallest positive exponent satisfying ae ≡ 1 (mod n1n2).
�

C.V.5 Lemma. n = n1n2 as in the previous Lemma. If ordn1(ai) =
ri, i = 1, 2, then there is an a ≡ ai (mod ni) satisfying ordn(a) = [r1, r2].

Proof. The existence of an a ≡ ai (mod ni) follows from the Chinese
Remainder Theorem, B.I.5. As the order of a modulo ni is the order of ai

modulo ni the result now follows from the previous Lemma. �

Using the Lemmas repeatedly we arrive at the following result:

C.V.6 Theorem. Let n = 2e0pe1
1 p

e2
2 · · · p

ed
d be the prime factorization

of n. Here e0 ≥ 0; the pi are distinct odd primes, and the exponents
ei ≥ 1; i ≥ 1. Then

λ(n) = [λ(2e0), pe1−1
1 (p1 − 1), pe2−1

2 (p2 − 1), . . . , ped−1
d (pd − 1)].

�

If there is at least one odd prime factor, and e0 ≤ 2, the factor 2e0 contributes
nothing, as p1 − 1 is even.
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C.V.7 Example. n = 1729 = 7 · 13 · 19. We saw above that λ(1729) =
[6, 12, 18] = 36. How many classes have this maximal order? A sufficient
condition for ordn(a) to be maximal is that a be a primitive root modulo
7, 13, 19. If g is a primitive root modulo the prime p, then gk is of the same
order if and only if (k, p− 1) = 1. The number of primitive roots modulo p
is therefore φ(p− 1).

So the number of classes of maximal order is at least φ(6)φ(12)φ(18) = 48.
The smallest primitive roots mod 7, 13, 19 are 3, 2, 2. Solving a Chinese
congruence system we find a = 990 to be of maximal order.

But the condition is not necessary! As already [12, 18] = 36 the order of 2
modulo 1729 is [3, 12, 18] = 36. �

The reader is invited to find the correct number of elements of maximal order.

C.V: Exercises

1. See the last Example, last sentence.

2. Determine the maximal order of an invertible class modulo 1001, and exhibit
at least one class of that order.

3. Determine λ(55) and the number of classes modulo 55, of maximal order.

4. Show that λ(N)|N for N = 12 · 13 and N = 16 · 17. Can you construct an
example divisible by 29?

5. The composite integer N > 1 is a Carmichael number if λ(N)|N − 1, i.e., if
aN−1 ≡ 1 (mod N) for (a,N) = 1.

(a) Verify that 561, 1005, 1729 are Carmichael numbers.

(b) Let p, q be different primes. Show that N = pq is not a Carmichael
number. Hint: Can we have p− 1, q − 1|(N − 1)?

(c) Show that Carmichael numbers are square-free, i.e., not divisible by
the square of a prime.

(d) Show that N is Carmichael if and only if N is square-free, and
p− 1|(N − 1) for all its prime factors p.

6. Let N be an odd positive integer. The number of solutions to the congruence
xN−1 ≡ 1 (mod N) is

∏
p|N (N − 1, p− 1).
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7. Determine the Carmichael exponent of 10e, e ≥ 5. Show that the elements
of maximal order modulo 10e fall into 32 classes modulo 8 · 25 = 200. Can
you find them, or at least their number? Find at least one that is not a
primitive element modulo 5e.

8. Determine those N (finite in number) for which aN+1 ≡ a (mod N). Hint:
First show that N must be squarefree, then determine the prime factors of
N starting from the bottom.
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* C.VI Pseudorandom Sequences

This Section is a bit off-topic, but its methods are closely related to the rest
of the Chapter. It could be skipped on a first reading.

We wish to generate sequences modulo a big number m > 0, exhibiting an
irregular random-like behavior. They should be easy and fast to construct.
For cryptographic purposes their behavior should be hard to predict, so their
construction should be hard to detect. That is a much more stringent re-
quirement and we will ignore it here.

A popular construction is affine iteration, or the linear congruential generator
letting an affine function f(X) = Y = aX + b (mod m) act repeatedly on
an initial value x0. We denote the iterates by xn = fn(x0).

If we assume that the function is invertible, the iteration will have a least
period d > 0, xd ≡ x0 (mod m), xk 6≡ x0 (mod m) for 0 < k < d.

By the same argument as for invertible residue classes, every exponent e > 0
with xe ≡ f e(x0) ≡ x0 (mod p) is a multiple of d. We hope to arrange that
this period is exactly m; our sequence of iterates will then assume every value
(mod m) exactly once in every period.

The function f is invertible if (a,m) = 1. Suppose ar ≡ 1 (mod m). Then
Y = aX+b if and only if X = r(Y −b), proving invertibility. We will assume
(a,m) = 1.

We will also assume that (b,m) = 1 and that every prime divisor of m also
divides a− 1. (If 4 divides m we assume that 4 divides a− 1.)

Then ((a − 1)x + b,m) = 1 for all x, as no prime factor p|m can divide
(a− 1)x+ b ≡ b (mod p).

We now proceed to prove that the sequence sk = fk(x0) has least period m
regardless of x0. We will deal with m = prime power first, then reduce the
general case to that special case.

C.VI.1 Lemma. The least period of the sequence xk is the least n for
which

an − 1

a− 1
≡ 0 (mod m).

(for a = 1 the left member is interpreted as n+ 1.)
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Proof. By an easy induction

fk(x) = akx+ b(1 + a+ a2 + · · ·+ ak−1) = akx+ b
ak − 1

a− 1
.

We will have fk(x0) ≡ x0 (mod m) if and only if

0 ≡ (ak − 1)x0 + b
ak − 1

a− 1
≡ ak − 1

a− 1
[(a− 1)x0 + b] (mod m).

We have shown that the factor in brackets is invertible modulo m, hence the
condition is equivalent to

ak − 1

a− 1
≡ 0 (mod m).

�

C.VI.2 Lemma. Assumptions and notation as above. Let m = pe be
an odd prime power.Then the least period of the sequence fk(x0) is m.

Proof. Let m = pe. We are assuming a− 1 = t, vp(t) = d ≥ 1. We prove
first that vp((a

pn − 1)/(a− 1)) = n.

Recall (C.IV.5) that b = 1+u, vp(u) = j ≥ 1 implies bp = 1+v, vp(v) = j+1.
Using this repeatedly, we get vp(a

pn−1) = n+d, hence vp((a
pn−1)/(a−1) =

n+ d− d = n.

Setting n = e this relation shows that (ape − 1)/(a− 1) ≡ 0 (mod pe), hence
the period divides pe. Choosing n < e, it shows that (apn − 1)/(a − 1) 6≡ 0
(mod pe), hence the period cannot be a smaller power of p. �

C.VI.3 Lemma. Assumptions and notation as above. Let m = 2e.
Then the least period of the sequence fk(x0) is m.

Proof. The case e = 1 is trivial. Now assume e ≥ 2. This time the
assumption is a = 1+t, vp(t) ≥ 2. Recalling (C.IV.7) that b = 1+u, v2(u) =
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j ≥ 2 implies b2 = 1 + v, v2(v) = j + 1, the proof proceeds exactly as in the
odd case. �

We now prove the general result.

C.VI.4 Theorem. Notation and assumptions as before. The least pe-
riod of the sequence xk = fk(x0) equals m.

Proof. Let the minimal period modulo m be N.

Let p be a prime factor of m, vp(m) = e. Taken modulo pe the minimal
period of the sequence is pe; it also repeats with period N . Hence pe|N . As
this holds for all of the prime powers dividing m we must have m|N .

However, as xm ≡ x0 modulo each pe, by the Second Divisibility Theorem
(A.II.2), xm ≡ x0 modulo their product m, so m is indeed a period, hence
also the least period. �

This kind of sequence is cryptologically insecure. Setting yk ≡ xk − xk−1

(mod m), k > 0, we have yk+1 ≡ ayk (mod m), k > 0, hence ay2
k+1 ≡

ayk+2yk (mod m). Assuming (a,m) = 1 we see that dk+1 = y2
k+1 − yk+2yk is

a multiple m̂ of m. In fact, the gcd of several successive dk is often a very
small multiple of m.

Solving y1 ≡ ay0 (mod m̂) for a we have a guess to test. As soon as yk+1 6≡
ayk (mod m̂) we find that m̂ is too big, and we remove the offending factor,
so as to get the largest multiple that divides yk+1 − ayk. We may have had
to make that kind of reduction already when determining a.

It can be proved that the number of yk that determine the whole sequence
is bounded by 2 logam. So we will discover an error pretty quick. Details
would take us too far afield.

C.VII Discrete Logarithms

Let g be a primitive root modulo n. For any b, (b, n) = 1, the least non-
negative number m satisfying

gm ≡ b (mod n)
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is called the index of b, modulo n, with respect to the base g (or discrete
logarithm) and denoted logg(b). (Sometimes an extra subscript n is added).

It has the following properties:

logg(ab) ≡ logg(a) · logg(b) (mod φ(n))

logg(a
k) ≡ k · logg(a) (mod φ(n)).

The proofs are easy, and left to the reader.

The problem of determining the discrete logarithm logg(a) from the knowl-
edge of g, n, a is considered to be very difficult. The ElGamal cryptographic
scheme profits from this difficulty (as long as it persists). We sketch it briefly.

A large prime number q, and a primitive root g for it, are made public. Alice
chooses a secret exponent d, and publishes gd (reduced modulo q). Bob
wants to send the message M (encoded as a number < q). He picks an
exponent e at random, computes gde ≡ (gd)e (again, reduced modulo q), and
sends the pair

(ge, s) = (ge,Mgde).

Alice, knowing d, computes r ≡ gde ≡ (ge)d (mod q) and solves the congru-
ence rM ≡ s (mod q) for M .

It is assumed that there is no way of computing gde from gd and ge, without
determining either d or e.

* C.VIII Computing Discrete Logarithms

Let g be a primitive root modulo the prime number P . LetN = φ(P ) = P−1,
and let a, 0 < a < P be given. Solving the congruence

gx ≡ a (mod P )

is the Discrete Logarithm Problem, and it is notoriously difficult. The al-
gorithms given below (except Index Calculus) have a running time that is
exponential in the bitlength of P – around the square root of P , or of the
largest prime factor of P − 1.

Of the more elementary ones, the Pohlig-Hellman algorithm is probably the
easiest to understand, as it rests on two of the main ideas of this text. One
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is reduction to prime powers and Chinese Remaindering. The other is suc-
cessive refinement of a solution modulo increasing prime powers. Let us deal
with the Chinese Remaindering part first.

Pohlig-Hellman, Reduction to Prime Powers

Let N = n1n2 · · ·nd, ni = pei
i , be the prime factorization of N . The pi are

distinct prime numbers, and all the ei are positive. Put Ni = N/ni, and
ai = aNi so that the order of ai modulo P divides ni. Also put gi = gNi so
that gi is of exact order ni.

Assume that we have managed to solve the congruences

gxi
i ≡ ai = aNi (mod P ).

Assume further that
d∑

i=1

yiNi = 1

and set
x =

∑
i

xiyiNi.

Then
gxiNi = gxi

i ≡ ai = aNi (mod P )

and
g

P
i xiyiNi ≡ a

P
i yiNi ≡ a (mod P ).

So x =
∑

i xiyiNi solves the problem. As yiNi ≡ 1 (mod ni) and yiNi ≡ 0
(mod nj), j 6= i, x satisfies the Chinese congruence system (B.I.5):

x ≡ xi (mod ni).

If we are to solve several Discrete Log problems it might be best to precom-
pute the idempotents zi = yiNi ≡ 1 (mod ni), ≡ 0 (mod nj), j 6= i.

Continuation, Refinement modulo pe

Let p be one of the prime factors of N , and e > 0 its multiplicity. Put
M = N/pe, and b = aM , r = gM , so that the order of b divides pe and the
order of r is exactly pe. We have reduced the problem to solving

rx ≡ b; ordP (b) | ordP (r) = pe.
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Set

x = x0 + x1p+ x2p
2 + · · ·+ xe−1p

e−1; 0 ≤ x0, x1, . . . , xe−1 < p.

We first find x0. Putting

r0 = rpe−1

, b0 = bp
e−1

we see that r0 has order p, b0 has order 1 or p, and x0 satisfies

rx0
0 ≡ b0 (mod P ).

By some search procedure (more about that later) we find x0. Clearly x ≡ x0

(mod p).We now show how to refine this modulo p2. The rest will be a simple
iteration.

Put

c1 = b · r−x0 = rx1p+x2p2+···+xe−1pe−1

.

Raise this equation to the power pe−2:

b1 = cp
e−2

1 ≡ (rpe−1

)x1 ≡ rx1
0 (mod P )

where the same search procedure produces x1.

Then form c2 = c1 · r−x1p, so that

c2 = rx2p2+···+xe−1pe−1

,

raise this to the power pe−3, and so on, to determine x2.

Note that in the right member the base will always be r0 = rpe−1
.

C.VIII.1 Example. Let P = 199, N = 198 = 2 · 32 · 11. A primitive root
is 3. We want to solve gx ≡ 2 (mod P ).

First we determine x modulo 2. By the discussion above we are to raise 2, 3
to the power 198/2 = 99, and solve 299 ≡ (399)x (mod 199). Now 299 ≡ 1
(mod 199) so we get x ≡ 0 (mod 2) without even computing 399 (mod 199)
(it must be ≡ −1, anyway).

Next we want the residue of x modulo 11 so we take the exponent 198/11 =
18. Here 218 ≡ 61; 318 ≡ 125 (mod 199). Simply raising 125 to the power
1, 2, . . . finds the solution 1257 ≡ 61 (mod 199), so x ≡ 7 (mod 11).
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Finally, to get xmodulo 9, we take 198/(32) = 22, b ≡ 222 ≡ 180 (mod 199), r ≡
322 ≡ 175 (mod 199). We have to solve

b ≡ 180 ≡ rx0+3x1 ≡ 175x0+3x1 (mod 199), 0 ≤ x0, x1 < 3.

Now, b3 ≡ 106 ≡ r3 (mod 199) so x ≡ 1 (mod 3), hence x0 = 1. The inverse
of 175 modulo 199 is 58, and 180 · 58 ≡ 92 (mod 199). We have to solve:

180 ≡ 1751+3x1 (mod 199)

92 ≡ 1753x1 ≡ 106x1 (mod 199),

whence x1 = 2 (as it cannot be 0 or 1). So x ≡ 1 + 2 · 3 = 7 (mod 9).

So we have found x ≡ 0 (mod 2), x ≡ 7 (mod 11, 9). The last two congru-
ences state that x ≡ 7 (mod 99), and the first states that x is even, yielding
the discrete logarithm x = 7 + 99 = 106. �

Baby Steps, Giant Steps

If P − 1 has a large prime factor p, a linear search through the classes to
solve gx ≡ a may not be feasible. In that case the Baby Steps, Giant Steps
algorithm of D. Shanks (1917-1996) may be helpful. Its main drawback is its
storage requirements.

We assume given an element g of known order d, modulo P . We assume
known that gx ≡ a (mod P ). We let m ∈ Z denote the ceiling of

√
d, so

that m− 1 <
√
d ≤ m.

Then each number x, 0 ≤ x ≤ d − 1, may be written x = x0 + mx1, where
0 ≤ xi ≤ m − 1, i = 1, 2. The congruence gx ≡ a (mod P ) may then be
rewritten thus:

gx0+mx1 ≡ a; (gm)x1 ≡ (g−1)x0 · a (mod P ).

We make a list of the pairs [(gm)i, i], i = 0, 1, 2, . . . ,m − 1 (those are the
giant steps), and another list of the products a · (g−1)j, j = 0, 1, 2, . . . ,m− 1
(the baby steps). We look for a match, (gm)x1 ≡ (g−1)x0 · a (mod P ), and
then x = x0 +mx1 solves the problem.

One could sort one of the lists, and run through the other, searching for a
match in the first list.
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It is easy to search a sorted list. Just look at the middle of list, then you will
know in which half to search next. The search moves through the list, which
is unchanged in the process.

Sorting could be done with an “in-place Quicksort”. Python has a built-in
method. Wikipedia is a surprisingly good first source of information (to be
complemented with other documents, of course).

Sorting algorithms typically require O(n log n) operations, so we should ex-
pect something on the order of

√
d. Buchmann’s book on Cryptography has

a fuller discussion of these complexity issues. An alternative to sorting is
hashing, described in Crandall-Pomerance. It is faster. Python users will
check up on “dictionaries”.

(The idea behind hashing is simple. Instead of throwing things in a heap and
start looking for them afterwards, we keep a record of where we put them,
i.e., we label them suitably. A simple example of such a labeling, a hash
function, is to extract the last 32 bits. Of course, it may happen that several
numbers are labeled the same, and there are various strategies for handling
this.

In our applications, such collisions are often short, and can be handled with
a simple linear search.)

It is reasonable to sort the list of giant steps, as these are independent of a.
If only one a is investigated, it is more economical to create the a · (g−1)j

sequentially. If one of them does not match, it is discarded, and the next one
is investigated. This saves both time and storage. The value of j is stored
and updated at each step.

If P has all its prime factors below a moderate multiple of the square root,
Pohlig-Hellman, even with linear search, is faster than Shanks. So one really
should use Shanks only in conjunction with Pohlig-Hellman, at the level of
prime factors of P − 1. As generally only the smallest prime factors appear
with multiplicity > 1, it is often enough to use Shanks at the prime power
level.

C.VIII.2 Example. Let P = 71, a prime number. The smallest positive
primitive root is g = 7, of order 70. We show how Shanks’ algorithm applies
to the congruence 7x ≡ 3 (mod 71). The inverse of 7 modulo 71 is 61 ≡ −10
(mod 71). The ceiling of

√
70 is m = 9.

The following is the list of baby steps (I have included the exponents for the
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reader’s convenience):

[[3, 0], [41, 1], [16, 2], [53, 3], [38, 4], [46, 5], [37, 6], [56, 7], [8, 8]]

For instance, 3 · (61)7 ≡ 56 (mod 71), explaining the next to last element.

Here are the giant steps:

[[1, 0], [47, 1], [8, 2], [21, 3], [64, 4], [26, 5], [15, 6], [66, 7], [49, 8]]

where, for instance, 21 ≡ (79)3 (mod 71).

We find a matching 8: 8 ≡ 3 · (61)8 ≡ (79)2 (mod 71), 3 ≡ 78 · 718 (mod 71),
i.e., x = 26. �

Index Calculus

This method is quite old. It was invented for the purpose of creating tables
of discrete logarithms. We introduce it directly by an example.

Take p = 2017. One primitive root is g = 5. We want to solve gx ≡ 23
(mod p).

We form a factor base, consisting of all prime numbers below a certain bound.
In this case we choose the bound 7: 2, 3, 5, 7. By some random trial-and-error
procedure we find a power gy such that the least positive residue of a · gy has
all its factors in (“factors over”) the factor base. I found:

23 · g794 ≡ 3 (mod p).

Then we find a number of powers of g that also factor over the base, e.g.,

g859 ≡ 315 ≡ 32 · 5 · 7 (mod p)
g1150 ≡ 48 ≡ 24 · 3 (mod p)
g1060 ≡ 6 ≡ 2 · 3 · 5 · 7 (mod p)
g1875 ≡ 210 ≡ 24 · 32 (mod p)
g75 ≡ 90 ≡ 2 · 32 · 5 (mod p)
g32 ≡ 50 ≡ 2 · 52 (mod p)

The reason for overdetermination will presently be revealed.
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Taking discrete logarithms of each congruence gives a system of congruences
modulo p− 1 = 2016. We denote the discrete logs by “log”:

2 log 3 + log 5 + log 7 ≡ 859 (mod p− 1)
4 log 2 + log 3 ≡ 1150 (mod p− 1)
log 2 + log 3 ≡ 1060 (mod p− 1)
log 2 + log 3 + log 5 + log 7 ≡ 1875 (mod p− 1)
log 2 +2 log 3 + log 5 ≡ 75 (mod p− 1)
log 2 +2 log 5 ≡ 32 (mod p− 1)

We will presently discuss the systematics in solving the system. Here we find
the solution by inspection.

As g = 5, log 5 = 1. The last equation gives us log 2 = 32 − 2 = 30.
Substituting this into the third equation gives log 3 = 1060− 30 = 1030.

Finally, the relation 23 · g794 ≡ 3 (mod p) gives log 23 = log 3 − 794 =
1030− 794 = 236.

There are quite a few practical issues connected with this algorithm. How
best to solve the very sparse systems that arise is far from trivial. Even the
factoring part has to be managed with some cunning. An important question
is also the optimal size of the factor base. For these questions I must refer
to Crandall-Pomerance, who also discuss time and storage complexity.

With these difficulties suitable managed, The Index Calculus algorithm wins
over the previous algorithms, but costs a lot more programming effort.

How do we solve the linear system AX ≡ Y (mod N), where Y is a given
column matrix, and the column X is sought ?

By the Chinese Remainder Theorem (B.I.5) we easily reduce to the prime
powers pei

i entering the factorization of N . We will definitely need to pre-
compute the solutions to zi ≡ 1 (mod pei

i ); zi ≡ 0 (mod p
ej

j ), j 6= i.

Gaussian elimination modulo a prime p is just like the real case; the important
thing is that we need to, and can, invert non-zero pivot elements, hence create
zeros in the rows below them.

As for prime powers, we need to know how to pass from pe to pe+1. We do
so by a kind of Henselian refinement (cf. B.VII.3), as follows.

Suppose we know

AX ≡ Y (mod pe); AX = Y + peV
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We modify X to X + peU . U is then found from the condition

A(X + peU) ≡ Y + peAU + peV ≡ Y (mod pe+1),

i.e.,

AU + V ≡ 0 (mod p).

If A is a square matrix, the determinant of which is not divisible by p we get
unique solvability modulo pe. If this holds for every prime power dividing N ,
then, by the CRT, the system is uniquely solvable modulo N .

We can now explain why we want an overdetermined system. The determi-
nant of a square system is far from unlikely to be zero modulo a small prime
factor in p − 1. In that case we will get a parametrical solution. Working
with these is a bit messy.

For instance, if the solution modulo 2 is v0+tv1, it may very well happen that
v0+v1, but not v0, refines to a solution modulo 4 (assuming p ≡ 1 (mod 4)).
Here, e.g., the first four equations form a subsystem the determinant of
which is zero. The last four have determinant= 3, a factor in 2016, etc.
By overdetermination we hope to force unique solvability modulo all prime
factors.

One may not need a complete factorization of N . Should we work modulo a
composite integer M and encounter a non-invertible, non-zero, pivot element
a, (a,M) > 1, we can factorize further!

Pollard Rho

The Pollard rho method creates collisions am · gn ≡ aq · gr (mod P ) through
a pseudo-random iterative process. Then am−q ≡ gr−n (mod P ). At the
same time we want gx ≡ a (mod P ), so that gr−n ≡ gx(m−q) (mod P ), i.e.,
r−n ≡ x(m− q) (mod d), where d is the order of g modulo P . The solution
of this congruence is of the form x ≡ x0 (mod d/k) where k = (m − q, d),
and 0 ≤ x0 < d/k.

If k is not too large, one may then find the required x (mod d) by testing
x = x0 + s · (d/k), s = 0, 1, 2, . . . k − 1.

Unlike Baby Steps, Giant Steps, the storage requirements are minimal. Pol-
lard is very easy to program, and there are no sorts or searches. Like the
Steps method, Pollard’s algorithm does not rely on a factorization – on the
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other hand, it does not benefit from a factorization with all prime factors
small.

Therefore it seems reasonable to use it only on the level of congruences mod-
ulo q where q is a prime factor of P − 1. And so I state it in terms of an
element g of known order d, and an element a known to be a power of g
modulo P .

We start with x0 = y0 = 1 = a0g0. By the iteration to be described presently,
we create a sequence xi ≡ amigni (mod P ) and, simultaneously, yi = x2i,
until xi − yi ≡ 0 (mod P ).

We will then have created our collision.

At each turn of the loop we update xi to xi+1, and yi = x2i to x2i+1, and then
to x2i+2 = yi+1. At the same time the exponents are updated. That means
three evaluations at every turn, and many values are computed twice. Here
is the update:

xi+1 ≡


a · xi ≡ ami+1gni (mod p) if 0 < xi ≤ P/3

xi · xi ≡ a2mig2ni (mod p) if P/3 < xi < 2P/3

xi · g ≡ amigni+1 (mod p) if 2P/3 < xi < P

The exponents are of course reduced modulo d each time. (The displayed
formulas show how they are updated, e.g., in the first case mi+1 = mi +
1, ni+1 = ni.)

The expected number of iterations before achieving a collision is somewhere
around

√
d. As soon as xi ≡ x2i (mod P ) the iterates will occur with period

i – the loop of the letter ρ (before that, the algorithm passes through a
pre-period, the stem of the ρ.)

C.VIII.3 Example. P = 2017, again. The primitive root is again g = 5.
We want to solve gx ≡ 23 (mod P ). After 37 turns of the loop (slightly less
than the square root) we get (omitting indices)

x ≡ amgn ≡ y ≡ aqgr ≡ 497 (mod P )

with
m ≡ 1408; n ≡ 1162 (mod P − 1),

q ≡ 0; r ≡ 810 (mod P − 1).

Solving the linear congruence

x(m− q) ≡ r − n (mod P − 1)
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we get
x ≡ 47 (mod 63)

with period 63 = (P − 1)/32.

We first try x = x0 = 47, giving

k ≡ gx0 ≡ 1125 (mod P ).

We then multiply repeatedly by the factor

h ≡ g63 ≡ 500 (mod P )

until we get the right result. It turns out that

k · h3 ≡ 23 (mod P )

so the solution is

x ≡ 47 + 3 · 63 ≡ 236 (mod P − 1).

�

Remark: We will almost certainly get a period (less than or) equal to
(P − 1)/2e where 2e is the full power of 2 dividing P − 1. The reason is
that the middle case involves a doubling of the exponents as long as their
2-power factor is < 2e. Normally that factor is very small compared to P −1.

If the method is used in conjunction with Pohlig-Hellman, the current order
is a prime number q, and the case q = 2 should perhaps be treated separately.
If g is of order 2 modulo P , then the solution of gx ≡ t (mod P ) is easy to
find as we will then have g ≡ −1 (mod P ) and t ≡ ±1 (mod P ).

C.VIII.4 Example. With the worst of luck we could get a period =1 when
working at the prime factor level. While preparing this text I ran Pohlig-
Hellman + rho on gx ≡ y = 29 (mod P ), for the prime modulus P = 2127−1,
with primitive root 43.

The prime factorization of P − 1 is of the form

P − 1 = Q · 77158673929 = Q ·R

where R is the largest prime factor, and Q is the product of 14 smaller
prime factors. Raising g, y to the power Q, and working with period R, after
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418761 turns of the loop I arrived at a collision am · gn ≡ aq · gr (mod P )
with m = q, n = r, not just congruent modulo R!

No use continuing then, as we have entered the period of the iteration.

In such a case one could start over with a modified update function or a low
power of a, correcting afterwards.

I tried the inverse of 29 modulo P :

58669373607058355769547346108925553699,

which worked fine, giving the discrete logarithm

7674656079829188187419548415804075963,

then negated the answer modulo P − 1, giving the result

162466527380640043544267755300080029763.

Computer resources allowing one could run several processes in parallel until
one of them results. �
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Chapter D

Quadratic Reciprocity

D.I The Legendre Symbol

We start with a definition right away:

D.I.1 Definition. Let n be a positive integer, and (a, n) = 1. The
number a is said to be a quadratic residue modulo n if the congruence

x2 ≡ a (mod m)

is solvable. If (a, n) = 1 and the congruence is unsolvable, a is said to be
a quadratic non-residue modulo n.

The property of being a residue or non-residue clearly only depends on the
class of a modulo n.

We will mainly deal with the case when n = a prime number p. In that case
it is convenient to have the Legendre symbol :

107
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D.I.2 Definition. Let p be an odd prime. The Legendre symbol is
defined by the following requirements:

(a
p

)
=


+1 if a is a quadratic residue modulo p

0 if p divides a

−1 if a is a quadratic non-residue modulo p

The case p|a is often left undefined.

In inline formulas the symbol is usually written (a/n).

D.I.3 Example. p = 13. Squaring all the invertible classes we get( a

13

)
= 1 ⇐⇒ a ≡ 1, 4, 9, 3, 12, or 10 (mod 13).

�

Let us see how Euler’s Criterion (C.III.1) from the previous Chapter trans-
lates to this special case. As p is an odd prime, φ(p) = f = p− 1 is even, so
f/(f, 2) = f/2 = (p − 1)/2. The general Euler Criterion then immediately
gives (a

p

)
= 1 ⇐⇒ a(p−1)/2 ≡ 1 (mod p).

Setting a(p−1)/2 = x, we see, by Little Fermat (A.V.9) that x2 ≡ np−1 ≡ 1
(mod p). That congruence has the two solution classes x ≡ ±1 (mod p). By
Lagrange (B.VI.2) it can have no other solutions.

So, in case (a/p) = −1, x must be congruent to −1 modulo p. We arrive at
the following very neat formulation:

D.I.4 Theorem (Euler’s Criterion). Let p be an odd prime, and sup-
pose p does not divide a. Then:(a

p

)
≡ a(p−1)/2 (mod p).
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�

The Legendre symbol has a nice multiplicativity property :

D.I.5 Theorem. Let g be a primitive root modulo the odd prime p.
Then (gk

p

)
= (−1)k.

Proof. The Theorem states simply that the quadratic residues modulo p
are exactly the even powers of g. So, let us study the congruence

x2 ≡ gk (mod p).

Putting x ≡ gy (mod p) we arrive, as usual, at a linear congruence in the
exponents:

2y ≡ k (mod p− 1).

As (p− 1, 2) = 2, this is solvable if and only if 2|k, and the result follows. �

From this we immediately get

D.I.6 Corollary. (ab
p

)
=

(a
p

)( b
p

)
.

Proof. If a ≡ gk (mod p), and b ≡ gl (mod p), both members equal
(−1)k+l = (−1)k(−1)l.

We have assumed that (a, p) = (b, p) = 1. If a or b is divisible by p, both
members equal 0. �

The Corollary could also have been inferred from the Euler Criterion.

D.I.7 Example. The Corollary states among other things that the product
of two quadratic residues or two non-residues modulo an odd prime is a
quadratic residue. The first statement is trivially true, the second is not.
And it is not generally true for a composite modulus. For instance, it is
easy to check (by squaring all invertible classes) that 2,7, and 2 · 7 = 14 are
quadratic non-residues modulo 15. �
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D.I.8 Example. p = 13. It is easy to check that g = 2 is a primitive root
for p (check g6, g4 6≡ 1 (mod 13)). The even powers, hence the quadratic
residues, are:

1 ≡ g0; 4 ≡ g2; 3 ≡ g4; 12 ≡ g6; 9 ≡ g8; 10 ≡ g10 (mod 13).

�

The Theorem of Quadratic Reciprocity will allow us to compute the Legen-
dre symbol by reducing the size of the numbers involved. However, two cases
must be dealt with separately. They are covered by the First and Second Sup-
plementary Theorems, often known by their German name Ergänzungssätze
(“erster und zweiter Ergänzungssatz”).

The first of them is an immediate consequence of the Euler Criterion:

D.I.9 Theorem (First Supplementary Theorem). For an odd
prime p, (−1

p

)
= (−1)(p−1)/2.

�

As (p−1)/2 ≡ 0 (mod 2) if and only if p ≡ 1 (mod 4), the latter congruence
is the condition for −1 to be a quadratic residue modulo the odd prime p.

The second Ergänzungssatz is preceded by a complex version of “Freshman’s
Dream” (A.V.8) from the first Chapter. It deals with complex integers m+
ni,m, n ∈ Z. Two such numbers are said to be congruent modulo p if their
respective real and imaginary parts are.

D.I.10 Lemma (Freshman’s Dream). For ordinary, or complex, in-
tegers, and for any prime number p,

(a+ b)p ≡ ap + bp (mod p).

The proof in the complex case is the same as in the real case. �
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D.I.11 Theorem (Second Supplementary Theorem). Let p be an
odd prime. Then

(2

p

)
=

{
1 if p ≡ 1, 7 (mod 8),

−1 if p ≡ 3, 5 (mod 8).

Proof. We start with the undisputable identity (1 + i)2 = 2i, which we
combine with an application of Freshman’s Dream, (1+ i)p ≡ 1+ ip (mod p).
Using

(1 + i)p = (1 + i) · (1 + i)2·(p−1)/2 = (1 + i)(2i)(p−1)/2

we arrive at

1 + ip ≡ (1 + i) · 2(p−1)/2 · i(p−1)/2 (mod p). (∗)

We continue with the case p ≡ 1 (mod 4), p = 4k + 1, and leave the details
of the other case as an exercise.

In this case, ip = i4ki = i, so we have the factor 1 + i in both members. We
first multiply the two members by 1 − i, giving the common factor 2, then
by (p + 1)/2, which is the inverse of 2 modulo p. By these operations the
common factor 1 + i cancels.

The second factor in the right member of (*) is congruent to (2/p), by Euler’s
Criterion (D.I.4). The third equals 1 if p ≡ 1 (mod 8), and −1 if p ≡ 5
(mod 8) (check!). Putting everything together we arrive at

(2

p

)
=

{
1 if p ≡ 1 (mod 8),

−1 if p ≡ 5 (mod 8).

If p ≡ 3 (mod 4), the left member of (*) equals 1 + ip = 1 − i = −i(1 + i),
so again the factor 1 + i cancels, and the rest is as above. �

This Theorem is often stated in the form(2

p

)
= (−1)(p2−1)/8
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Of, course, this power is never computed. The smallest positive remainder of
N > 0 modulo 8 is most conveniently found using the “bitwise and” operator
on N and 7.

The following is the main result of this Chapter, and the deepest Theorem
in this text. Over the years some 200 proofs have been produced, none of
them very direct or intuitive, except maybe in some other, more advanced,
context. We will prove it in later Sections.

The first to prove it was C.F. Gauß (1777-1855) who produced at least six
different proofs. We will prove it several times in later Sections.

D.I.12 Theorem (Quadratic Reciprocity). Let p, q be two different
odd primes. Then (p

q

)
=

(q
p

)
· (−1)(p−1)(q−1)/4.

Equivalently, the two symbols are equal, except if p ≡ q ≡ 3 (mod 4)
(check the cases!).

�

D.I.13 Example.

a) 107 is a prime number, ≡ 3 (mod 4). We compute the symbol (91/107):( 91

107

)
=

(7 · 13

107

)
=

( 7

107

)( 13

107

)
= −

(107

7

)(107

13

)
= −

(2

7

)( 3

13

)
.

The minus sign comes from 7 ≡ 107 ≡ 3 (mod 4) and the Reciprocity The-
orem. Note that 13 ≡ 1 (mod 4), so that factor contributes no change of
sign.

The last equality comes from the fact that the symbol only depends on the
class of the numerator modulo the denominator, i.e., we have replaced 107
with its remainders on division by 7, and 13.

By the Second Supplementary Theorem, (2/7) = 1. (D.I.11).

And, finally, (3/13) = (13/3) = (1/3) = 1, as 13 ≡ 1 (mod 4), so the result
is −1; 91 is a non-residue modulo 107.
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The Jacobi symbol (D.II.1), to be introduced in the next Section, will obviate
the need for factorization.

b) In this example we study the symbol (−3/p) for any odd prime p 6= 3.
The First Supplementary Theorem (D.I.9), and Reciprocity, give(−3

p

)
=

(−1

p

)(3

p

)
= (−1)(p−1)/2 · (−1)(p−1)(3−1)/4

(p
3

)
.

The two signs in the last member are equal, so we are left with

(−3

p

)
=

(p
3

)
=

{
1 if p ≡ 1 (mod 3),

−1 if p ≡ 2 (mod 3).

�

We next deal with prime powers and composite moduli.

D.I.14 Theorem.

a) Let p be an odd prime, k a positive integer, and a an integer not
divisible by p. Then a is a quadratic residue modulo pk if and only if
(a/p) = 1.

b) The odd integer a is a quadratic residue modulo 2e, e ≥ 3, if and only
if a ≡ 1 (mod 8).

Proof. Part b) has been proved twice before (B.VII.5, C.IV.9) so let us
turn to part a).

“Only if” is easy: if x2 ≡ a (mod pk), then, a fortiori, x2 ≡ a (mod p).

The “if” part is an easy induction, using Hensel’s Lemma (B.VII.3). Suppose
we have found an x satisfying x2 ≡ a (mod pj). With f(x) = x2−a, we have
f ′(x) = 2x. As p - x, hence p - 2x, Hensel’s Lemma shows that x refines to
y ≡ x (mod pj) with f(y) = y2 − a ≡ 0 (mod pj+1). �

D.I.15 Example. Is 57 a quadratic residue modulo 784 = 24 · 72?
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In the Section on algebraic congruences (see B.VII) we proved that a congru-
ence is solvable, modulo a product of relatively prime moduli, iff it is solvable
modulo both factors.

So the question is reduced to the solvability of x2 − 57 ≡ 0 modulo 24, and
72. We easily compute (57/7) = (1/7) = 1, proving solvability modulo 72.

Also, 57 ≡ 1 (mod 8), so the congruence is solvable modulo 24 as well. The
answer is yes, 57 is a quadratic residue modulo 784.

(The number of solution classes is 8 – why? – and the smallest positive
solution is 29.) �

D.I: Exercises

1. Complete the proof of the Second Supplementary Theorem for the cases
p ≡ 3, 7 (mod 8).

2. Find a primitive root modulo 11 and one modulo 13. Use them to describe
and compute all quadratic residues and non-residues in both cases.

Then do the same for cubic residues and explain the difference. (A cubic
residue is an x representable as x ≡ y3 (mod p), (y, p) = 1.)

3. Let p be an odd prime. What is the number of squares (not just invertible
ones) modulo p? Modulo pk (do odd and even k separately)? Modulo 2k?
Modulo an arbitrary integer?

4. Solve the congruence x3 ≡ 8 (mod 41), with a minimum of computation or
searching (reduce to a quadratic congruence). Then solve x3 ≡ 8 (mod 412).

5. The integer a - p is a biquadratic residue if the congruence x4 ≡ a (mod p)
is solvable.

(a) Show that −1 is a biquadratic residue modulo the odd prime p if and
only if p ≡ 1 (mod 8).

(b) p = 4k + 3, k a positive integer, is a prime number. Show for every
integer a, p - a, that exactly one of a or −a is a quadratic residue
modulo p. Then show that a is a biquadratic residue modulo p if and
only if a is a quadratic residue.

6. Assume that −1 is a quadratic residue modulo the odd prime p, i.e., that
p ≡ 1 (mod 4). Show that −4 is a biquadratic residue modulo p. For
instance, use the solutions to X2 ≡ −1 (mod p) to express the solutions to
X4 ≡ −4 (mod p).
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7. There are infinitely many prime numbers ≡ 1 (mod 4). Assume the con-
trary, and let P be the product of all prime numbers ≡ 1 (mod 4). Derive
a contradiction by considering the prime factors of 4P 2 + 1.

Similarly, prove that there are infinitely many primes ≡ 1 (mod 6).

8. (a) The symbol (−5/p), where p is an odd prime, depends only on the
class of p modulo 20. Show this, and determine the symbol in all
cases. Exemplify each case.

(b) Replace −5 by ±q, q prime 6= p. Describe (motivate!) in which cases
the quadratic character (±q/p) depends only on the class of p modulo
q, and in which cases it depends on a larger modulus.

9. The prime p is given by p = 8n + 1, where n is a positive integer. Let g
be a primitive root modulo p. Show that the solutions to the congruence
x2 = ±2 are given by

x ≡ ±(g7n ± gn) (mod p).

10. Let p be an odd prime. Show that (a/p) = −1 if and only if ordp(a) and
p− 1 are divisible by exactly the same power of 2.

11. (a) p, q are two different odd primes, p ≡ ±q (mod 4a). Show that (a/p) =
(a/q). Hint: It is enough to prove this for a= odd prime (why?).

(b) Determine (3/p) for p = 5, 7, 11, 13.

(c) Conclude that 3 is a quadratic residue modulo the odd prime p if and
only if p ≡ ±1 (mod 12).

12. Let p be a prime number. Find a criterion for the solvability of x2 ≡ a
(mod pe) if a = pkq, (p, q) = 1, k < e.

13. p, q, are odd primes, q ≡ 1 (mod p). Show that plus or minus p is a quadratic
residue modulo q. Exemplify.

14. (a) p is an odd prime. Show that the polynomial congruence f(X) =
Xp−1 − 1 ≡ 0 (mod p) has the roots 1, 2, . . . , p− 1 modulo p.

(b) Use this fact to determine ∏
1≤j≤(p−1)/2

(X2 − j2)

and ∏
1≤j≤(p−1)/2

(X − j2)

modulo p.



116 CHAPTER D. QUADRATIC RECIPROCITY

(c) Finally determine the two polynomials whose roots modulo p are all
quadratic residues, and all quadratic non-residues. Connect with Eu-
ler’s Criterion (C.III.1), and note that you never used the existence of
primitive roots.

(d) Determine the product modulo p of all the quadratic residues, using
the previous item and/or primitive roots.

15. p is an odd prime number. Compute or describe (modulo p) the products

(a) 1 · 2 · · · (p− 1)/2

(b) 2 · 4 · · · (p− 1)

(c) 1 · 3 · 5 · · · (p− 2)

The answer depends on the class of p modulo 4 or 8.

16. We want a direct proof that (−3
p ) equals 1 if p ≡ 1 (mod 3). Let r be an

element of order 3 modulo p (prove its existence!). Show that r2 + r +1 ≡ 0
(mod p), and complete the squares.

(a) Now assume that p ≡ 2 (mod 3). Show that the congruences x3 ≡ a
(mod p) are uniquely solvable p, for all a. Choosing a = 8 (for exam-
ple!), prove that the congruence x2 +2x+4 ≡ 0 (mod p) is unsolvable,
hence (−3

p ) = −1.

(b) Now let us prove that p ≡ 1 (mod 5) yields (5
p) = 1. Let r be of order 5

(prove existence!), show that 1+ r + r2 + r3 + r4 ≡ 0 (mod 5), then set
x = r + r4 and show that x2 + x ≡ 1 (mod 5). Complete the squares.

17. (a) We are looking for solutions to x2 ≡ −1 (mod p) where p ≡ 1 (mod 4)
is a prime number. Show, using Euler’s Criterion, how a solution may
be determined once we know a quadratic non-residue a (mod p).

(b) In the two cases p ≡ 5 (mod 8) and p ≡ 17 (mod 24) one special
(small) value can be used for a. Exemplify the cases p = 29, 41 (and
thereby solve the congruence in (a)). The remaining case, therefore, is
p ≡ 1 (mod 24).

18. Let p be an odd prime number. Show that the least positive quadratic
non-residue modulo p is a prime.

19. Let p be a prime of the form

p = 2q − 1

where q is a prime ≡ 1 (mod 4). Show that 10 is a quadratic residue mod-
ulo p. Exemplify.
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20. Assume that both p and q = 2p−1 are primes, e.g., p = 7 and q = 13. Show
that n = p(2p− 1) is a pseudoprime to the base b (p. 31) if and only if b is
a quadratic residue modulo n.

21. Let p be an odd prime. x is an integer satisfying x 6≡ ±1 (mod p).

(a) Which u (mod p) satisfy the congruence

x− 1 ≡ u(x + 1) (mod p)

for some x?

(b) Using a), determine the number of classes x2 − 1 (mod p) that are
quadratic residues or non-residues. Their number depends on the class
of p modulo 4.

(c) Suppose p ≡ 3 (mod 4). Exhibit a bijective correspondence between
those classes x2−1 (mod p), x 6≡ 0 (mod p) that are quadratic residues
modulo p and those that are not. Hint: look at inverse pairs.

(d) What can be said about the classes x2 − a2 (mod p) for a fixed and
x 6≡ ±a (mod p)?

22. Let p be a prime number ≡ 3 (mod 4), a - p. Show that a is a primitive
root modulo p if and only if the order of −a modulo p is (p− 1)/2.

23. Consider the polynomial

f(X) = (X2 − p)(X2 − q)(X2 − pq),

where p, q are distinct odd primes. Obviously there are no rational integer
roots. Can you find p, q (or even some simple sufficient condition) such that
the equation is solvable modulo every integer n > 0? Start with primes and
prime powers.

24. The polynomial X4 +1 has non-trivial factorizations modulo every prime p.
Prove the following cases.

(a) Modulo 2, or p ≡ 1 (mod 8): four linear factors.

(b) Modulo p ≡ 5 (mod 8): two quadratic factors, without linear term.

(c) Modulo p ≡ 3, 7 (mod 8): two quadratic factors with linear terms.
Note that the numbers ±2 have opposite quadratic characters mod-
ulo p.
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D.II The Jacobi Symbol

The Jacobi symbol extends the Legendre symbol, and the notation is the
same (C G Jacobi, Prussian mathematician, 1804-1851).

D.II.1 Definition. Let n be an odd positive integer,

n =
k∏

i=1

pei
i , ei > 0 ∀i,

its prime factorization. The Jacobi symbol is then defined, for arbitrary
integers m, (m,n) = 1, by

(m
n

)
=

k∏
i=1

(m
pi

)ei

.

(The factors entering the right member are Legendre symbols.)

It would not be unnatural to define (m/n) = 0 if (m,n) > 1, but it is rarely
done.

D.II.2 Example. If m is a quadratic residue modulo n, then all the Leg-
endre symbols in the right member above equal +1. So (m/n) = 1 is a
necessary condition for m to be quadratic residue. It is not sufficient. For
instance, ( 2

15

)
=

(2

3

)(2

5

)
= (−1)(−1) = 1

but 2 is not a quadratic residue modulo 15. �

This “defect” of the Jacobi symbol has proved useful in Cryptography.

The Jacobi symbol has nice multiplicativity properties :
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D.II.3 Theorem.

a) ( m

n1n2

)
=

(m
n1

)(m
n2

)
.

b) (m1m2

n

)
=

(m1

n

)(m2

n

)
.

Proof. Part a) follows readily from the definition. Part b) is an easy
consequence of the corresponding property of the Legendre symbol. �

The two Supplementary Theorems, and the Quadratic Reciprocity Theorem,
have their counterparts for the Jacobi symbol:

D.II.4 Theorem. For odd positive integers m,n:

a) (−1

n

)
= (−1)(n−1)/2.

b) ( 2

n

)
= (−1)(n2−1)/8.

c) (m
n

)
=

( n
m

)
(−1)(m−1)(n−1)/4.

Proof. The proof of each statement is a fairly easy induction on the num-
ber of prime factors involved. The base step in each of parts a)-c) is the
corresponding result for prime numbers.

What is needed, then, is the identity ab− 1 = a(b− 1)+ (a− 1) so that, e.g.,

(−1)(ab−1)/2 = (−1)a(b−1)/2(−1)(a−1)/2 = (−1)(b−1)/2(−1)(a−1)/2
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for odd integers a, b. Letting n = ab, b prime, this gives the induction step
for part a).

For b), replacing a by a2, and b by b2, we get, similarly,

(−1)(a2b2−1)/8 = (−1)a2(b2−1)/8(−1)(a2−1)/8 = (−1)(b2−1)/8(−1)(a2−1)/8.

c) is dealt with similarly, exercise. �

D.II.5 Example. The following computation determines the Legendre sym-
bol (91/103), without factoring.( 91

103

)
= −

(103

91

)
= −

(12

91

)
= −

( 22

91

)( 3

91

)
=

(91

3

)
=

(1

3

)
= 1.

In fact, 202 ≡ 91 (mod 103).

The first step comes from 91 ≡ 103 ≡ 3 (mod 4), and Reciprocity. The
second is division. The third extracts two factors 2 from the numerator of
the symbol. Then comes another Reciprocity step, and finally one more
division. The process continues until we get a one in the numerator.

If we try, somewhat improperly, to compute a Jacobi symbol (m/n), (m,n) >
1, following the formal rules, we will arrive at a 0, not a 1, in the numerator.
Accepting the definition (m/n) = 0 in this case, we need not really check
relative primality before computing!

One example of this:(21

33

)
=

(33

21

)
=

(12

21

)
=

( 2

21

)2

·
( 3

21

)
=

(21

3

)
=

(0

3

)
.

The reason for the zero is that (apart from extraction of 2-factors) we are
mainly doing Euclid on the odd numbers 21, 33. – inverting and dividing.
The gcd of the numerator and denominator remains unchanged, =3, through
the process. �

D.II.6 Example. Another example, with fewer explanations.( 93

107

)
=

(107

93

)
=

(14

93

)
=

( 2

93

)( 7

93

)
= −

( 7

93

)
= −

(93

7

)
= −

(2

7

)
= −1.

We used the Second Supplementary Theorem twice, noting, e.g., that 93 ≡ 5
(mod 8). In the Reciprocity Steps we used 93 ≡ 1 (mod 4). �
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D.II.7 Example. This time the denominator, 1729, is not a prime number.
We compute the symbol (17/1729) (check the steps!):( 17

1729

)
=

(1729

17

)
=

(12

17

)
=

( 22

17

)( 3

17

)
=

( 3

17

)
=

(17

3

)
=

(2

3

)
= −1.

However, for (a, 1729) = 1, the factorization 1729 = 7 · 13 · 19, along with
Little Fermat, implies

a36 =


(a6)6 ≡ 1 (mod 7)

(a12)3 ≡ 1 (mod 13)

(a18)2 ≡ 1 (mod 19)

whence a36 ≡ 1 (mod 7 · 13 · 19). As 1728/2 = 864 = 36 · 24 we get (with
a = 17)

17(1729−1)/2 ≡ 1 6≡ −1 (mod 1729),

i.e., the Euler Criterion (D.I.4) does not hold for the Jacobi symbol in general.
As the simple example 27 ≡ 8 (mod 15) shows, we need not even get a +
or −1 in trying to apply the Euler Criterion. So normally we would not fall
into the trap here. �

This “defect” used to be exploited in a probablistic primality test, that of
Solovay-Strassen. The test detects a composite number with probability at
least 50%. It has however been superseded by the Miller-Rabin test (Section
L.VI), which has a greater chance of detecting compositeness, and, in fact,
detects all the composites that Solovay-Strassen does. They are equivalent
if n ≡ 3 (mod 4).

D.II: Exercises

1. Compute the Legendre symbol (7411/9283)

2. Determine the number of solutions to the quadratic congruences x2+x+1 ≡
0 (mod p) and x2 + x + 21 ≡ 0 (mod p) where p = 83 and 97.

3. (a) Let p be an odd prime, representable as p = a2 + b2 where a is odd
(later we will show that every prime p ≡ 1 (mod 4) has such a repre-
sentation.) Show that a is a quadratic residue modulo p.

(b) If p ≡ 5 (mod 8), also determine (b/p).
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4. Show that no integers can be represented in any of the forms

4x2 + 1
y2 + 2

,
4x2 − 1
y2 − 2

,
x2 − 2
2y2 + 3

,
x2 + 2
3y2 + 4

where x, y, y2 > 1 are integers.

Also find examples, with y = 2·prime, of integers of the form (x2+1)/(y2+2)
and (x2 + 1)/(y2 − 2).

5. a, b are integers, b > 0 is odd, and 2a + b > 0. Compare the two symbols
(a/(2a + b)) and (a/b).

The answer depends on the class of a modulo 4.

6. Suggestions for computing: A Jacobi routine, returning (m/n) if (m,n) =
1, and 0 otherwise. The program should warn against illegitimate input.
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D.III A Cryptographic Application

The “defect” of the Jacobi symbol, not to fully distinguish between quadratic
residues and non-residues, is at the heart of several cryptographic schemes.
Here we present one due to Goldwasser and Micali.

Bob wants to send a message to Alice. For the sake of simplicity, let us
assume it consists of one bit m = 0 or 1.

Alice chooses two large prime numbers p, q of approximately the same size.
The product n = pq is made public (it is assumed that n is so large that
it cannot be factored in a reasonable amount of time). Also, a number y, a
non-residue modulo p and q, is chosen at random and published. y satisfies
the following: (y

p

)
=

(y
q

)
= −1;

(y
n

)
= 1.

Now Bob chooses a number x at random (the probability that (x, n) > 1 is
very small) and computes

c ≡

{
x2 (mod n) if m = 0,

yx2 (mod n) if m = 1.

He then sends c.

Alice, knowing p and q, evaluates (c/p) and (c/q). She concludes

m =

{
0 if both symbols = 1

1 if the symbols = −1

Eve, the eavesdropper, knowing only n, can only compute (y/n) = 1 in either
case.

D.IV Gauß’ Lemma

Gauß’ Lemma is used in many proofs of Quadratic Reciprocity. It also pro-
duces very quick proofs of the Supplementary Theorems. Therefore it is
worthy of its own Section. However, even stating it takes some preparation.
Basic to the Lemma (and to other discussions of Quadratic Residues) is the
notion of a half-system of residues. Let p be an odd prime. One example of
such a half-system is

P = {1, 2, 3, . . . , p− 1

2
}
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It obviously represents half of the p − 1 invertible classes modulo p. The
decisive property, earning the name, is the following:

D.IV.1 Lemma. For each x, p - x there is exactly one r ∈ P , and one
sign, + or -, such that

x ≡ ±r (mod p).

Proof. This is almost obvious, as the numbers m, 0 < m < p, not in P ,

m =
p+ 1

2
,
p+ 3

2
, . . . , p− 2, p− 1,

are congruent to

−p− 1

2
, . . . ,−2,−1

modulo p. �

Now take an arbitrary a, p - a, and consider the products ar, r ∈ P . As we
have seen, for each r ∈ P there exists an s ∈ P , such that ar ≡ ±s (mod p).

No s can appear twice. For if there were r, r′, s ∈ P satisfying

ar ≡ s (mod p)

ar′ ≡ −s (mod p)

then, adding the two congruences, we would get p|a(r+r′). This is impossible,
as p is prime, p - a, and 2 ≤ r + r′ ≤ p− 1.

And if there were r, r′, s ∈ P satisfying

ar ≡ s (mod p)

ar′ ≡ s (mod p)

we would have p|a(r − r′), hence r ≡ r′ (mod p).

So we arrive at a new Lemma:

D.IV.2 Lemma. Suppose p - a. Letting r run through the half-system
P , and setting ar ≡ ±s, s ∈ P , the s obtained run through all of P , each
s ∈ P appearing exactly once.
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�

D.IV.3 Example. We exemplify the last Lemma. Letting p = 11 the half-
system P consists of 1, 2, 3, 4, 5. Let a = 3. We then get

3 · 1 ≡ 3 (mod 11)
3 · 2 ≡ −5 (mod 11)
3 · 3 ≡ −2 (mod 11)
3 · 4 ≡ 1 (mod 11)
3 · 5 ≡ 4 (mod 11)

and the numbers 1, 2, 3, 4, 5 appear exactly once in the right members. �

We can now finally state and prove Gauß’ Lemma.

D.IV.4 Theorem (Gauß’ Lemma). Let the r, s be as in the previous
Lemma. Let N be the number of minus signs appearing in the congru-
ences ar ≡ ±s (mod p). Then(a

p

)
= (−1)N .

Proof. Let R denote the product of all the r ∈ P , i.e., ((p−1)/2)!, reduced
modulo p. Multiplying all the congruences ar ≡ ±s (mod p), and using the
previous Lemma, we get the congruence a(p−1)/2R = (−1)NR (mod p).

As p - R, the factor R cancels. By the Euler Criterion we are left with(a
p

)
≡ a(p−1)/2 ≡ (−1)N (mod p).

�

D.IV.5 Example. In the Example just before the Theorem, the number of
minus signs is even, N = 2. Therefore (3/11) = 1. Indeed, 52 ≡ 3 (mod 11).
�

D.IV.6 Example (Second Supplementary Theorem, again.). The case
a = 2 is particularly attractive, as 0 ≤ 2r ≤ p−1 for all r ∈ P . Therefore, the
r giving rise to minus signs, are simply those for which (p−1)/2 < 2r ≤ p−1.
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Let us study the case p ≡ 3 (mod 4) in more detail. We can group the
elements in P in the following manner:{

1, 2, . . . ,
p− 3

4

} {p+ 1

4
, . . . ,

p− 3

2
,
p− 1

2

}
For r from the first group, 0 ≤ 2r ≤ (p − 3)/2 < (p − 1)/2. For r from
the second group, (p − 1)/2 < (p + 1)/2 ≤ 2r ≤ p − 1, so it is the second
group that produces the minus signs. The number of elements in that group
is (p− 1)/2− (p− 3)/4 = (p+ 1)/4, so

(2

p

)
= (−1)(p+1)/4 =

{
1 if p ≡ 7 (mod 8)

−1 if p ≡ 3 (mod 8)

The case p ≡ 1 (mod 4) is easier, and left to the reader. �

D.IV: Exercises

1. Complete the last Example just above.
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D.V The “Rectangle Proof”

We will give several proofs of Quadratic Reciprocity. The first, by Gauß, is
the one usually given in the literature. It leans heavily on the Gauß Lemma
(D.IV.4). We start with a variant of that Lemma.

D.V.1 Lemma. In Gauß’ Lemma in the previous Section, let a = q,
an odd prime 6= p, and let P denote the halfsystem j = 1, 2, . . . ,
(p − 1)/2 (cf. p. 123). Further let N denote the number of j ∈ P ,
for which qj ≡ −k (mod p) for some k ∈ P .

Then
(p−1)/2∑

j=1

⌊jq
p

⌋
≡ N (mod 2),

so that, S denoting the sum in the left member,

(−1)S = (−1)N =
(q
p

)
.

Proof. Let j ∈ P , i.e., 1 ≤ j ≤ (p− 1)/2. Divide by p:

jq =
⌊jq
p

⌋
· p+ rj, 0 ≤ rj < p. (∗)

The remainder rj is either of the form k ∈ P or p−k =≡ k+1 (mod 2), k ∈
P . By the previous Section, each k ∈ P appears exactly once.

The number of remainders ≡ k+ 1 (mod 2), k ∈ P, is N . So the sum of the
remainders is the sum of all the k’s plus N ones:

(p−1)/2∑
j=1

rj ≡
(p−1)/2∑

k=1

k +N (mod 2).

Summing the equations (*) for j = 1, 2, . . . , (p− 1)/2 therefore gives

q

(p−1)/2∑
j=1

j ≡ S · p+

(p−1)/2∑
k=1

k +N (mod 2).
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As p, q are odd, the two sums cancel modulo 2, and the equation reduces to

0 ≡ S +N (mod 2); S ≡ N (mod 2).

�

We now turn to the proof of the Theorem. Form the rectangle having vertices
(0, 0), (p/2, 0), (0, q/2), (p/2, q/2) in an orthonormal system. We count the
number of lattice points (x, y), x, y ∈ Z, in the interior of that rectangle, i.e.,
those having 0 < x < p/2; 0 < y < q/2; their number is obviously

p− 1

2
· q − 1

2
.

We can also count these points by drawing the diagonal from (0, 0) to (p/2, q/2)
and counting the number of points above and below it.

The equation of the diagonal is y = qx/p; py−qx = 0. As (p, q) are relatively
prime there are no lattice points on the diagonal.

We now count the number of points (x, y) below the diagonal. For given
x = j, 0 < j ≤ (p− 1)/2, we must have 0 < y < qj/p; 1 ≤ y ≤ bqj/pc, so the
number of admissible y is ⌊jq

p

⌋
.

Summing over j, the number of lattice points below the diagonal is then

S =

(p−1)/2∑
j=1

⌊jq
p

⌋
satisfying

(−1)S = (−1)N =
(q
p

)
,

by the Lemma.

In the same manner, interchanging the roles of p and q, the number of lattice
points above the diagonal equals

T =

(q−1)/2∑
j=1

⌊jp
q

⌋
satisfying

(−1)T =
(p
q

)
.
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As

S + T =
p− 1

2
· q − 1

2

we arrive at (q
p

)(p
q

)
= (−1)S+T = (−1)(p−1)(q−1)/4

thereby finishing the proof. �

D.VI Gerstenhaber’s Proof

Many proofs of Quadratic Reciprocity calculate with complex roots of unity.
The most accessible among these seems to be the proof by Murray Gersten-
haber in the American Mathematical Monthly, in 1963. The idea goes back
to F.G.M. Eisenstein (1823-1852).

Let p and q denote two different odd primes. We introduce the following
notation.

ω := exp(
2πi

p
), ε := exp(

2πi

q
).

These complex numbers satisfy ωp = εq = 1. From some elementary course
you know that the roots of the equations Xp = 1 and Xq = 1 are given by
the powers ωj, j = 0, 1, . . . p − 1 and εk, k = 0, 1, . . . , q − 1. The exponents
are full sets of representatives modulo p and q, respectively.

We further have
εj = εk ⇐⇒ j ≡ k (mod q).

As q is odd, (q,−2) = 1, so the set 0,−2,−4, . . . ,−2(q−1) is also a full set of
representatives modulo q (we proved this in the context of Euler’s Theorem,
Lemma A.V.10.)

So the roots to the equation Xq − 1 = 0 may also be written εk, k =
0,−2,−4, · · · − 2(q − 1). This yields the factorization

Xq − 1 = (X − 1)(X − ε−2)(X − ε−4) · · · (X − ε−2(q−1)).

Substituting X → X/Y , and multiplying both members by Y q then yields

Xq − Y q = (X − Y )(X − ε−2Y )(X − ε−4Y ) · · · (X − ε−2(q−1)Y ).

From this we get the following Lemma:
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D.VI.1 Lemma.

Xq − Y q = (X − Y )(εX − ε−1Y )(ε2X − ε−2Y ) · · · (εq−1X − ε1−qY ).

Proof. We start with the factorization just derived:

(Xq − Y q) = (X − Y )(X − ε−2Y )(X − ε−4Y ) · · · (X − ε−2(q−1)Y ).

Each factor in (X − ε−2mY ) can be re-written as ε−m(εmX − ε−mY ). The
exponents of the extracted factors form an arithmetic sum. Their product is
therefore

(ε)−1−2−···−(q−1) = (ε)−(q−1+1)(q−1)/2 = 1,

as the exponent is divisible by q (note that (q − 1)/2 is an integer). �

One final Lemma precedes the proof of the Quadratic Reciprocity Theorem.

D.VI.2 Lemma. Suppose (a, p) = 1. Let P again denote the half-
system 1, 2, . . . , (p− 1)/2.

∏
k∈P

ωak − ω−ak

ωk − ω−k
=

(a
p

)
.

Proof. By the arguments in the previous Section, it is clear that each
factor in the denominator appears exactly once in the numerator, with the
same sign if ak ≡ s (mod p), s ∈ P , and the opposite sign if ak ≡ −s
(mod p), s ∈ P . The Lemma thus follows immediately from Gauß’ Lemma.
�

We are now ready to prove the Quadratic Reciprocity Theorem:

Proof. We put a = q in the results above and further refine the product
in the last Lemma. We look more closely at a typical factor.

Dividing the identity of the first Lemma by X − Y , and substituting
X = ωk, Y = ω−k, we may write

ωqk − ω−qk

ωk − ω−k
=

∏
1≤j≤q−1

(εjωk − ε−jω−k).
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Note that k runs over the half-system P of representatives modulo p, and
that j runs over a full system modulo q. This injustice is remedied by pairing
the factors corresponding to j , 1 ≤ j ≤ (q − 1)/2, and q − j.

Remembering that εq = 1, we can replace q − j by −j, obtaining

(εjωk − ε−jω−k)(ε−jωk − εjω−k) = ω2k + ω−2k − ε2j − ε−2j.

With 1 ≤ k ≤ (p− 1)/2 and j now running over the half-system Q : 1 ≤ j ≤
(q − 1)/2, we have (p− 1)(q − 1)/4 such factors. Their product is (q/p):(q

p

)
=

∏
k∈P

ωak − ω−ak

ωk − ω−k

=
∏
k∈P

∏
j∈Q

(ω2k + ω−2k − ε2j − ε−2j)

We now interchange the roles of p and q. In exactly the same manner we
arrive at the representation of (p/q) as a product:(p

q

)
=

∏
k∈P

∏
j∈Q

(ε2j + ε−2j − ω2k − ω−2k).

This product is made up of the same (p− 1)(q − 1)/4 factors as before, but
with opposite signs. This immediately gives the desired result(p

q

)
= (−1)(p−1)(q−1)/4

(q
p

)
.

�

* D.VII Zolotareff’s Proof

This proof requires a fair amount of preparation on permutations and their
signs. Most of the material will be familiar to those who have taken a course
in Abstract Algebra. However, for the convenience of the reader I include a
full discussion of the algebraic prerequisites.

A permutation of a finite set is the same as a bijective function from the
set to itself. The elements of the set will be often be denoted 1, 2, 3, . . . n or
0, 1, 2, . . . n− 1. The latter notation will be the most natural in dealing with
residue classes mod n, for instance.
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Permutations are often notated like this:

s :

(
1 2 3 4 5
2 1 4 5 3

)
Each element in the second row is the image of the one above it, that is,
s(1) = 2, s(2) = 1, s(3) = 4, s(4) = 5, s(5) = 3.

The product of two permutations is defined as their composition: st(m) =
s(t(m)). The product of s taken d times is of course denoted sd. The inverse
permutation is denoted s−1. It can be visualized by swapping the two rows
in the representation above, and permuting the columns so as to get the first
row in straight order:

s−1 :

(
2 1 4 5 3
1 2 3 4 5

)
=

(
1 2 3 4 5
2 1 5 3 4

)
As there are finitely many permutations on a finite set, for a given s two
powers must be equal: sd = se, d < e. Multiplying by s−d = (s−1)d gives
se−d = id, the identical permutation, id(m) = m.

The least positive k with sk = id is called the order of s. The reader is
invited to check that the order of the s given above is 6.

We have already encountered the inverse of s If the order of s is d, so that
sd= id, then s−1 = sd−1.

A permutation on a set partitions the set into disjoint orbits.

The elements m,n are said to belong to the same orbit if n = sk(m) for
some non-negative k. The reader familiar with the concept will easily check
that this is an equivalence relation. For instance, symmetry follows as n =
sk(m) ⇐⇒ m = sd−k(n), where d is the order of s.

The elements of one orbit are permuted cyclically. Imagine them arranged in
a circular fashion with the permutation acting counter-clock-wise, mapping
one element to the next along the circle.

In our example, one orbit is 1, 2: s(1) = 2, s(2) = 1. We use the notation
s = (1 2) to describe this permutation. It could also be written (2 1).

There is one other orbit, 3, 4, 5: s(3) = 4, s(4) = 5, s(5) = 3, denoted by
s = (3 4 5) = (4 5 3) = (5 3 4). Then s is the product of these two in arbitrary
order: s = (1 2)(3 4 5) = (3 4 5)(1 2) (the right factor acts first). The two
cycles commute, because they are disjoint.
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We now define the sign of a permutation. It is commonly defined as (−1)N

where N is the number of inversions, the number of times a larger number
precedes a smaller number in the second row of the matrix described above.

In our example the inversions are 2 = s(1) > s(2) = 1, 4 = s(3) > s(4) = 3,
and 5 = s(4) > s(5) = 3. Their number is odd, hence the sign is −1.
The cyclic permutation (3 4 5) has two inversions: 4 = s(3) > s(5) = 3,
5 = s(4) > s(5) = 3. Their number is even, hence the sign +1.

We use the terms odd and even for permutations having sign −1 or +1,
respectively.

We now determine the sign of a product.

Let us introduce the expression

∆ =
∏

n≥k>j≥1

(Xk −Xj)

where the Xj are indeterminates, and the elements of the set are notated
1, 2, . . . , n.

For any polynomial p(X1, X2), . . . , Xn) we set

ps(X1, X2), . . . , Xn) = p(Xs(1), Xs(2), . . . , Xs(n))

so that, in particular,

∆s =
∏

(Xs(k) −Xs(j)).

Each factor of the product ∆ enters ∆s exactly once, possibly with the op-
posite sign. The number of factors in either case is n(n− 1)/2.

Therefore
∆s = ±∆.

Each factor (Xs(k) − Xs(j)) having s(k) < s(j) contributes a minus sign to
the product, the remaining factors a plus sign. The number of minus signs
therefore equals the number of inversions, that is:

∆s = sign(s)∆

where sign(s) denotes the sign of s.

For instance, for s = (1 2 3) (n = 3) we have

∆ = (X3 −X1)(X3 −X2)(X2 −X1)
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and
∆s = (X1 −X2)(X1 −X3)(X3 −X2) = (−1)2∆ = ∆.

For s = (1 2) the reader easily checks that ∆s = −∆.

D.VII.1 Lemma. sign(st) = sign(s)sign(t).

Proof. By definition, ∆t = sign(t)∆. Then also

∆st =
∏

(Xst(k) −Xst(j)) =
( ∏

(Xt(k) −Xt(j))
)s

= (∆t)s

(note that t acts first) so that

sign(st) =
∆st

∆
=

∆st

∆t
· ∆t

∆
=

(∆t)s

∆t
· ∆t

∆
=

(±∆)s

±∆
· ∆t

∆

=
∆s

∆
· ∆t

∆
= sign(s) · sign(t).

�

D.VII.2 Corollary. A permutation and its inverse have the same sign.

Proof. Apply the product rule just derived to

s−1s = id

and use the fact that id is even as it has no inversions at all. �

We now determine the signs of cyclic permutations. Once they are known,
we can determine the sign of any permutation by decomposing it into disjoint
cycles.

D.VII.3 Lemma. The sign of a simple transposition (2-cycle) (i i+1)
is −1.
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Proof. There is exactly one inversion. �

D.VII.4 Lemma. The sign of an arbitrary transposition (i i + m) is
also −1.

Proof. We need to prove that the given transposition is the product of an
odd number of simple ones.

This follows easily by induction once we prove:

(i i+ k + 1) = (i+ k i+ k + 1)(i i+ k)(i+ k i+ k + 1)

We only have to check the product action, in three steps, on the three ele-
ments entering the parentheses.

i+ k + 1 → i+ k → i → i
i+ k → i+ k + 1 → i+ k + 1 → i+ k
i → i → i+ k → i+ k + 1

�

We finally deal with cycles of arbitrary length:

D.VII.5 Lemma. The sign of a k-cycle (p1 p2 . . . pk) is (−1)k+1. That
is, a cycle of even length is an odd permutation, a cycle of odd length is
even.

Proof. This follows easily by induction from the case k = 2 just proved,
and the following relation:

(p1 p2 . . . pk+1) = (p1 p2 . . . pk)(pk pk+1).

The reader is invited to check the action of either member on the elements
in parentheses. �

The Multiplication Permutation

We now begin the proof of Quadratic Reciprocity. p, q are two different odd
prime numbers. Let g denote a primitive root modulo p. It acts on the
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classes of 1, 2, . . . , p − 1 by multiplication. By invertibility the elements g ·
1, g ·2, . . . , g ·(p−1) are pairwise incongruent modulo p, that is, multiplication
by g permutes the invertible classes modulo p.

D.VII.6 Lemma. The permutation s just described is odd.

Proof. It is cyclic: (1 g g2 . . . gp−2), of even length, as

s(1) ≡ g, s(g) ≡ g2, . . . , s(gp−3) ≡ gp−2, s(gp−2) ≡ qp−1 ≡ 1 (mod p).

�

Now consider the permutation performed by any invertible class, on multi-
plication.

D.VII.7 Lemma. Let 1 ≤ r ≤ p − 1. The permutation s(m) ≡ rm
(mod p), m = 1, 2, . . . , p−1, has the sign (r/p), i.e., it is even if and only
if r is a quadratic residue modulo p.

Proof. Writing r ≡ gk (mod p) we know that (r/p) = (−1)k. As g per-
forms a permutation of sign −1, gk performs a permutation of sign (−1)k.
�

D.VII.8 Example. We exemplify this for p = 7. Multiplying 1, 2, 3, 4, 5, 6
by 2 yields, on reduction modulo p, 2, 4, 6, 1, 3, 5, i.e., the permutation is
(1 2 4)(3 6 5) which is even. This is due to 2 being a quadratic residue, 2 ≡ 32

(mod 7).

3 is a quadratic non-residue, in fact a primitive root modulo 7. It affords the
cyclic permutation (1 3 2 6 4 5), which is of even length, hence odd. �

The Matrix Transpose Permutation

We now consider an m× n–matrix , the elements of which we denote by

X(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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We assume that the elements represent a permutation of the numbers
1, 2, . . . ,mn or 0, 1, 2, . . .mn − 1, after “straightening out” the matrix. We
do this by reading the elements row-wise.

That amounts to ordering the indices as follows: We have (i, j) < (k, l) if
k > i (second element lower), or if i = k, l > j (elements in the same row,
second element further to the right). Equivalently, the element X(i, j) has
the number (i− 1)n+ j in that enumeration.

In the matrix (
X(1, 1) X(1, 2) X(1, 3)
X(2, 1) X(2, 2) X(2, 3)

)
the element X(1, 3) succeeds X(1, 1) and precedes X(2, 1).

We will need to know the sign of the permutation effected by transposing the
matrix. In our example we want to compare the straightening of the above
matrix with that of X(1, 1) X(2, 1)

X(1, 2) X(2, 2)
X(1, 3) X(2, 3).



D.VII.9 Lemma. Assume that the elements of the matrix are in as-
cending order, when enumerated as above (i.e., 1 to mn or 0 to mn− 1)
The sign of the matrix transpose permutation then is

(−1)mn(m−1)(n−1)/4.

Proof. We count the number of inversions.

Consider an arbitrary pair of positions (k, l), (i, j), where k > i or k = i, l >
j. Transposing the matrix amounts to interchanging the column and row
indices, yielding the pair (l, k), (j, i). In the second case, k = i, no inversion
results.

In the first case there are m(m − 1)/2 possible pairs k, i. One such pair
results in an inversion if and only l < j, which means n(n − 1)/2 possible
cases. The total number of inversions is therefore mn(m − 1)(n − 1)/4. So
the permutation afforded by transposing the matrix is of sign

(−1)(m−1)(n−1)mn/4.
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�

D.VII.10 Lemma. Suppose the elements of the matrix are not in as-
cending order. The sign of the matrix transpose permutation will then
still be

(−1)mn(m−1)(n−1)/4.

Proof. Suppose the given ordering arises from the standard arrangement
by the permutation s. Denote the permutation discussed above by u. Then
our permutation can be described as first performing s−1 to get everything
back in straight order, followed by the matrix transposition t, and then by s.
The resulting permutation, u = sts−1, has the same sign as t by the product
rule, as s and s−1 have the same sign. �

Remark: An alternative proof is to note that exactly those moves that would
produce an inversion from the standard order will, from the given order,
either create an inversion or destroy the one we already had. So the numbers
of inversions in the two situations are congruent modulo 2.

D.VII.11 Example. The matrix(
2 3 4
5 6 1

)
arises from the standard order by the cyclic permutation

s = (1 2 3 4 5 6), s−1 = (6 5 4 3 2 1).

The composition sts−1 then reads:(
2 3 4
5 6 1

)
→

(
1 2 3
4 5 6

)
→

1 4
2 5
3 6

 →

2 5
3 6
4 1

 .

Straightening out the matrices it reads

sts−1 = (1 2 3 4 5 6)(2 4 5 3)(6 5 4 3 2 1) = (3 5 6 4).

�

We will apply this to the case m = p and n = q, both odd. The factors m,n
in the exponent do not affect the sign. So in this case the sign is simply

(−1)(p−1)(q−1)/4 (∗)
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The proof of Quadratic Reciprocity

Write down the numbers 0, 1, 2, . . . pq − 1,corresponding to all the classes
modulo pq, in straight order in a p× q–matrix :


0 1 2 . . . q − 1
q q + 1 q + 2 . . . 2q − 1
. . . . . .

(p− 1)q (p− 1)q + 1 (p− 1)q + 2 . . . pq − 1



The elements of each row are mutually incongruent modulo q.

The elements of a column are mutually congruent modulo q, but incongruent
modulo p. This because we move down the columns by repeated addition of
q, and different multiples of q are incongruent modulo p

From the bottom of the column we reach the top by adding yet another q
and reducing modulo pq, i.e., dividing by pq and keeping the least positive
remainder.

We now permute the elements within each row by replacing the j term in
(m − 1)q + j with the least positive remainder of pj modulo q. We thus
perform the same permutation within each row so that the whole columns
are permuted.

We have proved that each such permutation is of sign (p/q). As the number
of rows is odd, the resulting product too is of sign (p/q).

The first column is not affected by this operation. In the second column
the first element is now p′, the least positive remainder of p modulo q. The
following elements are p′ + q, p′ + 2q, etc.

One of these, say the j :th one is p. Several cyclic permutations within the
column will bring p to the top.

As the length of each column is odd, all these permutations are even. On
performing further cyclic permutations within the second column we can
bring 2p to the top. In the same manner we bring 3p to the top of the third
column, etc. All these permutations are even.
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We finally arrive at the following matrix:
0 p 2p . . . (q − 1)p
q q + p q + 2p . . . q + (q − 1)p
. . . . . .

(p− 1)q (p− 1)q + p (p− 1)q + 2p . . . (p− 1)q + (q − 1)p

 (∗∗)

everything taken modulo pq. The total sign of this permutation is still (p/q).

But we could have achieved the same result by a different route. Start by
writing down the same elements in the same order, but in a q/p–matrix:


0 1 2 . . . p− 1
p p+ 1 p+ 2 . . . 2p− 1
. . . . . .

(q − 1)p (q − 1)p+ 1 (q − 1)p+ 2 . . . pq − 1


We then permute the rows in the same way as before, but with p and q
interchanged. A permutation of sign (q/p) will result in the transpose of
(**).

We retrieve (**) by transposing the last matrix, a permutation whose sign
we determined above, (*).

We finally arrive at Quadratic Reciprocity:

(
p

q
) = (−1)(p−1)(q−1)/4(

q

p
) .

D.VII.12 Example. The following Example illustrates all the steps in the
case p = 5, q = 7. We started from

0 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 32 33 34


We then multiplied the first row by 5, and reduced it modulo 7:(
0 5 3 1 6 4 2

)
, and permuted the remaining rows in the same man-

ner. As a result the whole columns were permuted:
0 5 3 1 6 4 2
7 12 10 8 13 11 9
14 19 17 15 20 18 16
21 26 24 22 27 25 23
28 33 31 29 34 32 30


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We then permuted the columns cyclically several times so as to bring the
elements 0, p, 2p, . . . (q − 1)p to the top:

0 5 10 15 20 25 30
7 12 17 22 27 32 2
14 19 24 29 34 4 9
21 26 31 1 6 11 16
28 33 3 8 13 18 23

 (∗ ∗ ∗)

The sign of the resulting permutation is (5/7) = −1.

We then started afresh from

0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24
25 26 27 28 29
30 31 32 33 34


This time we multiplied by the remainder of 7 modulo 5, that is, by 2:

0 2 4 1 3
5 7 9 6 8
10 12 14 11 13
15 17 19 16 18
20 22 24 21 23
25 27 29 26 28
30 32 34 31 33


We then permuted each column cyclically several times so as to get the row(
0 7 14 21 28

)
on top:

0 7 14 21 28
5 12 19 26 33
10 17 24 31 3
15 22 29 1 8
20 27 34 6 13
25 32 4 11 18
30 2 9 16 23


The resulting permutation is of sign (7/5) = (2/5) = −1 Transposing finally
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led to 
0 5 10 15 20 25 30
7 12 17 22 27 32 2
14 19 24 29 34 4 9
21 26 31 1 6 11 16
28 33 3 8 13 18 23

 (∗∗)

The sign of the matrix transposition is

(−1)(7−1)(5−1)/4

= 1. �



Chapter E

Some Diophantine Problems

E.I Primes as Sums of Squares

Let p be a prime number. We want to give conditions for it to be representable
as a sum of squares, p = a2 + b2, a, b ∈ Z. The techniques introduced
will allow as to deal with other similar Diophantine problems, such as p =
a2 +m · b2, m = ±2,±3.

The case p = 2 is immediate: 2 = 12 + 12. We also easily exclude the case
p ≡ 3 (mod 4). As m2, n2 ≡ 0 or 1 (mod 4), we must have m2 + n2 ≡
0, 1, or 2 (mod 4).

In order to handle the case p ≡ 1 (mod 4) we prove the following Lemma,
due to Norwegian mathematician Axel Thue (1863-1922).

E.I.1 Lemma (Thue’s Lemma). Let p ≥ 2 be an integer, and x an
integer with (x, p) = 1. Then there exist integers m,n, 0 < |m|, |n| < √

p
satisfying

mx ≡ n (mod p).

One might say that the idea of Thue’s Lemma is to represent an invertible
class as a “quotient” of relatively small numbers. This trick often turns a
congruence into an equality. The proof is based on the surprisingly productive
Dirichlet Principle: if n objects are distributed overm < n boxes, two of them

143
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must belong to the same box.

Proof. We recall the notation bac for the “floor” or “integral part” of a,
the greatest integer n satisfying n ≤ a.

We now form all possible numbers of the form mx − n, 0 ≤ m,n ≤ b√pc.
Their number is (b√pc+1)2 > p. As their number is greater than the number
of classes modulo p, two of them must be congruent modulo p:

m1x− n1 ≡ m2x− n2 (mod p); (m1 −m2)x ≡ (n1 − n2) (mod p).

Here m1 6≡ m2 (mod p), or n1 6≡ n2 (mod p).

In fact, both conditions must hold. Obviously m1 ≡ m2 (mod p) would
give n1 ≡ n2 (mod p). Conversely, assume p|(n1 − n2) = x(m1 − m2). As
(p, x) = 1, the First Divisibility Theorem (A.II.1) would imply p|(m1 −m2).

Putm = m1−m2, n = n1−n2. By the restriction on the sizes ofm1,m2, n1, n2

we easily see that 0 < |m|, |n| < √
p, and we are done. �

E.I.2 Theorem. The prime number p is representable as a sum of
squares, p = a2 + b2, if and only if p = 2 or p ≡ 1 (mod 4).

Proof. It remains to settle the case p ≡ 1 (mod 4).

We first note that (−1

p

)
≡ (−1)(p−1)/2 = 1 (mod p),

as (p− 1)/2 is even by assumption. So we find an x satisfying

x2 ≡ −1 (mod p). (∗)

Next Thue’s Lemma supplies us with m,n, 0 < |m|, |n| < √
p, satisfying

mx ≡ n (mod p).

Multiplying (*) by m2 gives m2x2 ≡ −m2 (mod p), whence

m2 + n2 ≡ m2 +m2x2 ≡ 0 (mod p).
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The sizes of m,n immediately imply 0 < m2 + n2 < 2p. Therefore, the
congruence implies m2 + n2 = p, and we are done. �

The representation p = x2 + y2 is essentially unique, i.e., unique up to order
of terms and signs of the x, y:

E.I.3 Theorem. LetN be an odd number, representable in two different
ways as N = x2 + y2 = u2 + v2 (assuming x, u of equal parity, we are
assuming that x2 6= u2 and y2 6= v2). Then there is a factorization
N = PQ where both factors are > 1.

Hence, if p is a prime number, its representation as p = x2 + y2, x > 0
odd, y > 0 even, is unique.

Proof. Factoring the two members of u2 − x2 = y2 − v2 we get
(u − x)(u + x) = (y − v)(y + v). All numbers involved are even, so we
may write

u− x

2
· u+ x

2
=
y − v

2
· y + v

2
.

Let e denote the gcd of (u+ x)/2 and (y − v)/2;

u+ x

2
= eg,

y − v

2
= eh, (g, h) = 1,

where all e, g, h are 6= 0. Using the First Divisibility Theorem we see that
g|(y + v)/2, and h|(u− x)/2, whence, for some f , the factorizations

u− x

2
= fh,

y + v

2
= fg.

Combining these relations we easily obtain

x = eg − fh,

y = eh+ fg,

i.e., in complex form,

x+ iy = (eg − fh) + i(eh+ fg) = (e+ if)(g + ih),

and, in like manner,
u+ iv = (e+ if)(g − ih),
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whence
N = x2 + y2 = u2 + v2 = (e2 + f 2)(g2 + h2)

with both factors ≥ 2.

Note that, e.g., x2 +y2 = (x+ iy)(x− iy) = (e+ if)(e− if)(g+ ih)(g− ih).�

Our technique of proof (using Thue’s Lemma) is eminently programmable.
The formal proof that our algorithm below really works is best presented
within the framework of continued fractions, and will be given (and general-
ized) later on.

However, in the remark following the Example, we indicate a more direct
proof. We then describe another algorithm, which is perhaps easier to un-
derstand, but which does not generalize too well.

E.I.4 Example. Let p = 73, a prime number ≡ 1 (mod 4).

First we need to solve the congruence x2 ≡ −1 (mod p). This is easy once
we have found a quadratic non-residue a. Setting x ≡ a(p−1)/4 (mod 73), the
Euler Criterion (D.I.4) gives

x2 ≡ a(p−1)/2 ≡ −1 (mod p).

Trying a = 2, 3, . . . , the first non-residue is a = 5, giving x = 27. Next we
perform Extended Euclid (A.I.7) on the pair 73, 27. Although we will need
only half of the steps, we give them all below.

1 · 73 + 0 · 27 = 73

0 · 73 + 1 · 27 = 27 73− 2 · 27 = 19

1 · 73− 2 · 27 = 19 27− 1 · 19 = 8

−1 · 73 + 3 · 27 = 8 19− 2 · 8 = 3

3 · 73− 8 · 27 = 3 8− 2 · 3 = 2

−7 · 73 + 19 · 27 = 2 3− 2 = 1

10 · 73− 27 · 27 = 1

(−27 · 73 + 73 · 27 = 0)

Among the right members, the first one <
√

73 is n = 8. The coefficient
3 in the corresponding left member is less than 8 <

√
73 – it is the same

as the 3 occuring in the next right member. That is the general theoretical
fact that we will not prove formally here. So m = −3, and n = 8, satisfy
m · 27 + n ≡ 0 (mod 73). By the proof of the Theorem they are the solution
to our problem: m2 + n2 = 32 + 82 = 73. �
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Remark: The reason I did all of Euclid was to exhibit a beautiful symmetry.
Read the right members from the top down, and the coefficients for 27 from
the bottom up, and you will see the pattern. Start from the last equation,
Bézout, which expresses the fact that 272 ≡ −1 (mod 73) – and thus is
known before we even start Euclid. Add the obvious identity −27 · 73 + 73 ·
27 = 0 below it.

The crucial observations are the following. The right members decrease, by
the very construction of Euclid. The coefficients for 27 in the left members
have alternating signs, and their absolute values decrease when read from the
bottom up. That is because (working downwards) at each step we subtract
numbers of opposite signs.

Also every equation can be reconstructed by a row operation on the two
equations just below it. Namely, by construction: row(k+ 2) = row(k)−m ·
row(k + 1), for some m, hence row(k) = row(k + 2) +m · row(k + 1), for the
same m.

From this it may be seen that the coefficients for 27 (apart from their signs),
read from the bottom up, also arise from Euclid applied to 73 and 27.

Omitting the first equation, the number of equations given above must be
even, as the sign for 27 · 27 in the last equation must equal −1. So by the
symmetry stated above, in the middle of the Extended Euclidean Algorithm
we must have something like this:

ap± bx = c,

dp∓ cx = b.

Here x is the solution to x2 ≡ −1 (mod p) (p need not be a prime number;
we are only assuming the solvability of the congruence). Multiplying the first
equation by c, and the second by b, and adding, gives p(ac+ bd) = b2 + c2.

All that remains, then, is to prove ac + bd = 1. Think of this expression
as plus or minus the determinant formed from the left members of the two
equations. Each step in Extended Euclid may be conceived of as a row
operation, followed by swapping the two rows. So the determinants belonging
to successive pairs of equations must be the same, except for alternating signs.

As the determinant formed from the first pair of equations equals 1, we get
ac+ bd = ±1, and only the plus sign is possible, as p, b2 + c2 > 0.

Even if p is not a prime number, we still have (b, c) = (p, x) = 1, so the
representation p = b2 + c2 is proper, in the sense introduced later.
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A slightly different take on Thue’s Lemma, with applications, can be found in
Keith Matthews, “Thue’s theorem and the diophantine equation x2−Dy2 =
±N”, Mathematics of Computation, 71 (239):1281-1286, 2001.

E.I.5 Example. Here we describe another algorithm for solving a2+b2 = p.
It goes back to Fermat’s proof by “infinite descent”. It is slightly slower than
the Extended Euclid method.

Again we start with x2 + 1 ≡ 0 (mod p) and set a0 = x, b0 = 1. We also
introduce r0 > 0 by x2 + 1 = r0 · p.

Suppose after a number of steps we have achieved

a2
k + b2k = rkp, rk ≥ 1.

If rk > 1 we look for a step leading to a smaller multiple of p. Divide ak, bk
by rk (note that we are using the remainder, positive or negative, closest to
zero):

ak = mkrk + Ak; |Ak| ≤ rk/2,
bk = nkrk +Bk; |Bk| ≤ rk/2.

As rk|(a2
k + b2k) it then holds that rk|(A2

k +B2
k) ≤ r2

k/2, that is,

A2
k +B2

k = rk+1rk, rk+1 ≤
1

2
rk.

Now set
ak+1 + ibk+1 = (ak + ibk)(Ak − iBk)/rk.

It is clear from the expressions that the right member is a complex integer,
as both

akAk + bkBk = (a2
k + b2k)− akmkrk − bknkrk

and
bkAk − akBk = (nkAk −mkBk)rk

are divisible by rk.

We then get

a2
k+1 + b2k+1 =

(a2
k + b2k)(A

2
k +B2

k)

r2
k

=
(rkp)(rkrk+1)

r2
k

= rk+1 · p

with rk+1 ≤ rk/2, and clearly the the algorithm will terminate within a
number of steps bounded by log2 p.

In our previous example we get: a0 = 27, b0 = 1, a2
0 + b20 = 10 · 73, r0 = 10.
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The division step is A0 = 27 − 3 · 10 = −3, B0 = 1, yielding a1 + ib1 =
(27 + i)(−3− i)/10 = −8− 3i, whence 82 + 32 = 1 · 73, and we are finished.

�

E.I: Exercises

1. Following the procedure for p = x2 + y2, show that every prime p ≡ 1 or 3
(mod 8) can be represented in the form p = x2+2y2, where x, y are integers.

2. Let p be a prime number ≡ 1 or 7 (mod 8). Following the proof for
p = x2 + y2, and using Thue’s Lemma, show that p can be represented
as p = x2 − 2y2, where x, y are integers.

Probably you will manage to solve x2 − 2y2 = −p. Using x2 − 2y2 =
(x− y

√
2)(x+ y

√
2) and multiplying by a suitable quantity, you will get the

right sign.

3. Prove that the prime number p is representable as p = 2x2 +3y2 if and only
if p ≡ 5, 11 (mod 24). The condition (−6/p) supplies you with four possible
classes, reduction modulo 3 and 8 excludes two of them, Thue does the rest.

What are the relevant congruence conditions for p = x2 + 6y2?

4. Let p, x be integers, p > x > 0, (p, x) = 1. Show that Extended Euclid (as
in Example E.I.4) produces equations of the form skp + tkx = rk > 0 with∣∣∣∣ tk rk

tk+1 rk+1

∣∣∣∣ = ±p

Use this to give a constructive proof of Thue’s Lemma.

5. Suggestions for computing: Combining a Jacobi routine (for finding
a quadratic non-residue) and Extended Euclid, write the following prime
numbers as a sum of two squares:

(a) 2 70688 88573

(b) 15 25852 86200 53909

(c) 2 78584 90014 12425 44371 60997
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E.II Composite Numbers

We now turn to the question of representing a composite number as a sum
of squares. First a little Lemma:

E.II.1 Lemma. If the positive integers a, b are representable as a sum
of squares, then so is their product.

Proof. Assuming a = m2 + n2 = (m + ni)(m − ni), b = r2 + s2 =
(r + si)(r − si), the proof is almost immediate:

ab = (m+ ni)(r + si)(m− ni)(r − si)

=
(
(mr − ns) + i(ms+ nr)

)(
(mr − ns)− i(ms+ nr)

)
= (mr − ns)2 + (ms+ nr)2.

�

We now have the following Theorem:

E.II.2 Theorem. The positive integer N is representable as a sum of
squares if and only if primes p ≡ 3 (mod 4) enter its factorization with
even multiplicity.

Proof. Given the trivial representation p2 = p2 + 02, the “if” part is an
immediate consequence of the Lemma above.

For the “only if” part, assume N = m2 + n2, and that p ≡ 3 (mod 4) is a
prime factor of N .

We take a closer look at the congruence m2 + n2 ≡ 0 (mod p). We claim
that both m and n are divisible by p, hence that N is divisible by p2.

By way of contradiction, assume p - m. Then also p - n. We now achieve our
contradiction by comparing Legendre symbols:

1 =
(m2

p

)
=

(−n2

p

)
=

(−1

p

)
·
(n2

p

)
= −1 · 1 = −1.



E.II. COMPOSITE NUMBERS 151

We used the First Supplementary Theorem (D.I.9): As (p − 1)/2 is odd,
(−1)(p−1)/2 = −1.

So p|m, p|n, p2|N . By an easy induction on the multiplicity vp(N) (or on N),
using the representation

N

p2
=

(m
p

)2

+
(n
p

)2

,

we may assume that N/p2 is exactly divisible by an even power of p (e.g.,
p0 . . . ), so that N is, too. �

E.II.3 Example.

a)

221 = 17 ·13 = (4+ i)(3+2i)(4− i)(3−2i) = (10+11i)(10−11i) = 102 +112

but also

221 = (4 + i)(3− 2i)(4− i)(3 + 2i) = (14− 5i)(14 + 5i) = 142 + 52.

b) 539 = 72·11 is not a sum of squares, as 11 ≡ 3 (mod 4), of odd multiplicity.

c) 833 = 72 · 17 = 72(42 + 12) = 282 + 72. �

Perhaps a more interesting result regards what is usually known as “proper
(or primitive) representation” in the literature. The proof is usually done in
the context of complex integers. An independent proof is given here.

In the exercises you are invited to prove that the conditions in the Theorem
are equivalent to the solvability of x2 ≡ −1 (mod a).

E.II.4 Theorem (Proper Representation). The positive integer a is
properly representable as a sum of squares,

a = m2 + n2 = (m+ in)(m− in), (m,n) = 1,

if and only if the prime factor 2 enters its factorization at most once, and
prime factors p ≡ 3 (mod 4) not at all.
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Proof. (Necessity) In the course of the last proof we showed that
m2 + n2 ≡ 0 (mod p), where the prime number p ≡ 3 (mod 4), implies
that both m and n are divisible by p, hence (m,n) > 1.

And if m2 + n2 ≡ 0 (mod 4), m and n must be both even or both odd.
In the latter case m2 ≡ n2 ≡ 1, m2 + n2 ≡ 2 (mod 4), contradicting the
assumption. Hence (m,n) ≥ 2 > 1. �

The sufficiency part of the Theorem will follow from the following two Lem-
mas. The first of them reduces the question, inductively, to that of (odd)
prime powers.

E.II.5 Lemma. Assume a, b, c, d rational integers, satisfying (a, b) =
(c, d) = (a2 + b2, c2 + d2) = 1. Put u + iv = (a + ib)(c + id). Then
also (u, v) = 1.

Proof. Any prime number dividing u+ iv (i.e., one dividing both u and v)
will divide (the real and imaginary parts of) (ua+vb)+i(va−ub) = (u+iv)(a−
ib) = (a2+b2)(c+id) and, in the same manner, it will divide (u+iv)(c−id) =
(c2 + d2)(a+ ib). As it cannot divide both a2 + b2 and c2 + d2, it must divide
either c+ id or a+ ib, which is impossible, as (a, b) = (c, d) = 1. �

The second Lemma takes care of odd prime powers.

E.II.6 Lemma. Assume a2 + b2 = p, where p is a prime number ≡ 1
(mod 4). Obviously, then, a 6≡ b (mod 2), and (a, b) = 1. Let

un + ivn = (a+ ib)n, so that u2
n + v2

n = pn.

Then un, vn too are of opposite parity (obviously), and (un, vn) = 1.

Proof. Any integer dividing un + ivn will divide all um + ivm, m ≥ n.
Therefore it suffices to prove the Lemma for n = 2k; k = 0, 1, 2, 3, . . . .

By induction all we need to prove is the following: If u, v are of opposite
parity, and (u, v) = 1, then the same holds for the real and imaginary parts
of (u+ iv)2 = u2 − v2 + 2iuv.
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Under the stated assumption u2 − v2 is obviously odd and 2uv even. Any
odd prime q dividing uv divides u or v but not both. So q divides u2 or v2,
but not both, hence cannot divide their difference. �

Here is how the Theorem follows. Clearly, the second Lemma proves it for
prime powers. The proof now uses induction on the number of prime powers
entering the representation N = 2e · pe1

1 · · · p
ek
k , e = 0 or 1.

The inductive step is provided by the first Lemma, where we take a2 + b2 to
be one of the prime powers, assuming already proved that the product of the
remaining prime powers is representable as c2 + d2, (c, d) = 1. �

E.II.7 Example.

a) 172 = (4+i)2(4−i)2 = (15+8i)(15−8i) = 152+82 is a proper representation
of 289.

b) 34 = 2 · 17 = (1 + i)(4 + i)(1− i)(4− i) = (3 + 5i)(3− 5i) = 32 + 52 is a
proper representation of 34.

c) The representation 833 = 282 + 72 is not proper, as (28, 7) = 7. Assuming
833 = m2 + n2 leads to the congruence m2 + n2 ≡ 0 (mod 7). As we have
seen in the proof above, that would imply that both m and n are divisible
by 7. Hence there is no proper representation of the number 833.

d) The representation 68 = 4 · 17 = 82 + 22 is not proper. Assuming 68 =
m2 + n2 leads to m2 + n2 ≡ 0 (mod 4) which is possible only if m and n are
both even. Hence the number 68 cannot be properly represented as a sum of
squares. �

We record a nice Corollary to the Theorem just proved.

E.II.8 Corollary.

a) If P,Q, not both even, are properly representable in the form x2 + y2,
then so is their product.

b) If N is properly representable in the form N = x2 + y2, then the same
is true of every integer P > 1 dividing N .
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�

E.II: Exercises

1. Which of the numbers 112, 851, 829, 629, 605 can be represented (resp.
properly represented) as the sum of two squares? Hand calculation, with
theoretical explanations.

2. Let m be an odd positive integer. Give an explicit bijection between the
solution sets to the Diophantine equations x2 + y2 = m and x2 + y2 = 2m.

Do the same for the sets of proper solutions.

By “explicit” is meant an expression for both the mapping and its inverse,
with proper verifications.

3. Represent 9061 as the sum sum x2 + y2, x ≥ y ≥ 0, of two integer squares,
in four different manners.

The divisibility theory in Z[i] (Chapter K) will show that the exact number
is four.

Assuming that, how many lattice (integer) points are there on the circle
x2 + y2 = 9061?

4. Assume a not divisible by p. Show that the congruence x2 +y2 ≡ a (mod p)
is solvable. Hint: How many incongruent elements are there of the form
x2 − a or y2, respectively?

5. We wish to show that the Diophantine equation y2 = x3 + 7 is unsolvable.
Hint: Add a one to both members, and show that not every prime factor of
the right member is ≡ 1 (mod 4).

6. Show that−1 is a quadratic residue modulo n if and only if n = 2e·p1·p2 · · · pk

where e = 0 or 1 and the odd prime factors pj ≡ 1 (mod 4).

7. The following is a classical and useful observation:

If
x2 ≡ a2 (mod N),

but
x 6≡ ±a (mod N),

then N is composite (why?)

Suppose D ≥ 2 (the case D = 1 is dealt with above, E.I.3).
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(a) Show that (a2 + Db2)(c2 + Dd2) can be expressed as m2 + Dn2 in two
different ways.

(b) Now assume that s2 +Dt2 = u2 +Dv2 = N are two different represen-
tations of the number N in this special form. Show that (sv)2 ≡ (tu)2

(mod N), but sv 6≡ ±tu (mod N). For the latter inequality, use (a).
Under the given assumptions, therefore, N is composite.
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E.III Another Diophantine Problem

We now let p be prime 6= 2, 3 and ask for conditions for it to be representable
as p = 3m2 + n2. A necessary condition is easy to derive. If 3m2 + n2 ≡ 0
(mod p), then (n2

p

)
=

(−3

p

)(m2

p

)
.

As neither m nor n can be divisible by p, the two symbols involving their
squares equal one. So a necessary condition is(−3

p

)
= 1.

In the Example following the statement of Quadratic Reciprocity (D.I.13)
we proved that this condition is equivalent to p ≡ 1 (mod 3).

We now prove the sufficiency of that condition. We follow the pattern of the
first Section as closely as possible, until it breaks down.

Again, we solve the congruence x2 ≡ −3 (mod p) for x. Again, Thue’s
Lemma supplies us with m,n, 0 < |m|, |n| < √

p, such that mx ≡ n (mod p).
Multiplying the congruence x2 ≡ −3 (mod p) by m2 we arrive at the congru-
ence 3m2 + n2 ≡ 0 (mod p). This is where the pattern breaks down. Owing
to the inequalities for m,n, we can only conclude that 3m2 + n2 < 4p, hence
that 3m2 + n2 = p, 2p or 3p.

The case 3m2 + n2 = 2p is easily excluded. We would get ≡ 2 (mod 3), but
3m2 + n2 ≡ 0 or 1 (mod 3) for all m, n.

If n2 + 3m2 = 3p, n must be divisible by 3: n = 3k. So in this case we get
3k2 + m2 = p as desired. In the first case there is nothing to prove. So we
have indeeed proved the following:

E.III.1 Theorem. Let p be a prime 6= 2, 3. The equation 3m2 +n2 = p
is solvable in integers if and only if p ≡ 1 (mod 3).

�

A problem closely related to the one just studied is p = x2 ± xy + y2 for
p 6= 2, 3. It is easy to prove that the same condition, p ≡ 1 (mod 3),
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is necessary for solvability. Just let x, y run through all possible pairs of
classes modulo 3.

If p ≡ 1 (mod 3) we first solve p = 3m2 + n2. Then put ±q = −m+ n, n =
m ± q, yielding p = 4m2 ± 2mq + q2 = (2m)2 ± (2m)q + q2 which is of the
desired form.

We have proved:

E.III.2 Theorem. Let p be a prime 6≡ 2, 3. The equation
p = x2 ± xy + y2 is solvable in integers if and only if p ≡ 1 (mod 3).

�

Of course, both equations are solvable for p = 3 and unsolvable for p = 2.

E.III.3 Example.

a) 7 = 3 · 12 + 22 = 22 + 2 · 1 + 12

b) 13 = 3 · 22 + 12 = 32 + 3 · 1 + 12

c) 19 = 3 · 12 + 42 = 32 + 3 · 2 + 22

d) 997 = 3 · 182 + 52 = 362 − 36 · 13 + 132 �

A practical method for solving the Diophantine equation 3m2 + n2 = p,
Cornacchia’s algorithm, will be given in the Chapter on Continued Fractions
(G.VII).

E.III: Exercises

1. (a) Let p be a prime number 6= 2, 5. Show that(5
p

)
= 1 ⇐⇒ p ≡ 1, 4 (mod 5)

(b) Suppose p satisfies one of these congruence conditions. Show that there
are integers x, y, k, 1 ≤ k ≤ 4 such that

x2 − 5y2 = −k · p
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Show that the only possibilities are k = 1, 4.

(c) Assume x2 − 5y2 = −p solvable in integers. Find one solution to
x2 − 5y2 = −1 and use it to show that

x2 − 5y2 = p

is solvable.

(d) Assume x2 − 5y2 = −4p solvable in integers. From one solution con-
struct one for x2 − 5y2 = p (you may have to distinguish two cases).

2. Suppose p = 2a2 +2ab+3b2. Show that p ≡ 2, 3 (mod 5), that we can solve
2p = u2 + 5v2, and 3p = u2 + 5v2, but that the equation p = u2 + 5v2 is
unsolvable.

3. Let p be a prime, such that (−5/p)=1.

(a) Show, using Thue’s Lemma (E.I.1), that we can find integers x, y, k
such that x2 + 5y2 = k · p, where 1 ≤ k ≤ 5.

(b) If k = 4, 5 we can reduce to the cases k = 1, 2 on dividing out common
factors (calculate modulo suitable integers).

(c) Suppose x2 + 5y2 = 2p or 3p. Show that we may assume x and y
congruent modulo 2 (both odd!), or modulo 3, respectively. Use this
to show that the equation 2u2 + 2uv + 3v2 = p is solvable in these two
cases.
The previous exercise then shows that the two cases are equivalent,
i.e., x2 + 5y2 = 2p is solvable if and only if x2 + 5y2 = 3p is.
Examples: p = 47, 43 (or, more generally: p ≡ 3, 7 (mod 20)).

4. If x, y, z are integers satisfying x3 + y3 ≡ z3 (mod 9), then at least one of
them is divisible by 3.

5. Suppose x, y can both be written in the form m2 + 3n2, m, n ∈ Z. Show
that the same holds for their product.

6. Suppose x = m2 + 3n2, (m,n) = 1. Show that x is the product of prime
numbers p ≡ 1 (mod 3), and possibly a factor 4. Is the converse true?

7. Suppose x3 = m2 + 3n2, where x, m, n are integers, (m,n) = 1. Show that
x = a2 + 3b2 where a, b are integers, and (a, b) = 1. By looking at the
complex factors, deduce factorizations of m,n in terms of a, b.

8. A special case of Fermat’s Last Theorem. Consider a solution in integers
to the equation x3 + y3 = z3, where (x, y, z) = 1 (so that the numbers
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are pairwise relatively prime). We wish to find a solution involving smaller
numbers.

First show that we can assume x, y of equal parity. From the factorization
(x + y)(x2 − xy + y2) = z3 deduce a relation of the form 2p(p2 + 3q2) = z3

where (p, q) = (2p, p2 + 3q2) = 1 (be careful to check each step here!).
Conclude that p2 + 3q2 and 2p are cubes.

Using the previous Exercise, deduce a factorization of 2p in smaller cubes and
deduce from them a smaller (in some suitable sense) solution to x3+y3 = z3.
You will have to deal the case 3|p separately, and be very, very careful.

How does that prove the non-solvability of that equation?

If you are stumped, you may wish to consult the text by H. M. Edwards.
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E.IV Modular Square Roots

The last Section indicates the usefulness of algorithms for solving the quadratic
congruence x2 ≡ n (mod p), where p is a prime, and n is a quadratic residue
modulo p. You may want to read through the Section on fast exponentiation
(Section L.V) first.

Easy Cases

We deal with the simplest cases first.

E.IV.1 Example. In the following cases there are explicit expresssions for
the solution to the congruence x2 ≡ n (mod p).

a) p = 4k + 3.

b) p = 8k + 5, n2k+1 ≡ 1 (mod p).

c) p = 8k + 5, n2k+1 ≡ −1 (mod p).

We now outline the three cases:

a) As n(p−1)/2 = n2k+1 ≡ 1 (mod p), by Euler’s Criterion, we have n2k+2 ≡ n
(mod p). So the solution is x ≡ ±nk+1 ≡ n(p+1)/4 (mod p).

Before turning to cases b), c), note that n(8k+5−1)/2 = n4k+2 ≡ 1 (mod p), by
Euler’ Criterion, hence n2k+1 ≡ ±1 (mod p), in this case.

b) Take x ≡ ±nk+1 ≡ ±n(p+3)/4 (mod p).

c) This time n2k+1 ≡ −1 (mod p), so the choice y ≡ ±nk+1 = n(p+3)/4

(mod p) gives a solution to y2 ≡ −n (mod p), wrong sign!

So we need to solve r2 ≡ −1 (mod p).

By the second Ergänzungssatz,(2

p

)
= −1, 2(p−1)/2 = 24k+2 ≡ −1 (mod p)

So r = 22k+1 = 2(p−1)/4 satisfies r2 ≡ −1 (mod p), and x = ±ry satisfies
x2 ≡ n (mod p). �
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E.IV.2 Example. We give numerical examples for all three cases.

a) 43 = 4 · 10 + 3, so k = 10. Let us look at x2 ≡ 11 (mod 43).

Here (11/43) = −(43/11) = −(−1/11) = 1 and the solution to is x ≡
±1110+1 ≡ ±21 (mod 43).

b) 101 = 8 · 12 + 5, so k = 12.

(5/101) = (101/5) = (1/5) = 1, and 52k+1 = 525 ≡ 1 (mod 101).

So the solution to x2 ≡ 5 (mod 101) is x ≡ ±512+1 ≡ ±56 (mod 101).

c) Here we solve x2 ≡ 13 (mod 101), where (13/101) = (101/13) = (10/13) =
1, and 132k+1 ≡ −1 (mod 101).

Now 1313 ≡ 47 (mod 101), and 225 ≡ 10 (mod 101) so the solution is x ≡
±470 ≡ ±66 (mod 101). �

Berlekamp’s Method

E.IV.3 Example. One approach to the square root problem is to turn the
quadratic congruence into a linear one. Let us start with the easy case, p ≡ 3
(mod 4). To be explicit, we want to solve x2 ≡ n ≡ 6 (mod 19), knowing
that (6/19) = 1. The trick is to determine x(p−1)/2 ≡ x9 (mod 19), and use
Euler’s Criterion (D.I.4).

Squaring the given congruence twice leads to x4 ≡ 17; x8 ≡ 4 (mod 19),
hence (x/19) ≡ ±1 ≡ x9 ≡ 4x (mod 19). Multiplying by 5 gives x ≡ ±5
(mod 19).

The reason that both signs produce solutions is that (−1/19) = −1, so one
solution will be a quadratic residue, the other not.

However, in this case it is better to go one step further: ±x ≡ x10 ≡ 4x2 ≡
4 · 6 ≡ 5 (mod 19). That amounts to computing n(p+1)/4, so we are really
repeating the old method. �

E.IV.4 Example. Trying the same for p ≡ 1 (mod 4) will not work. Clearly
odd powers produce one single linear term kx (mod p), and even powers pro-
duce a constant. Since d = (p− 1)/2 is even we will arrive at xd ≡ the only
possible constant, 1 (by Euler’s Criterion).
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The trick now is to replace the given quadratic congruence by a different
one, by substitution. To be explicit, let us try x2 ≡ 3 (mod 13). Putting
x = y−1 we replace the old congruence by (y−1)2 ≡ 3 (mod 13), y2 ≡ 2y+2
(mod 13). We then get

y3 ≡ 2y2 + 2y ≡ 6y + 4 (mod 13)

y6 ≡ (6y + 4)2 ≡ 10y2 + 9y + 16 ≡ 29y + 36 ≡ 3y + 10 (mod 13)

By Euler’s Criterion we arrive at

3y + 10 ≡ y6 = y(13−1)/2 ≡
( y

13

)
≡ ±1 (mod 13).

Multiplying by 9, the inverse to 3 modulo 13, we get: y+12 ≡ ±9 (mod 13); y ≡
5, 10 (mod 13), whence x ≡ y − 1 ≡ ±9 (mod 13). �

E.IV.5 Example (The Algorithm, P ≡ 1 (mod 4)). The substitution
worked because there was a linear term in the left member. Why did we not
get a constant?

Suppose the powering of y had produced a constant term only. As we only
used the equation for the roots, not the roots themselves, that constant would
be independent of the root.

I.e., we would have either y(p−1)/2 ≡ 1 or y(p−1)/2 ≡ −1 (mod p), for both, i.e.,
both would be quadratic residues, or both would be non-residues. However,
the constant term of the congruence y2 − 2y − 2 ≡ 0 (mod 13), is their
product, and as (−2/13) = (2/13) = −1, the two roots must be of opposite
quadratic character!

These observations readily generalize. So now we can outline an algorithm,
to solve x2 ≡ b (mod p), (b/p) = 1.

1) Find, by some random procedure, an m, such that ((m2 − b)/p) = −1.
Introduce the new unknown y = x +m; x = y −m, turning the congruence
into y2 ≡ 2my + (−m2 + b) ≡ Ay +B (mod p).

2) Establish the doubling rule:

(Cy +D)2 ≡ 2(C2A+ CD)y + (D2 + C2B) (mod p),

and the one-step rule,

(Cy +D)y ≡ Cy2 +Dy ≡ (2AC +D)y +BC (mod p).
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Then, by the fast exponentiation scheme (see section L.V) derive the con-
gruences

±1 ≡ y(p−1)/2 ≡ Py +Q (mod p),

where P 6≡ 0 (mod p).

3) Solve the two linear congruences Py + Q ≡ ±1 (mod p), and return
x = y −m. Or solve one of them, and return x = ±(y −m). �

The fast exponentiation scheme is essential here; a naive linear search, by
trial squaring all classes modulo p is far too slow.

Elwyn Berlekamp (1940- ) is an American mathematician and information
theorist. The above method was adapted from a general method of his for
splitting polynomials mod p into factors of lower degree.

Another approach to modular square roots utilizes so-called Lucas sequences,
and will be outlined in the last Chapter.

E.IV: Exercises

1. Suggestions for computing: Find square roots (or disprove their exis-
tence) of

(a) 17, 19, 31, 41 modulo the prime number

2 78584 90014 12425 44371 60997

(b) 17,19,31,41 modulo the prime number

72 07242 88365 15754 88249 70521

.

2. A more ambitious project would be to compute square roots modulo a com-
posite number, using one of the algorithms of this section, along with Hensel
refinement (B.VII.3) and the CRT. At least, then, solve x2 ≡ y (mod n) for
(y, n) = 1. You might be content to do prime powers, e.g., solve x2 ≡ 17
(mod 2e) or (mod 43e).

3. (a) Suppose we know square roots r1, r2 . . . , rk of n modulo the (different)
odd prime numbers p1, p2 . . . , pk. Denote their product by M and
assume (n, M) = 1. Suppose further that we have determined the
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idempotents (see p. 41) for the set of moduli p1, p2 . . . , pk. Give
expressions for the full set of solution classes of the congruence x2 ≡ n
(mod M).

(b) A Gray code is an enumeration of all bitlists of length k where each
possible list of 0’s and 1’s appears exactly once and each list dif-
fers in exactly one position from the previous one. E.g., k = 2 :
[0, 0], [1, 0], [1, 1] [0, 1].
One such Gray code can conveniently be described by indicating which
position to change (from 0 to 1 or vice versa) in each step. Number
the positions 0, 1, . . . , k− 1. Start with an all-zero list. In step n, n =
1, 2, . . . , 2k − 1, change the list in position v2(n), e.g., change the list
in position 0 if n is odd. The example above was produced in that
manner.
Show that this produces a Gray code. Hint: Look at the results for
k = 2, 3, deduce a pattern, generalize and prove.

(c) Show how this Gray code (or rather the v2(n)’s) can be used to orga-
nize the computation of modular square roots in the first part of this
Exercise.
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E.V Applications

E.V.1 Example (Electronic Coin Flipping). Here is a spectacular ap-
plication of modular square roots, and the Chinese Remainder Theorem. It
is due to Venezuelan computer scientist Manuel Blum (1938-).

Alice picks two large prime numbers, p, q ≡ 3 (mod 4), and sends their
product n = pq to Bob. Bob chooses an integer x, (x, n) = 1, at random and
sends its square s (reduced modulo n). So s ≡ x2 (mod pq).

Alice can rapidly determine the square roots ±z1, ±z2 of s modulo p and q,
respectively, as suitable modular powers of s. Solving the Chinese congruence
system

z ≡

{
z1 (mod p)

z2 (mod q)

she finds the two pairs of roots z ≡ x, n − x (mod pq) and z = y, n − y
(mod pq) satisfying x ≡ y modulo one of the primes and x ≡ −y modulo the
other. She is asked to choose one root – that is the flip – and communicates
her choice to Bob.

If she chooses x or n−x Bob declares her the winner. Otherwise he proclaims
himself to be the winner.

He can justify this claim, as x ± y ≡ 0 modulo p or q, and x ± y ≡ 2x 6= 0
modulo the other prime. This means that (x ± y, pq) equals one of the two
primes, i.e., knowing both x and one of y and n− y, he can factor n.

The book by Trappe-Washington has a hilarious discussion on electronic
poker. �

We turn to yet another application of modular square roots, due to M.Blum,
L. Blum, and M.Shub. It is a cryptologic scheme, secure, but not very fast.
It is suited for sending short messages, e.g., for key exchange.

We precede the discussion with a little Lemma.

E.V.2 Lemma. Let N = pq, where p, q are prime numbers, both con-
gruent to 3 modulo 4. Let x be a quadratic residue modulo N . Then, out
of the four solution classes to y2 ≡ x (mod N), exactly one is a quadratic
residue modulo N .
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Proof. Modulo p, q we have the solutions y ≡ ±a (mod p), and y ≡ ±b
(mod q). Now (−1/p) = (−1/q) = −1 so in both cases exactly one of the
two signs gives a quadratic residue. Choosing the right sign in both cases,
and using the Chinese Remainder Theorem to find y (mod N), proves the
result. �

E.V.3 Example. Now to the application. Bob wants to send a message
of k bits m1,m2, . . . ,mk to Alice. Alice chooses two large prime numbers
p, q ≡ 3 (mod 4), and publishes their product N . Bob chooses a seed x0, a
quadratic residue modulo N , at random, then computes

x1 ≡ x2
0 (mod N), x2 ≡ x2

1 (mod N), . . . , xk+1 ≡ x2
k (mod N)

(all reduced to least positive residues modulo N). He encrypts each mj by
adding xj modulo 2, nj ≡ xj +mj (mod 2). The operation involves only the
lowest bit bj of xj.

(In practice, the bit strings may be represented as binary words; the modular
addition is then a bit-wise exclusive-or.)

Bob sends the string of nj, along with xk+1, to Alice.

Alice, knowing the factorization N = pq, easily finds the square roots of xk+1

modulo p, q. We have seen that this is particularly easy for prime moduli
≡ 3 (mod 4). And in fact a power of a quadratic residue is automatically
also a quadratic residue.

She then chooses in either case the one that is a quadratic residue modulo p
or q. She combines the two to find xk (mod N) by the Chinese Remainder
Theorem.

The process is repeated until she has found all the xj, j = 1, 2, . . . , k. Ex-
clusive-oring recovers the plaintext bits, as mj ≡ nj + bj (mod 2). �

E.V: Exercises

1. Refer to the last Example above. Let π(x0) denote the period of the sequence
x0, x1, . . . . Show that

π(x0)|λ(λ(N)),

or better even π(x0)|λ(ordN (x0)), where λ is the Carmichael function (C.V.3).
An essential observation is that the order of all quadratic residues modulo
N must be odd. Hint: If v2(ordN (x)) = k > 0, then v2(ordN (x2)) = k − 1
(prove).



Chapter F

Multiplicative Functions

F.I Definitions and Examples

This Chapter does not belong to the main thread of this text and can be
skipped. Our main motive for including it is that it gives a different per-
spective on the Phi function, (A.V.1), and a new proof of the existence of
primitive roots modulo a prime number (C.II.1).

F.I.1 Definition. An arithmetic function is a function from the pos-
itive integers to R or C.

The most important examples are the multiplicative ones:

F.I.2 Definition. The arithmetic function is multiplicative if

(m,n) = 1 =⇒ f(mn) = f(m)f(n)

(forcing f(1) = 1 if f 6≡ 0).

Clearly a multiplicative function is fully determined by its values for prime
powers pk, k > 0.

167
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Here are a few examples. The first three are used in constructing further
examples.

F.I.3 Example.

a) ι given by ι(1) = 1; , ι(n) = 0 for n > 1.

b) The identity function I, I(n) = n, n ≥ 1.

c) The constant function [1] : [1](n) = 1, n ≥ 1.

d) The maximal square-free factor of n, i.e., the product of all distinct prime
factors of n. E.g., for n = 180 = 22 · 32 · 5 it is 2 · 3 · 5 = 30.

e) f(n) = 2N where N is the number of prime divisors of N. �

We did not include the already familiar Phi function in this list – we will
later prove its multiplicativity, using some of the general principles to be
developed in this Chapter.

F.I: Exercises

1. n is a positive integer. s(n) = t1(n) − t3(n) where t1(n), t3(n) denote the
number of divisors of n congruent to 1, or 3, respectively, modulo 4. Show
that s(n) is a multiplicative function. Using this, express s(n) in the multi-
plicities of those prime factors in n that are congruent to 1 or 3 modulo 4.
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F.II The Dirichlet Product

F.II.1 Definition. Let f, g be arithmetic functions. Their Dirichlet
product (or, multiplicative convolution) is defined by

(f ∗ g)(n) =
∑
d|n

f(d)g(
n

d
) =

∑
d|n

g(d)f(
n

d
) =

∑
de=n

f(d)g(e).

The sums extend over all positive divisors of n.

The middle members illustrate that the Dirichlet product is commutative,
f ∗ g = g ∗ f .

It is also associative, in fact:(
f ∗ (g ∗ h)

)
(n) =

(
(f ∗ g) ∗ h

)
(n) =

∑
ijk=n

f(i)g(j)h(k),

a triple sum.

There is an identity for this product, namely ι, ι(1) = 1, ι(n) = 0, n > 1.
“Identity” means that ι ∗ g = g, check this. If f ∗ g = ι, then we say, of
course, that f and g are (Dirichlet) inverses of one another.

An important special case of a Dirichlet product is the summatory function
of an arithmetic function:

F.II.2 Definition. The summatory function F of the arithmetic func-
tion f is defined as the Dirichlet product of f and the constant function
[1], that is, F = f ∗ [1]. Concretely,

F (n) =
∑
d|n

f(d) · 1 =
∑
d|n

f(d).

If f is multiplicative, then so is F . This will follow presently from a more
general result. We first give an important example.
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F.II.3 Theorem. The summatory function of the Euler Phi function is
the identity function I, i.e.,∑

d|n

φ(d) =
∑
d|n

φ(n/d) = n.

Proof. The first equality comes from the fact that an arbitrary divisor of
n may also be written in the form n/d.

For the second, let 1 ≤ m ≤ n, (m,n) = d. Then (m/d, n/d) = 1 and
1 ≤ m/d ≤ n/d.

This sets up a bijection between those m, 1 ≤ m ≤ n−1, for which (m,n) =
d, and the invertible classes modulo n/d. i.e., their number is φ(n/d).

Further, the only m, 1 ≤ m ≤ n, with (m,n) = n, is m = n, and φ(n/n) =
φ(1) by definition.

Summing over all possible d we get the result. �

F.II.4 Example. Let us exemplify the proof for n = 15, where d = 1, 3, 5, 15.

The numbers m, 1 ≤ m ≤ 15, with (m,n) = 1 are those divisible by neither
3 nor 5: m = 1, 2, 4, 7, 8, 11, 13, 14. Their number is φ(15) = 8.

The numbers m, 1 ≤ m ≤ 15, with (m,n) = 5 are m = 1 · 5, 2 · 5 with
m/5 = 1, 2, corresponding to the 2 = φ(3) invertible classes modulo 3.

The numbersm, 1 ≤ m ≤ 15, with (m,n) = 3, arem = 1·3, 2·3, 3·3, 4·3 with
m/3 = 1, 2, 3, 4, corresponding to the 4 = φ(5) invertible classes modulo 5.

Finally, the only m with (m,n) = 15 is m = 15, m/15 = 1, and by definition
φ(1) = 1. �

The main result of this Section is that the Dirichlet product of two mul-
tiplicative functions is itself multiplicative. We precede the result with a
divisibility Lemma:
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F.II.5 Lemma. Let n = n1n2 where n1, n2 > 1 and (n1, n2) = 1. Any
divisor d|n, d > 0 can be written in unique fashion as a product d1 · d2,
where d1, d2 > 0, di|ni, i = 1, 2.

Proof. It is easy to give a proof using unique prime factorization. However,
in order not to forget the foundations of our divisibility theory we give a more
fundamental proof.

We first deal with uniqueness. Suppose d1d2 = e1e2, with e1, e2 > 0, ei|ni.
Then d1|e1e2, (d1, e2)|(n1, n2) = 1, hence d1|e1 by the First Divisibility Theo-
rem. In like manner d2|e2. As d1d2 = e1e2, the two divisibility relations must
be equalities.

Next we deal with existence. Let d1 = (d, n1)|n1. As (d/d1, n/d1) = 1, the
relation

d

d1

|n1

d1

· n2

yields that d2 = d/d1 divides n2, whence the result. �

F.II.6 Theorem. The Dirichlet product f ∗g of two multiplicative func-
tions f, g is itself multiplicative. In particular, the summatory function
F of f is multiplicative.

Proof. Given n = n1n2, n1, n2 > 0, (n1, n2) = 1, we want to prove that
(f ∗ g)(n) = (f ∗ g)(n1)(f ∗ g)(n2) so we have a closer look at the sum∑

d|n

f(
n

d
)g(d).

Writing d = d1d2 as in the Lemma above, we get a double sum:∑
d1|f1

∑
d2|n2

f(
n1

d1

· n2

d2

)g(d1d2).

We are assuming that f, g are multiplicative, so that

f(
n1

d1

· n2

d2

) = f(
n1

d1

)f(
n2

d2

),
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and
g(d1d2) = g(d1)g(d2).

By this token the double sum reduces to the product of the two simple sums:∑
d1|n1

f(
n1

d1

)g(d1) = (f ∗ g)(n1),

and ∑
d2|n2

f(
n2

d2

)g(d2) = (f ∗ g)(n2),

proving that

(f ∗ g)(n) =
∑
d|n

f(
n

d
)g(d) = (f ∗ g)(n1)(f ∗ g)(n2).

F.III Möbius Inversion

We now wish to find the inverse of the constant function [1], if it exists. It
will be denoted by µ.

Let us try low prime powers:

([1] ∗ µ)(1) = 1 · µ(1) = 1,

whence µ(1) = 1; then

([1] ∗ µ)(p) = 1 · µ(p) + 1 · µ(1) = 0,

whence µ(p) = −1; and then

([1] ∗ µ)(p2) = 1 · µ(1) + 1 · µ(p) + 1 · µ(p2) = 0,

so that µ(p2) = 0.

From this a pattern emerges. We must have, for any prime p: µ(p) = −1,
µ(pk) = 0, k > 1.

If µ is to be multiplicative (as we hope) we are led to the following definition:
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F.III.1 Definition. The Möbius Mu Function µ : Z+ → Z is defined
by µ(1) = 1,

µ(n) = µ(p1p2 · · · pk) = (−1)k,

if n is the product of distinct (simple) prime factors pi, and

µ(n) = 0

otherwise.

It is obvious that µ is multiplicative. We can now state and prove the desired
result:

F.III.2 Theorem. The functions µ and [1] are Dirichlet inverses of one
another.

Proof. Obviously ([1] ∗ µ)(1) = 1. Also, it is easy to see that

([1] ∗ µ)(pk) = 1 · µ(p) + 1 · µ(1) = −1 + 1 = 0

all other terms of the sum defining the Dirichlet product being zero.

The identity
([1] ∗ µ)(n) = ι(n), ∀n ∈ Z+

now follows because both members are multiplicative and agree on prime
powers. �

We now arrive at the fundamental Möbius Inversion Formula.

F.III.3 Theorem (Möbius Inversion). If f is an arithmetic function,
and

F (n) = ([1] ∗ f)(n) =
∑
d|n

f(d),

then
f(n) = (µ ∗ F )(n) =

∑
d|n

µ(
n

d
)F (d).
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Proof.
f = ι ∗ f = (µ ∗ [1]) ∗ f = µ ∗ ([1] ∗ f) = µ ∗ F.

�

We note the following Corollary

F.III.4 Corollary.

φ(n) =
∑
d|n

µ(
n

d
)d = (µ ∗ I)(n).

Proof. This is an immediate consequence of the above Theorem and the
identity (F.II.3) ∑

d|n

φ(d) = n.

�

F.III.5 Corollary. The Euler Phi function is multiplicative.

Proof. It is the Dirichlet product of two multiplicative functions. �

F.III.6 Example.

φ(6) = µ(1) · 6 + µ(2) · 3 + µ(3) · 2 + µ(6) · 1
= 6− 3− 2 + 1 = 2.

�

The reader should compare the following Example with the same Example
in the CRT Section, B.II.3.

F.III.7 Example.

φ(105) =µ(1) · 105 + µ(3) · 5 · 7 + µ(5) · 3 · 7 + µ(7) · 3 · 5
+ µ(5 · 7) · 3 + µ(3 · 7) · 3 + µ(3 · 5) · 7 + µ(3 · 5 · 7) · 1

=105− 35− 21− 15 + 3 + 5 + 7− 1 = 48.

�
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* F.IV Two More Results

For the sake of completeness we prove a few additional results on Dirichlet
inverses.

F.IV.1 Theorem. Let f be an arithmetic function. A Dirichlet inverse
g exists if and only if f(1) 6= 0. It is then unique, and given by the
following recurrence:

g(n)f(1) = −
∑

d|n,d<n

g(d)f(
n

d
). (∗)

Proof. The condition f(1) 6= 0 is necessary as we must have g(1)f(1) =
ι(1) = 1.

We set g(1) = 1/f(1) and assume, by way of induction, that g(k) has been
defined for all proper divisors k, k|n, 1 ≤ k < n. Equation (*) then shows
how to define g(n). As equation (*) expresses the condition ι(n) = 0, n > 1,
g is uniquely determined by that condition, and g(1)f(1) = 1, and is the
Dirichlet inverse of f . �

F.IV.2 Theorem. The Dirichlet inverse of a multiplicative function is
itself multiplicative.

Proof. Suppose g∗f = ι, where f is multiplicative. Let n = n1n2, (n1, n2) =
1, n1, n2 > 1. By induction on n (the case where at least one ni = 1 is obvi-
ous) we may assume that g(d1d2) = g(d1)g(d2) for di|ni, di < ni, i = 1, 2.

Then ∑
d|n

g(d)f(
n

d
) = 0,

as n > 1, so that
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g(n) = g(n)f(1) = −
∑

d|n,d<n

g(d)f(
n

d
) =

= −
∑

d1|n1,d2|n2,

∑
d1d2<n

g(d1)g(d2)f(
n1

d1

)f(
n2

d2

)

= −(
∑
d1|n1

g(d1)f(
n1

d1

))(
∑
d2|n2

g(d2)f(
n2

d2

)) + g(n1)g(n2)f(1)f(1)

= g(n1)g(n2).

�

F.IV: Exercises

1. n is a positive integer. Let
∑′

1≤k<n denote summation over those k for which
(k, n) = 1. Show that ∑

1≤k<n

′
k =

1
2
n · φ(n).

2. φ is the Euler phi-function, m,n are positive integers, and d = (m,n) their
greatest common divisor.

Prove:
φ(mn)

φ(m)φ(n)
=

d

φ(d)
.

In particular, show that φ(mn) = φ(m)φ(n) if and only if (m,n) = 1.

3. Determine the sums

(a) ∑
d|n

µ(d)d,

(b) ∑
d|n

µ(d)φ(d).

The answers may be expressed in the Euler function and the prime
factors of the given integer. Start with prime powers.

(c) Show that sum s(n) in a) is the Dirichlet inverse of the Euler func-
tion φ(n). First prove that it is multiplicative, which means that the
Dirichlet product need be computed only for prime powers.
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4. The sum ∑
d|n

|µ(d)|

is a power of two. Describe the exponent.

5. n is a positive integer. Let B(x) be the number of m, 1 ≤ m ≤ x for which
(m,n) = 1. B(n) is of course φ(n) for which you know an expression, as a
sum. How should that expression be modified in order to hold for arbitrary
x? Hint: study a few simple examples, then reflect on the true meaning of
the expression for φ(n).

6. Suppose the function f is defined for all positive real (or at least rational)
numbers, and let

g(x) =
∑

1≤k≤x

f(
x

k
).

Prove that
f(x) =

∑
1≤k≤x

g(
x

k
)µ(k).

Also prove the converse. Hint: Arrange a certain double sum in a way that
exploits the basic properties of the µ function.

7. An arithmetic function f is called completely multiplicative if f(mn) =
f(m)f(n) for all pairs of positive integers m,n.

(a) Give examples.

(b) Can you give an example of two completely multiplicative functions
the Dirichlet product of which is not completely multiplicative?

(c) Show that a multiplicative function f is completely multiplicative if
and only if f(pk) = f(p)k for all prime numbers p.

(d) Show that a multiplicative function f, 6= 0, is completely multiplicative
if and only if its Dirichlet inverse is give by f−1(n) = µ(n)f(n) for all
positive integers n.

8. Let f be an arithmetic function. Prove the relation

n∑
1

′

f(k) =
∑
d|n

(
µ(d)

∑
1≤k≤n/d

f(kd)
)
,

where the prime indicates summation over those k for which (k, d) = 1. For
instance, start by collecting all terms, of the right member, belonging to one
single value of the product kd.
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9. (a) Suppose, for a fixed positive integer k, that the relation

T (n) =
∑
d|n

dkS(
n

d
))

holds for the two arithmetic functions S, T . Express S(n) in T (d), d|n.
In particular, find the Dirichlet inverses of the functions f(n) = nk.

(b) n is an odd integer ≥ 3. We wish to determine the sum

S(n) =
∑

1≤k≤ 1
2
(n−1)

′
k,

(summing over k, (k, n) = 1). Show first that∑
d|n

d · S(
n

d
) =

∑
1≤k≤ 1

2
(n−1)

k,

an arithmetic sum. Solve this relation for S(n), using a).

10. Using the ideas of the previous problem, find the sum

S(n) =
∑

1≤k≤n−1

′
k2,

(summing over k, (k, n) = 1), using

n−1∑
k=1

k2 =
1
6
n(n− 1)(2n− 1).
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F.V Primitive Roots, Again

F.V.1 Example. As an application of the Euler function we prove again
the existence of a primitive root modulo p, Theorem C.II.1, where p is a
prime number. That is, we prove again the existence of an element g of
order φ(p) = p− 1 modulo p. We assume p > 2.

The invertible classes modulo p are the non-zero ones. By Little Fermat
they are the roots of the polynomial Xp−1 − 1. The possible orders d of any
invertible class are divisors of p − 1, p − 1 = de. For such d the polynomial
Xd − 1 divides Xp−1 − 1, by the familiar identity:

Xde − 1 = (Xd − 1)(X(e−1)d +X(e−2)d + · · ·+ 1) = (Xd − 1)q(X).

We claim that for each d, d|(p − 1), the polynomial Xd − 1 has exactly d
roots modulo p.

The reason is that there are no zero-divisors modulo p; if (ad − 1)q(a) ≡ 0
(mod p) one of the factors must be congruent to zero modulo p. As the
number of solutions modulo p is de and the two factors have at most d and
(d− 1)e solution classes they must have exactly d and d(e− 1) respectively.

We now let ψ(c) denote the number of elements of (exact) multiplicative
order c modulo p. (If c does not divide p− 1, then ψ(c) = 0). If c divides d,
and d divides p− 1, then any element of order c is a root of Xd − 1, whence∑

c|d

ψ(c) = d =
∑
c|d

φ(c).

The Möbius Inversion Formula (F.III.3) then yields, for d|(p− 1),

ψ(d) =
∑
c|d

µ(c)(
d

c
) = φ(d).

In particular,
ψ(p− 1) = φ(p− 1) > 0,

which establishes the existence of elements of order p − 1. In fact, we even
established, without extra effort, their exact number. �
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F.V: Exercises

1. If you try to transfer the argument above to the question of primitive roots
modulo p2 – where there are zero-divisors – you cannot reason exactly as
above. Can you resolve the difficulty?
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F.VI A Combinatorial Application

We now give a combinatorial application of the Phi and Möbius functions.

Suppose we want to make a necklace with n beads, in a colors. They are flat
on the side to be worn against the body.

The number of colorings is obviously an. However, arranging the beads
symmetrically at the vertices of a regular polyhedron it is natural to regard
two colorings as equivalent if one can be brought into the other by rotating
the polyhedron.

Lumping equivalent colorings together into classes results in a partition of
the an colorings. We wish to determine the number of equivalence classes.

For instance, if the colors are R, G, and the number of beads is six we identify
the two colorings

R G G R
G R R G

R G G R

by a π/6 rotation and the colorings

R R G G
G R R G

G G R R

by a half-turn.

There are n rotations of the polyhedron. They can be written

id , r, r2, . . . , rn−1, (rn = id ),

where r is the counterclockwise rotation 2π/n. Each coloring is brought into
itself by applying the rotation r n times. There is a least positive number
0 < d ≤ n having the property that rd rotates a coloring into itself. In the
examples above, d = 2 and 6. For

R R
G G

R R

it is 3.

The number d divides n. For if n = qd+ t, 0 ≤ t < d, rt = rn · rd−q has the
same property as rd, hence, by minimality, t = 0.
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We call the number d thus defined the order of the coloring. We now de-
termine the number f(d) of colorings having order d. f(m) = 0 if m - n, of
course.

As each of the an colorings is of some order we have∑
d|n

f(d) = an.

The Möbius Inversion Formula then immediately gives

f(d) =
∑
k|d

µ(
d

k
)ak.

Now let F (n) denote the number of classes of equivalent colorings. Take one
coloring from each class. Performing the n rotations on each of them gives
us nF (n) colorings.

Here each of the f(d) colorings of order d, d|n will appear n/d times, rotated
by id, rd, r2d, . . . rn−d. So:

nF (n) =
∑
d|n

f(d) · n
d

=

=
∑
k|d

∑
d|n

akµ(
d

k
)
n/k

d/k
.

The double summation extends over all pairs k, d satisfying k | d |n.

We fix k, and sum the factor after ak over d. Setting d′ = d/k, n′ = n/k, we
obtain ∑

d:k|d|n

µ(
d

k
)
n/k

d/k
=

∑
d′|n′

µ(d′)
n′

d′
= φ(n′) = φ(

n

k
),

that is,

nF (n) =
∑
k|n

akφ(
n

k
) =

∑
k|n

an/kφ(k).

The reader is invited to exemplify this formula.

The reader who has taken a course in Abstract Algebra may recognize this as
an instance of Burnside’s Counting Theorem. φ(k) is the number of rotations
of order k, and an/k is the number of colorings fixed by each of these.
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For n = p, a prime number, we arrive at a new proof of Little Fermat (A.V.9),
as the sum in the right member (two terms!) must be divisible by p. This
same formula can then be used recursively to prove Euler’s Theorem (A.V.12)
for prime powers. And using the multiplicativity of the Phi function one can
prove it for any modulus. See the exercises.

F.VI: Exercises

1. Use the necklace Example to prove Little Fermat and Euler’s Theorem, as
indicated above.
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F.VII The Sum of Divisors

We give one final example of a multiplicative function, and show the classical
result characterizing even perfect numbers.

F.VII.1 Definition. For positive integers n, the sum of divisors func-
tion, σ(n), is defined as the sum

σ(n) =
∑
d|n

d

of all positive divisors of n.

The following result is almost trivial:

F.VII.2 Lemma. For n > 1,

σ(n) ≥ n+ 1,

equality holding if and only if n is a prime number.

�

F.VII.3 Theorem. σ is a multiplicative function.

Proof. It is the summatory function of the identity function, I(n) = n. �

As with most multiplicative functions one wants to know its value for prime
powers.
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F.VII.4 Lemma. Let p be a prime number, e a positive exponent. Then

σ(pe) =
pe+1 − 1

p− 1
.

Proof. It is a geometric sum:

σ(pe) = 1 + p+ p2 + · · ·+ pe =
pe+1 − 1

p− 1
.

�

The expression for p = 2 is particularly simple: σ(2e) = 2e+1 − 1.

Now for the main result of this Section:

F.VII.5 Definition. The positive integer n is perfect if σ(n) = 2n, i.e.,
if n equals the sum of its divisors < n.

No odd perfect numbers are known, but it is known that they must have
many prime factors and be very large.

Here is the result characterizing the even ones. Prime numbers of the form
2s − 1 (forcing s to be prime, as shown in the last Chapter) are called
Mersenne primes.

F.VII.6 Theorem. The even number n is perfect if and only if it is of
the form

n = 2s−1(2s − 1), s ≥ 2,

where the second factor is a Mersenne prime.

Proof. If n is of the given form, then, by multiplicativity, and the Lemmas
above, σ(n) = σ(2s−1)σ(2s − 1) = (2s − 1)2s = 2n.
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For the converse assume n even, and σ(n) = 2n. Writing n = 2s−1t, s ≥ 2, t
odd, the assumption is:

2st = 2n = σ(n) = σ(2s−1)σ(t) = (2s − 1)σ(t).

As (2s, 2s − 1) = 1 it follows that 2s|σ(t), hence (reading from the opposite
direction), (2s − 1)|t. We spell this out:

t = (2s − 1)u,

σ(t) = 2s · u.

We now see that σ(t) = t+u, which means that t has only these two divisors.
Hence u = 1, and t = 2s − 1 is a prime, and n has the form asserted. �

In December 2008, 46 Mersenne primes had been discovered, so 46 perfect
numbers are known. Among the smallest ones is 24 · (25− 1) = 16 · 31 = 496.
The sum of divisors < 496 is (1 + 2 + 4 + 8 + 16) + (1 + 2 + 4 + 8) · 31 =
31 + 15 · 31 = 16 · 31.

F.VII: Exercises

1. Show that 2s−1 prime forces s prime. Or, more generally, for integers a > 1,
that (as − 1)/(a− 1) prime forces s prime.
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F.VIII Cyclotomic Polynomials

As another application of the Möbius function we determine the so-called
cyclotomic polynomials Φn(X).

Recall (F.III.1) that µ is the Dirichlet inverse of the constant function [1]:
(µ ∗ [1])(n) = 1 for n = 1, 0 otherwise. In plaintext:

∑
d|n

µ(d) =

{
1 if n = 1,

0 if n > 1.

Now consider the polynomial Fn(X) = Xn − 1. Its complex roots are the
powers εk, k = 0, 1, 2, . . . n − 1, where ε = exp(2πi/n). Each root α has a
true order d, the least positive exponent for which αd = 1, i.e., for which α
is a root of Fd(X) = Xd − 1.

F.VIII.1 Definition. The root α is primitive for Fn(X) = Xn− 1, or
a primitive n-th root (of unity), if its order equals n.

The following result is proved exactly as for orders of invertible residue classes
modulo n (A.V.5).

F.VIII.2 Lemma.

a) ε = exp(2πi/n) is primitive for Fn.

b) The order of any root of Fn(X) divides n.

c) The order of εk equals n/(k, n).

d) εk is a primitive n-th root if and only if (k, n) = 1.

�

We can now define our object of study:
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F.VIII.3 Definition. The n-th cyclotomic polynomial Φn(X) is the
product

∏
(X − α) extended over all the primitive n-th roots α.

The word “cyclotomic” comes from the Greek, meaning “circle-dividing”.
Clearly, the degree of Φn(X) is φ(n). Furthermore:

F.VIII.4 Lemma.
Fn(X) =

∏
d|n

Φd(X).

Proof. The roots of Fn(X) are by construction the complex numbers of
order dividing n. �

F.VIII.5 Example.

a) For a prime number p, all k, 1 ≤ k ≤ p − 1, are relatively prime to p.
Hence all roots to Fp(X), except X = 1, are primitive, i.e.,

Φn(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 + · · ·+ 1.

b)

Φ8(X) =
F8(X)

F4(X)
=
X8 − 1

X4 − 1
= X4 + 1.

If the order of an 8-th root is not 8, it divides 4, hence belongs to X4 − 1.

c)

Φ6(X) =
(X6 − 1)(X − 1)

(X3 − 1)(X2 − 1)
=
X3 + 1

X + 1
= X2 −X + 1.

We start with all 6 roots of X6 − 1. We then exclude the roots of order 2,
and 3. But then we exclude the root 1 twice, so we put it back again. �

Now we can prove our main Theorem:
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F.VIII.6 Theorem.

Φn(X) =
∏
k|n

Fk(X)µ(n/k).

Proof. Induction over the number of prime factors. The case n = 1 (zero
prime factors) is obvious. We have already seen that

Φp(X) = Fp(X)+1 · F1(X)−1 = Fp(X)µ(p/p) · F1(X)µ(p/1)

for a prime number p. That takes care of the case of one prime factor.

Now assume the Theorem proven for d with fewer than k prime factors, and
let n have k + 1 prime factors. Consider the identity

Fn(X) = Φn(X) ·
∏
d|n

′
Φd(X),

where the prime denotes the omission of the index n. We may assume, by
induction, that the Theorem holds for the factors after the product sign:

Φd(X) =
∏
k|d

Fk(X)µ(d/k), d|n, d < n.

Collect the contributions to one single factor Fk, k|n, k < n (so that the
induction hypothesis applies). The resulting exponent is:

−µ(
n

k
) +

∑
d:k|d|n

µ(
d

k
).

Note that k, n are fixed; the sum extends over those d|n that are divisible by
k.

Writing d′ = d/k, n′ = n/k this can be rewritten as∑
d′|n′

µ(d′)− µ(
n

k
).

As n > k, n′ > 1, the first sum is 0, and we are left with the single term
−µ(n/k). Therefore

Fn(X) = Φn(X) ·
∏
k|n

′
Fk(X)−µ(n/k).
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As µ(n/n) = 1 the result follows on multiplication of both members by∏
k|n

′
Fk(X)µ(n/k).

�

We finally note:

F.VIII.7 Theorem. Φn(X) is a polynomial with rational integer coef-
ficients and leading coefficient 1.

Proof. In the last Theorem some Fk enter with exponent 1, others with
exponent −1. The Theorem therefore represents Φn(X) as the quotient of
two integer polynomials. As the denominator has leading coefficient one, the
quotient has integer coefficients. Already the defintion of Φn(X) shows that
its leading coefficient equals one. �

F.VIII.8 Example. Two further examples:

a) n = 12, µ(12/2) = µ(2 · 3) = 1;µ(12/6) = µ(12/4) = −1.

Φ12(X) =
(X12 − 1)(X2 − 1)

(X6 − 1)(X4 − 1)

=
X6 + 1

X2 + 1
= X4 −X2 + 1.

b) n = 30 = 2 · 3 · 5. Here µ(30/2) = µ(30/3) = µ(30/5) = 1, µ(30/6) =
µ(30/10) = µ(30/15) = −1.

Using the rule a2− b2 = (a− b)(a+ b) and a3 + b3 = (a+ b)(a2− ab+ b2) we
get:

Φ30(X) =
(X30 − 1)(X2 − 1)(X3 − 1)(X5 − 1)

(X15 − 1)(X − 1)(X6 − 1)(X10 − 1)

=
(X15 + 1)(X + 1)

(X3 + 1)(X5 + 1)
=
X10 −X5 + 1

X2 −X + 1

= X8 +X7 −X5 −X4 −X3 +X + 1.

�
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Remark 1: Φ2(X) = X + 1. For n ≥ 3, f = φ(n) is even. For these n, −1
is not a root of Φn(X). The roots come in inverse pairs: εk, εp−k, so their
product equals 1. As the degree of Φn(X) is even, its constant term equals
one.

The reciprocal polynomial, XfΦn(1/X), has the same roots as Φn(X). Its
coefficients are the same as those of Φn(X), in reverse order, so its leading
coefficient equals 1. As the two polynomials have the same roots and the
same leading coefficients, they must be equal. Φn(X) is self-reciprocal, or
palindromic.

Remark 2: The perceptive reader will no doubt have noticed that we more
or less derived a general multiplicative Möbius inversion formula, replacing
sums by products, and factors by exponents.

An Application Of Cyclotomic Polynomials

Cyclotomic polynomials arise in many ways in the context of factoring. One
instance is numbers of the special form an − bn. Those factors that do not
divide factors of the form ad − bd, d|n, will divide a homogenized expres-
sion related to Φn(x), bfΦn(a/b). Riesel’s book has a wealth of remarkable
formulas related to this issue.

Looking closer at the case b = 1 we will derive a special case of a marvelous
theorem in Number Theory.

Let n ≥ 3 and let d|n be a factor < n. Clearly the polynomial Φn(X), by
its construction, must divide the polynomial (Xn − 1)/(Xd − 1). The same
then holds for the numbers produced by substituting a value a for X.

Therefore (ad − 1,Φn(a)) divides (ad − 1, (an − 1)/(ad − 1)). Setting n =
qd the second number in parentheses may be written as a geometric sum,
a(q−1)d + a(q−2)d + · · · + 1. As all the terms in that sum are congruent to 1
modulo ad − 1, and there are q of them, we conclude that

(ad − 1,Φn(a)) | (ad − 1, q) | q,

which is of some significance in itself (the common factors are small).

Now let a = n. Obviously Φn(n) ≡ 1 (mod n), so that (Φn(n), q) = 1. As(
nd − 1,Φn(n)

)
|q, the only possibility is (nd − 1,Φn(n)) = 1.

Let p be a prime factor of Φn(n). As the relative primality holds for any
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proper factor d|n, it holds that

nd 6≡ 1 (mod p)

for these, hence

ordp(n) = n.

By Little Fermat, therefore, n|(p− 1), p = 1 + kn, i.e., the class of 1 modulo
n contains a prime number. We have almost proved the following:

F.VIII.9 Theorem. Let n ≥ 3 (n = 2 is a trivial case). Then the class
of 1 modulo n contains infinitely many prime numbers.

Proof. We have shown that the class in question contains a prime p =
1 + kn. Now repeat the discussion above with r · n, r - k, in place of n,
thus producing a prime p = 1 + lrn. Obviously, this process can be repeated
indefinitely so as to produce an infinite sequence of primes ≡ 1 (mod n). �

A beautiful theorem by Dirichlet states that every invertible class modulo n
contains infinitely many primes. You can find it in Apostol’s book.

Peter Gustav Lejeune Dirichlet (1805-1859) pioneered the use of analytic
tools in Algebraic Number Theory.

F.VIII: Exercises

1. A recursive procedure for computing Φn(X). If q is a prime dividing n, then
Φqn(X) = Φn(Xq), prove this.

If q is a prime not dividing n, then Φqn(X) = Φn(Xq)/Φn(X), prove this.

For odd n, also note, and prove, Φ2n(X) = Φn(−X).

2. (a) Compute Φn(1). Treat n = prime power first.

(b) Compute Φn(−1). It is convenient to start with odd n, and powers of
2.

3. Using relations like
1− εk = εk/2(ε−k/2 − εk/2),
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Euler’s formula for the sine function, the previous exercise, and Gauß’ Lemma
(D.IV.4), derive an expression for the product of all sin(amπ/n) where a runs
over a whole or a half system of invertible classes modulo n, and (m,n) = 1.

The case where n is neither an odd prime power nor twice an odd prime
power is the easiest (as 4|φ(n)). The cases where n is a prime power (odd,
or power of 2) are the most striking. Start with m = 1. The answer will
involve Legendre symbols.

4. Let f = φ(n). Form the polynomial

Ψ(X) = (X − i)fΦ
(X + i

X − i

)
.

Show that its leading coefficient is real, and that all its roots are real (find
them!). Conclude that its coefficients are rational integers. Determine Ψ(0)
(in various cases). What trigonometric identities can you deduce?

5. Consider the algebraic congruence

Φn(X) ≡ 0 (mod q)

where q is a prime not dividing n.

(a) Show (e.g., using ideas from the last subsection) that if a is a root,
then ordq(a) = n, so that q ≡ 1 (mod n).

(b) Assume, conversely, that q ≡ 1 (mod n). Show that the congruence
Φn(X) ≡ 0 (mod q) is solvable, and has φ(n) solutions modulo q.

(c) Also show that vq(Φn(a)) = vq(an − 1) for each solution.

6. (continued) Now consider the case n = n1 · qα where q - n1. Let a be
a solution to the congruence above. Show that ordn(a) divides n1 (easy);
then show, using the trick of the last subsection in two different ways, that
ordn(a) = n1 and that vq(Φn(a))=1.

Finally note that q can only be the largest prime factor of n.

Exemplify the two exercises by studying Φ20(X) modulo 5, 41, 15.

7. Let sd be the sum of roots of unity of exact order d. Determine the sum∑
d|g sd (for instance, use the relation between roots and coefficients of a

polynomial). An expression for sd follows immediately.

Now do the same for primitive roots modulo p.

8. Let p1 = 2, 3, 5, . . . , pN be the N first primes. Use the special case of Dirich-
let’s Theorem proved here, to show that there exists a prime number P such
that (pk/P ) = 1 for all 1 ≤ k ≤ N .

The trick is to find the right modulus on which to apply Dirichlet.
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Conclude, for this P , that all positive numbers up to a certain limit are
quadratic residues modulo P , hence not primitive roots. That is, for any
given integer M > 0 there exists a prime P such that the least positive
primitive root for P is > M .



Chapter G

Continued Fractions

G.I Motive, Definitions

Our presentation of this topic owes a lot to that of Harold Stark (1939 -). It
has a strong geometric slant.

Most texts give the theory as an infinite analog of Extended Euclid, (A.I.7)
and derive theorems about rational approximations as an afterthought. Here
we start with the approximations right away. You will not see very much of
the continued fractions themselves, until the end of the Chapter (they are
horrible to type).

Consider the straight line given by the equation y = αx, in a an orthonormal
coordinate system. We assume α > 0, and (for the time being) irrational.
We are looking for a sequence of rational approximations

Ck =
pq

qk
, pq, qk ∈ Z, k ≥ −1,

converging to the slope α. It has proved fruitful to introduce the vectors

vk =

(
qk
pk

)
of slope Ck.

One obvious requirement is

|α− pk

qk
| → 0.

195
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A stronger requirement is given by the vertical distance from the head of the
vector vk to the line y = αx, i.e., the distance between the points (qk, pk)
and (qk, αqk),

d = |αqk − pk|.

We require d → 0. That is a stronger requirement as it will turn out that
qk → +∞.

We allow ourselves to start with

v−1 =

(
0
1

)

of infinite slope. Sometimes it is convenient start with v−2 =

(
1
0

)
, of zero

slope.

Next we set (
q0
p0

)
=

(
1
a0

)
,

where a0 = bα0c, the floor of α0 = α (the largest integer ≤ α).

Of all vectors, with integer coordinates, and first coordinate =1, it is the one
coming closest to (

1
α0

)
from below.

We now determine that integral linear combination(
q1
p1

)
=

(
0
1

)
+ a1

(
q0
p0

)
=

(
0
1

)
+ a1

(
1
a0

)
whose slope lies just above α0

We first choose that irrational number α1 (instead of the integer a1) giving
equality, so that (

q−1

p−1

)
+ α1

(
q0
p0

)
=

(
0
1

)
+ α1

(
1
a0

)
is of slope α0:

α0 =
α1a0 + 1

α1

,
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whence

α1 =
1

α0 − a0

.

Then the head of our linear combination will land on the line y = αx. We
want to stop just before that; therefore we replace α1 by its floor: a1 = bα1c.
Our next step will be to determine the integral linear combination

v2 =

(
q2
p2

)
= a2

(
q1
p1

)
+

(
q0
p0

)
= a2v1 + v0

giving a slope just below α. Again we first determine the irrational number
α2 so that the linear combination

v′
2 = α2v1 + v0

is of slope exactly = α.

We have already defined α1 so that

v′
1 = α1v0 + v−1

is of slope α, and
v1 = a1v0 + v−1,

where a1 = bα1c.

Subtracting the two equations gives

v1 = v′
1 − (α1 − a1)v0.

We are requiring that

v′
2 = α2v1 + v0 = α2[v

′
1 − (α1 − a1)v0] + v0

have the same slope, α, as v′
1. That will happen if and only if the coefficient

for v0 equals zero, i.e., if and only if:

α2 =
1

α1 − a1

.

Again, the head of our vector lands on the line. We moved forward, below
the line, until reaching it. Again we stop just before it, i.e., again we take
the floor of α2:

a2 = bα2c.

We are led to the following recursive definitions :
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G.I.1 Definition. Define the irrational numbers αk, and the integers
ak, the partial quotients, by:

α0 = α, a0 = bα0c; αk+1 =
1

αk − ak

, ak+1 = bαk+1c, k ≥ 0.

Further define the vectors

vk =

(
qk
pk

)
∈ Z2, k ≥ −1,

recursively by (
q−1

p−1

)
=

(
0
1

)
,(

q0
p0

)
=

(
1
a0

)
,(

qk+1

pk+1

)
= ak+1

(
qk
pk

)
+

(
qk−1

pk−1

)
, k ≥ 0, (Rk)

having slopes (the convergents of α):

Ck+1 =
pk+1

qk+1

=
ak+1pk + pk−1

ak+1qk + qk−1

; (C−1 = ∞, C0 = a0).

G.I.2 Example (A computation). We choose α =
√

14 and obtain the
following:

α0 =
√

14 = 3 + (
√

14− 3); a0 = 3

α1 =
1√

14− 3
=

√
14 + 3

5
= 1 +

√
14− 2

5
; a1 = 2

α2 =
5√

14− 2
=

√
14 + 2

2
= 2 +

√
14− 2

2
; a2 = 2

α3 =
2√

14− 2
=

√
14 + 2

5
= 1 +

√
14− 3

5
; a3 = 1

α4 =
5√

14− 3
=
√

14 + 3 = 6 + (
√

14− 3); a4 = 6

so that a0 = 3, a1 = 1, a2 = 2, a3 = 1, a4 = 6. From that point on, the ak
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repeat periodically: a5 = a1 = 1; a6 = a2 = 2 . . . This happens because in
the next step we once again invert

√
14− 3.

From our recurrence

pk+1 = ak+1pk + pk−1, qk+1 = ak+1qk + qk−1, k ≥ 0,

we now obtain the following table:

k −1 0 1 2 3
pk 1 3 4 11 15
qk 0 1 1 3 4

ak+1 3 1 2 1 6
Ck ∞ 3 4 11/3 15/4

with the odd Ck lying above, the even ones below,
√

14.

For instance,

C2 =
p2

q2
=
a2p1 + p0

a2q1 + q0
=

2 · 4 + 3

2 · 1 + 1
=

11

3
<
√

14.

�

G.II Basic Theorems

We are now ready to prove a couple of Theorems.

G.II.1 Theorem. The determinant

pkqk−1 − qkpk−1 =

∣∣∣∣qk−1 qk
pk−1 pk

∣∣∣∣ = (−1)k−1, k ≥ 0.

Proof. Induction on k, by column operations. k = 0:

∣∣∣∣q−1 q0
p−1 p0

∣∣∣∣ =

∣∣∣∣0 1
1 a0

∣∣∣∣ = −1.

k → k + 1:
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∣∣∣∣qk qk+1

pk pk+1

∣∣∣∣ =

∣∣∣∣qk ak+1qk + qk−1

pk ak+1pk + pk−1

∣∣∣∣ =

∣∣∣∣qk qk−1

pk pk−1

∣∣∣∣ = −
∣∣∣∣qk−1 qk
pk−1 pk

∣∣∣∣ .
�

Here we never used the exact meaning of the integers ak.

An important consequence is:

G.II.2 Theorem. Every vector with integral components:(
s
r

)
, r, s ∈ Z,

can be written as an integral linear combination(
s
r

)
= l

(
pk

qk

)
+m

(
pk−1

qk−1

)
= lvk +mvk−1; l,m ∈ Z.

Proof. This follows simply by viewing this vector equation as a linear
system of equations, of determinant ±1 6= 0:

s = lpk +mpk−1

r = lqn +mqk−1

and solving for l,m. Multiplying the first equation by qk−1, the second by
pk−1, and subtracting, gives sqk−1 − rpk−1 = (pkqk−1 − qkpk−1)l = ±1 · l, and
similarly for m. �

Those who remember their Linear Algebra will recall the interpretation of a
2× 2-determinant as a signed, or oriented, area.

For odd k this area equals +1, i.e., the two column vectors span a parallel-
logram of area 1, with the second vector lying “to the left” of the first. In
fact, the two vectors will lie on opposite sides of the line y = αx. We will
prove this later.

For even k, the area also equals 1, but the orientation is the opposite to
the odd case. The geometric significance of a column operation is that two
vertices of the parallellogram are translated along the line connecting them,
changing neither the base nor the altitude, hence not the area.
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Another consequence is the following:

G.II.3 Theorem. pk, qk, k ≥ 0, are relatively prime.

�

G.II.4 Theorem. If, in the recurrence (Rk) above, the integer ak+1 is
replaced by αk+1 we obtain a vector of slope equal to α:

α =
αk+1pk + pk−1

αk+1qk + qk−1

.

Proof. Induction on k.

The case k = 0 follows directly from our previous definition:

α1 =
1

α0 − a0

=⇒ α0 =
α1a0 + 1

α1

=
α1p0 + p−1

α1q0 + q−1

.

We now turn to the induction step.

Suppose αk+1 has been defined so that the vector

v′
k+1 = αk+1vk + vk−1 (∗)

is of slope = α. Suppose we then define

vk+1 = ak+1vk + vk−1, (∗∗)

where ak+1 is the floor of αk+1.

We must show that the recurrence for the α produces that αk+2 for which
the vector

v′
k+2 = αk+2vk+1 + vk (∗ ∗ ∗)

has slope α.

Combining (*) and (**) we get:

v′
k+1 − vk+1 = (αk+1 − ak+1)vk,

vk+1 = v′
k+1 − (αk+1 − ak+1)vk.



202 CHAPTER G. CONTINUED FRACTIONS

Plugging this into (***) then gives

v′
k+2 = αk+2v

′
k+1 + [1− αk+2(αk+1 − ak+1)]vk.

By the recurrence for the α the expression in brackets equals zero, so the
vector v′

k+2 has the same slope as v′
k+1, i.e., its slope equals α. �

Remark: The critical reader will wonder where we used the fact that the
integer ak is the floor of αk. It is the choice giving the inequalities αk+1 > 1
and ak+1 ≥ 1 needed to set things in motion.

G.II.5 Example. In our introductory example we found the convergent

C2 =
p2

q2
=
a2p1 + p0

a2q1 + q0
=

2 · 4 + 3

2 · 1 + 1
=

11

3
.

Replacing a2 = 2 by α2 = (
√

14 + 2)/2 we get

(
√

14 + 2) · 4 + 2 · 3
(
√

14 + 2) · 1 + 2 · 1
=

4
√

14 + 14√
14 + 4

=
√

14,

as promised by the Theorem. �

G.II.6 Theorem. |Ck − α| < 1

qkqk+1
≤ 1/k2.

Proof. Using our earlier observations we get:

|Ck − α| = |pk

qk
− α|

= |pk

qk
− αk+1pk + pk−1

αk+1qk + qk−1

| = |pkqk−1 − pk−1qk|
(αk+1qk + qk−1)qk

=
1

qk(αk+1qk + qk−1)
<

1

qk(ak+1qk + qk−1)

=
1

qkqk+1

.

This proves the first inequality. The second equality follows becuse the qk
are a strictly increasing sequence of positive integers, for k ≥ 1.
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This in turn follows from the recurrence (Rk) and the fact that αk+1 > 1, k ≥ 0,
so that ak+1 ≥ 1. And this finally comes from

1 > αk − ak > 0, k ≥ 0,

yielding αk+1 = 1/(αk − ak) > 1. �

We note an immediate Corollary.

G.II.7 Corollary.
Ck → α

as k → +∞.

And, better still:

|pk − qkα| = qk|Ck − α| < 1

qk+1

→ 0.

�

As we have noted before, the expression |pk − qkα| signifies the vertical dis-
tance from the head of vk to the line y = αx.

In the discussion on “best approximation” below (Section G.IV) it is essential
to realize that the vectors vk with odd k lie above the line y = αx, those
with even k below.

By our motivating discussion at the beginning of this Chapter, we expect the
following to hold:

G.II.8 Theorem. For odd k, Ck > α, for even k, Ck < α.

Proof. Remove the absolute value signs in the proof of the last Theorem.
The denominator being positive, we see that Ck − α has the same sign as
pkqk−1 − qkpk−1 = (−1)k−1. �

Most books show by calculation that the sequence of even convergents is
increasing: C0 < C2 < C4 < . . . , and that of odd convergents decreasing:
C1 > C3 > C5 > . . . , e.g., Ck−1 < Ck+1 < Ck for even k + 1.
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A more geometric proof comes from noting that each Ck, k ≥ 1, must lie
between the two preceding ones.

This is because the vector vk+1 is a positive linear combination of vk and
vk−1, hence lies strictly between them. The corresponding relation then must
hold for their slopes.

G.II: Exercises

1. Compute the first five ak, αk, Ck for α =
√

2. Compare to the irrationality
1−

√
2, and its powers. Do you see a pattern? Can you prove it?

If you know about musical intervals, you may enjoy comparing the tempered,
and some Pythagorean, variants of the tritone interval.

2. Compute the first five ak, αk, Ck for α =
√

6. Look more closely at the
irrationalities pk + qk

√
6, and a few products among these, and guess a

pattern. The correct pattern will be stated and proved later in the text.

3. We want to compute log10 a, where a is a rational number > 1, using con-
tinued fractions. (In order to avoid finite continued fractions, you may wish
to avoid an integer power of 10.)

You will probably be led to introducing b0 = 10, b−1 = a, and a recurrence
expressing the rational number bk+1 in the bk, bk−1, determining the partial
quotient ak as the largest integer satisfying bak

k ≤ bk−1. Plus, of course, the
recurrence for the convergents.

In this manner, a short hand calculation will give you, for instance, log10 2
and log10 3, with four correct decimal places.

Again, if you know about musical intervals, knowing rational approximations
to the logarithms of 2, 3, etc. you may enjoy comparing the Pythogarean
and tempered fifth, among others.

If you turn this into a computer algorithm what problems do you encounter
(or foresee) in treating the bk as exact rationals, or as floats?

Remark: This algorithm was presented by my grandfather, Professor Sev-
erin Johansson (1879-1929), in a book on mathematical eduction in primary
and secondary schools in Finland (Swedish title: “Matematiken i Finlands
skola”). It was his idea that short hand calculations of this kind would help
demystify logarithms.
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* G.III Negative Irrationalities

For the application to Pell’s Equation x2 − Dy2 = ±1 it will suffice to un-
derstand the case just treated, that of positive α. We made that assump-
tion as signs tend to confuse. For the discussion on the general equation
x2 −Dy2 = N , however, it will be convenient to be able to deal with nega-
tive numbers, as well.

The following discussion may be skipped on first reading; the reader may
wish to return to it in connection with the last Sections of this Chapter.

Thus, let β0 = β < 0 be negative. If bβc = −m, set α0 = α = β + m,
0 < α < 1. Defining

bk = bβkc, βk+1 =
1

βk − bk
, k ≥ 0

we will have b0 = −m, a0 = 0. But then β1 = 1/(β0−b0) = 1/(α0−a0) = α1,
hence bk = ak for all k ≥ 1. Most importantly, all bk, k ≥ 1, are positive.

Now look at the recurrence for the convergents:

(
s−1

r−1

)
=

(
0
1

)
,

(
s0

r0

)
=

(
1
0

)
;

(
sk+1

rk+1

)
= bk+1

(
sk

rk

)
+

(
sk−1

rk−1

)
, k ≥ 0.

Clearly the sk form an increasing sequence of positive integers, and the rk a
decreasing sequence of negative integers, from k = 0 on. We also see that
the vector in the left member is a positive linear combination of the two
preceding ones, hence lies between them.

Then look at the corresponding recurrence for the convergents to α:(
q−1

p−1

)
=

(
0
1

)
,

(
q0
p0

)
=

(
1
−m

)
;

(
qk+1

pk+1

)
= bk+1

(
qk
pk

)
+

(
qk−1

pk−1

)
, k ≥ 0.

Comparing the two we easily see that(
qk
pk

)
=

(
sk

rk +msk

)
, k ≥ 0,

so that, quite reasonably,
pk

qk
=
rk

sk

+m.
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From this we see, e.g., that rksk−1 − skrk−1 = pkqk−1 − qkpk−1 = (−1)k+1

and that in this case too the odd convergents lie above β, and the even ones
below it.

G.IV Best Rational Approximation

The letter α still denotes an irrational number. We do not suppose α > 0.

G.IV.1 Lemma. Suppose s > 0, r are integers with

|sα− r| < |qkα− pk|

Then s ≥ qk+1.

Proof.

We have already pointed out that |sα − r| is the vertical distance from the
point (s, r) to the line y = αx.

We also noted in G.II.2 that(
s
r

)
= l

(
qk
pk

)
+m

(
qk+1

pk+1

)
= lvk +mvk+1,

with integer coefficients l,m. Recall that the heads of vk and vk+1 lie on
opposite sides of the line.

If l ≥ 0,m > 0 , then obviously s ≥ qk+1. We will prove that this is the only
possible case.

If l > 0,m = 0, the the assumption |sα− r| < |qkα− pk| is not satisfied.

So let us assume one of l,m is < 0. The other must then be > 0, else s would
be negative. We proceed to derive a contradiction.

Let us assume l = −n < 0, m > 0 (the opposite case is similar, and left to
the reader). We then have(

s
r

)
= −n

(
qk
pk

)
+m

(
qk+1

pk+1

)
= −nvk +mvk+1.
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With tails at the origin, the heads of the two terms now lie on the same side
of the line y = αx. Summing the two vectors entails summing their vertical
distances from the line (draw a diagram!):

|sα− r| = n|qkα− pk|+m|qk+1α− pk+1| ≥ |qkα− pk|

contrary to the assumption of the Theorem. �

G.IV.2 Corollary. If

|α− r

s
| < |α− pk

qk
|, k ≥ 0,

then s > qk.

Proof. Suppose, by way of contradiction, that

|α− r

s
| < |α− pk

qk
|

and, at the same time, s ≤ qk. Multiplying these two inequalities gives:

s|α− r

s
| < qk|α−

pk

qk
|,

|sα− r| < |qkα− pk|.
By the preceding Theorem that would imply s ≥ qk+1 > qk.

This contradiction completes the proof. �

Remark: Another consequence of the Theorem is that

|qkα− pk| < |qk−1α− pk−1|, k ≥ 0.

We cannot have equality, as that would imply α rational. The opposite
inequality would result in qk−1 ≥ qk+1, by the Theorem.

So the vertical distances |qkα− pk| decrease as k increases.

G.IV.3 Theorem. If r, s > 0 are integers such that

|α− r

s
| < 1

2s2
,

then r/s is a convergent for α.
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Proof. For the case r > 0, choose k such that qk ≤ s < qk+1. We prove the
Theorem by showing rqk − spk = 0.

By the last Theorem

|αqk − pk| ≤ |αs− r| < 1

2s
.

Therefore;

|rqk − spk| = |s(αqk − pk)− qk(αs− r)| <

< s
1

2s
+ qk

1

2s
≤

≤ 1

2
+

1

2
= 1,

i.e., |rqk−spk| < 1. As the expression in the absolute value sign is an integer,
it must equal = 0, as we hoped. �

We now apply all of this to Pell’s equation.

G.IV.4 Theorem. Let D be a positive integer, not a square. Suppose

x2 −Dy2 = n, |n| <
√
D,

where x, y are positive integers.

Then x/y is a convergent (G.I.1) for α.

Proof. The case n > 0 is the easiest. One proves that

0 <
x

y
−
√
D <

1

2y2
,

and the result is then immediate from the preceding Theorem.

We now prove the inequality. Dividing the given equation by y2, and factor-
ing, we get

(
x

y
−
√
D)(

x

y
+
√
D) =

n

y2
. (∗)

The second factor, and the right member, are positive, hence the same holds
for the first factor:

x

y
>
√
D > n,

x

y
+
√
D > 2n.
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Dividing (∗) by x/y +
√
D gives the result.

In the case n = −m, m > 0, the factorization

(
y

x
− 1√

D
)(
y

x
+

1√
D

) =
m

D
· 1

x2
, 0 <

m

D
<

√
D

D
=

1√
D

shows, in the same manner, that y/x is a convergent for 1/
√
D.

But if β = 1/α, α =
√
D > 1, then b0 = 0 and β1 = 1/(β − 0) = α = α0.

Inductively we then see that βk = αk−1, k ≥ 1. This shift is seen to result in
inverting all the convergents, and we are reduced to the previous case. �

G.IV.5 Example. The last paragraph of the proof is best understood by
an example.

Take α0 =
√

6, β0 = 1/α. An easy computation gives α0 = 2, α1 = 2, α2 =
4, α3 = 2, after which the αk repeat with period 2.

As the floor of β0 equals b0 = 0 we see that β1 = α0 =
√

6 so that β2 = α1 = 2,
etc.

Now let us have a closer look at the approximating vectors. For α we obtain

v−1 =

(
0
1

)
,v0 =

(
1
2

)
,v1 = 2

(
1
2

)
+

(
0
1

)
=

(
2
5

)
, . . .

For β we get:

w−1 =

(
0
1

)
,w0 =

(
1
0

)
(NB! ),

w1 = 2

(
1
0

)
+

(
0
1

)
=

(
2
1

)
,w2 = 2

(
2
1

)
+

(
1
0

)
=

(
5
2

)
, . . .

Here we clearly see how the two coordinates are interchanged. This phe-
nomenon will then continue, as the w satisfy the same recurrence as the v,
with a unit shift in the indices. Thus the convergents are inverted, and the
pattern generalizes to the case of arbitrary

√
D, D > 1. �

G.IV.6 Example. Let d = 6. The first few convergents are easily computed
(exercise!)

C0 = 2, C1 =
5

2
, C2 =

22

9
, C3 =

49

20
, C4 =

218

89
.
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The cases covered by the Theorem are x2 − 6y2 = ±1 and x2 − 6y2 ± 2.
Reducing modulo 6, we exclude the minus sign in the first case, and the plus
sign in the second (as we can only have x2 ≡ 0, 1, 3, 4 (mod 6)).

The remaining cases are solvable:

52 − 6 · 22 = 1

222 − 6 · 92 = −2

and 5/2, 22/9, are indeed convergents for
√

6.

The succeeding convergents produce further solutions in a periodic fashion:

492 − 6 · 202 = 1

2182 − 6 · 892 = −2

. . .

The reason for this periodicity will be explained in the next Chapter. �

Remark: x/y being a convergent does not mean that the pair x, y equals
some pair pk, qk. It could happen that (x, y) > 1. This possibility is ruled
out if the right member is squarefree, i.e., not divisible by a perfect square
a2 > 1.

On the other hand, it can very well happen that x2 − Dy2 = a2, and yet
(x, y) = 1. This often leads to a factorization of D. We will explain this in
the last Chapter (Sections L.X, L.XI).

The equation x2 −Dy2 = 1 always possesses solutions x, y > 0, if D > 0 is
not a perfect square. We will prove this in the next Chapter.

G.V Where Are the “Continued Fractions”?

We answer the question by unwinding our recurrence for the αk, ak. From

αk+1 =
1

αk − ak

, αk = a1 +
1

αk+1

,

we get

α = α0 = a0 +
1

α1

= a0 +
1

a1 +
1

α2

=
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= a0 +
1

a1 +
1

a2 +
1

α3

= . . .

By induction one may prove that the convergents Ck are obtained in each
step by replacing the last αk with ak:

C1 = a0 +
1

a1

; C2 = a0 +
1

a1 +
1

a2

, . . .

The fact that Ck → α as k → +∞ justifies writing α as an infinite continued
fraction:

α = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

From this one may see that an (ultimately) periodic continued fraction cor-
responds to a quadratic irrationality, i.e., a root of a quadratic equation
aX2 + bX + c with integer coefficients. Suppose, for instance, that a0 =
2; a2 = a4 = 4 = . . . , a1 = a3 = 2 = . . . . with periodicity from a1 on (the
reader is invited to study examples of longer period, or even supply a genreal
argument).

Then

α = a0 +
1

a1 +
1

a2 +
1

a1 +
1

a2 + . . .

= 2 + β

where, evidently,
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β =
1

a1 +
1

a2 + β

=
1

2 +
1

4 + β

so that

β =
4 + β

9 + 2β

leading to the quadratic equation

β2 + 4β − 2 = 0; β = −2±
√

6.

We keep the positive root:
β =

√
6− 2,

hence
α = 2 + β =

√
6.

The following notation is often used: α = [1; 2, 3] where the bar indicates the
period 2, 3 and the 1 is the preperiod.

The converse is also true: quadratic irrationalities give rise to (ultimately)
periodic continued fractions. We will prove this later.

G.V: Exercises

1. Determine the irrational number having the periodic expansion [9, 9, 18].
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G.VI Finite Continued Fractions

Up to now we have assumed α irrational. If α = m/n, m, n > 0, (m,n) = 1,
we expect a steadily improving sequence of rational approximations pk/qk to
terminate with pk/qk = m/n.

In fact, if we were to have qk+1 > n, the general inequality∣∣m
n
− pk

qk

∣∣ < 1

qkqk+1

would give |mqk − npk| < n/qk+1 < 1, hence mqk − nqk = 0, m/n = pk/qk,
and we can do no better than that!

However, more can be said. The (finite) continued fractions expansion of
m/n turns out to be the same thing as Extended Euclid (A.I.7)! This is
most easily explained by example. Recall the following example from that
Section, with m = 37, n = 11:

1 · 37 + 0 · 11 = 37 = r−2

0 · 37 + 1 · 11 = 11 = r−1 37− 3 · 11 = 4

1 · 37− 3 · 11 = 4 = r0 11− 2 · 4 = 3

−2 · 37 + 7 · 11 = 3 = r1 4− 1 · 3 = 1

3 · 37− 10 · 11 = 1 = r2 3− 3 · 1 = 0

11 · 37− 37 · 11 = 0 = r3

We now compare this to the determination of the αk and ak:

α0 =
37

11
; a0 = 3

α1 =
1

37

11
− 3

=
11

37− 3 · 11
=

11

4
; a1 = 2

α2 =
1

11

4
− 2

=
4

11− 2 · 4
=

4

3
; a2 = 1

α3 =
1

4

3
− 1

=
3

1
= 3; a3 = 3

(α4 =
1

α3 − a3

; no!! )

Clearly, taking the floor of a rational number amounts to performing a di-
vision with remainder, and the ak are therefore the successive quotients in
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Euclid. The numerators of the αk are the remainders, and the recurrence
producing one α from the previous one amounts to using that remainder as
the new divisor in the next step of Euclid.

Next look at the convergents pk/qk. The basic recurrence is(
q−2

p−2

)
=

(
1
0

)
,(

q−1

p−1

)
=

(
0
1

)
,(

qk+1

pk+1

)
= ak+1

(
qk
pk

)
+

(
qk−1

pk−1

)
, k ≥ −1.

But the right members rk satisfy almost the same recurrence:

rk+1 = −ak+1rk + rk−1; k ≥ −1,

as the ak are the successive quotients in Euclid. Hence the coefficients of the
left members in Extended Euclid:

(1, 0), (0, 1), (1,−3), (−2, 7), (3,−10), (11,−37)

satisfy that same recurrence, so, except for an alternating sign, they must
equal the (pk, qk):(

q−2

p−2

)
=

(
1
0

)
,

(
q−1

p−1

)
=

(
1
0

)
,

(
q0
p0

)
= a0

(
q−1

p−1

)
+

(
q−2

p−2

)
=

(
1
3

)
,

(
q1
p1

)
= a1

(
q0
p0

)
+

(
q−1

p−1

)
=

(
2
7

)
,

(
q2
p2

)
= a2

(
q1
p1

)
+

(
q0
p0

)
=

(
3
10

)
,

(
q3
p3

)
= a3

(
q2
p2

)
+

(
q1
p1

)
=

(
11
37

)
.

Having seen the pattern in one example the reader should have no difficulty
in supplying a formal proof for (or at least accept) the following Theorem:

G.VI.1 Theorem. Given m,n > 0, (m,n) = 1. The (finite) contin-
ued fractions expansion of m/n relates to Extended Euclid as follows.
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Suppose

1 ·m+ 0 · n = r−2

0 ·m+ 1 · n = r−1

q0 ·m− p0 · n = r0

q1 ·m− p1 · n = −r1
. . .

qd−1 ·m− pd−1 · n = (−1)d−1rd−1 = (−1)d−1

qd ·m− pd · n = (−1)drd = 0

with qd = n, pd = m,

then (with αk, ak as defined by the continued fractions expansion):

αk =
rk−2

rk−1

, ak = bαkc, 0 ≤ k ≤ d,

rk+1 = −ak+1rk + rk−1, −1 ≤ k ≤ d− 1.

G.VI.2 Example (Decimal Fractions, again). Let p be a prime number
6= 2, 5, A simple pseudo-random generator of decimal digits is the decimal
expansion of r/p, 0 < r < p. It is periodic, and if 10 is a primitive root,
it has maximal period p − 1. One could of course use a primitive root b
as base, in order to achieve maximal period. If b is large we can generate
pseudo-random sequences of large integers. If b = 2, as is often the case, we
have a bit generator of maximal period.

One can prove that the generator has fairly good statistical properties, e.g.,
strings of length just around the number of digits in p appear with approxi-
mately the same frequency.

However, it is useless for cryptographic purposes, as already a small portion
of the sequence suffices to reconstruct r, p once we know the number of digits
in p. The critical number is 2d+ 1 where d is the number of digits in p.

We illustrate this by an example. The general idea will be clear from that.

Take r/p = 13/107 = 0.121495327 . . . . It has a period of 53 = (107 − 1)/2.
We assume known that p has 3 digits, 102 < p < 103, so that 2p2 < 2 · 106.
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From the first 7 decimals of the expansion we see that

|r
p
− 0.121495| < 5 · 10−7 =

1

2 · 106
<

1

2p2

so r/p is a convergent in the continued fractions expansion of 121495/1 000 000
(according to G.IV.3).

So we easily find r, p by doing a bit of Extended Euclid:

1 · 1 000 000 + 0 · 121495 = 1 000 000

0 · 1 000 000 + 1 · 121495 = 121495 1 000 000− 8 · 121495 = 28040

1 · 1 000 000− 8 · 121495 = 28040 121495− 4 · 28040 = 9335

−4 · 1 000 000 + 33 · 121495 = 9335 28040− 3 · 9335 = 35

13 · 1 000 000− 107 · 121495 = 35

and we can stop here, as 2 · 35 · 107 < 106.

Actually p can be reconstructed from any segment of 7 decimals, as we see
by multiplying r/p by a suitable power of 10. �

G.VI.3 Example. The example 10/97 = 0.10309 . . . shows that 2d dec-
imals may not suffice. Performing Extended Euclid on the pair 104, 1030
yields −7 · 104 +68 · 1030 = 40, leading to the conclusion that we are looking
at the decimal expansion of 7/68. Using 104, 1031 (because of the 9 in the
fifth place) leads to the desirable identity −10 · 104 + 97 · 1031 = 7. �

G.VII Cornacchia’s Algorithm

In this Section we present an algorithmic approach to finding all proper
integer solutions x, y; (x, y) = 1, to the Diophantine equation

x2 +Dy2 = N.

All that is assumed is that D,N are positive integers.

The algorithm presented was published by the Italian mathematician G.
Cornacchia in 1908. Our presentation is adapted (with corrections) from an
exposition by A. Nitaj in Expositiones Mathematicae, 13 (1995), pp. 358-365,
“L’algorithme de Cornacchia”.
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Now, if x, y is a solution satisfying (x, y) = 1, then also (y,N) = 1, so y is
invertible modulo N . Hence there is some integer P , unique modulo N , such
that

x+ Py ≡ 0 (mod N). (∗)
Plugging this into x2 + Dy2 = N we get y2(P 2 + D) ≡ 0 (mod N). By
invertibility, the factor y2 cancels, and we are left with

P 2 +D ≡ 0 (mod N).

Furthermore, Px−Dy ≡ Px+ P 2y ≡ P (x+ Py) ≡ 0 (mod N), hence

Px−Dy ≡ 0 (mod N). (∗∗)

The formulas (*) and (**) can be put together like this:

(P + i
√
D)(x+ iy

√
D) ≡ 0 (mod N) (∗ ∗ ∗)

(real part ≡ 0, imaginary part ≡ 0). The original P 2 + D ≡ 0 (mod N)
can be reconstructed from (*) and (**) as they combine to y(P 2 + D) ≡ 0
(mod N) and (y,N) = 1.

We say that x, y is a solution produced by, or belonging to, P . Our concern
is to find all solutions belonging to any P satisfying P 2 ≡ −D (mod N).
Clearly, if x, y is a solution belonging to P , then −x, y is one belonging to
−P . The roots to P 2 ≡ −D (mod N) come in pairs, but we need only
bother with those belonging to P : 0 < P ≤ N/2 (for instance).

By our first Lemma we will never have to check whether a solution x, y
produced by our algorithms is proper.

G.VII.1 Lemma. Let P be an integer satisfying P 2 +D ≡ 0 (mod N).
Let further x, y be integers satisfying x + Py ≡ 0 (mod N), and
x2 +Dy2 = N . Then (x, y) = 1 (and (y,N) = 1).

Proof. We know that (x+ iy
√
D)(x− iy

√
D) = x2 +Dy2 = N . Formula

(***) above may be written (P + i
√
D)(x+ iy

√
D) = (a+ ib

√
D)N, a, b,∈ Z.

Hence, dividing by x + iy
√
D, P + i

√
D = (a + ib

√
D)(x − iy

√
D), so that

bx− ay = 1, proving (a, b) = 1. �

Next, let us deal with uniqueness. We often view x + iy
√
D, rather than

x, y, as a solution to x2 + Dy2 = (x + iy
√
D)(x − iy

√
D) = N . We use a
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prime to denote complex conjugation: (x + iy)′ = x− iy for real x, y. With
α = x+ iy

√
D the equation under investigation reads α · α′ = N .

G.VII.2 Lemma. Let αi = xi + yi

√
D, i = 1, 2, be solutions to

x2
i +Dy2

i = N,

belonging to the same P . Then the two solutions differ at most in sign
if D > 1. If D = 1 they may also differ by the factor ±i, i.e., (x1, y1) =
(±x2,±y2), or (D = 1) also (x1, y1) = (∓y2,±x2).

Proof. Obviously u+ iv
√
D = γ = α1/α2 satisfies

u2 +Dv2 = γ · γ′ =
α1 · α′1
α2 · α′2

=
N

N
= 1

We will prove that u and v are integers. From u2 +Dv2 = 1 then will follow
that u+ iv

√
D = ±1 or, if D = 1, u+ iv = ±1, ±i.

Let us compute the quotient:

x1 + iy1

√
D

x2 + iy2

√
D

=
(x1 + iy1

√
D)(x2 − iy2

√
D)

(x2 + iy2

√
D)(x2 − iy2

√
D)

=
(x1x2 +Dy1y2) + i(x2y1 − x1y2)

√
D

N

We must prove that

x1x2 +Dy1y2 ≡ 0 (mod N)

x2y1 − x1y2 ≡ 0 (mod N)

This follows immediately on substituting xi ≡ Pyi (mod N), i = 1, 2, and
P 2 +D ≡ 0 (mod N), in the two left members above. �

The next Theorem is the first step towards actually finding a solution.
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G.VII.3 Theorem. Let x 6= 0, y > 0, (x, y) = 1, be a proper solution
to x2 + Dy2 = N , satisfying x + Py = qN , where 0 < P < N , and
P 2 +D ≡ 0 (mod N). Then, excluding the trivial case x2 + (N − 1)y2 =
N, x = y = q = 1, P = N − 1, q/y is a convergent in the finite continued
fractions expansion of P/N .

Proof. We note at first that q ≥ 0, otherwise we would get
|x| = |qN − Py| ≥ N .

We will also need the following useful little observation. As (x− y)2 ≥ 0 for
real x, y it holds that 2xy ≤ x2 + y2. Equality occurs if and only if x = y.

Now ∣∣q
y
− P

N

∣∣ =
∣∣qN − Py

yN

∣∣ =
∣∣ x
yN

∣∣.
As (x, y) is proper, we cannot have x = y. (x = y = would lead to the case we
excluded) Therefore 2|xy| < x2 + y2 ≤ x2 +Dy2 = N , and |x|/yN < 1/2y2.
By our previous results (G.IV.3) this proves that q/y is a convergent to P/N .
�

Comparing to the result of the previous Section we see that the equation
qN − yP = x will be produced by Extended Euclid, and that |x| will be
a remainder. Which of them? Obviously, it must be <

√
N . The next

Theorem gives the simple answer.

G.VII.4 Theorem. Performing Extended Euclid on P,N , let rj be the
first remainder <

√
N . Then the corresponding equation reads

qj · P − pj ·N = (−1)jrj.

The desired solution belonging to P (if it exists) is then y = qj, x =
(−1)j+1rj.

Proof. We know by the previous Theorem that the desired solution must
be x = ±rk, y = qk for some k ≥ j. The equation x2 +Dy2 = N then forces
|x| <

√
N, y <

√
N/D.



220 CHAPTER G. CONTINUED FRACTIONS

Assuming j < k we must have qj < qk <
√
N/D, whence 0 < r2

j +Dq2
j < 2N .

As qj ·P − pj ·N = (−1)jrj we easily see that the left member is divisible by
N , hence equal to it:

(qjP − pjN)2 +Dq2
j = (P 2 +D)q2

j − 2qjpjN + p2
jN

2 ≡ 0 (mod N).

This, however, violates the uniqueness Lemma proved above. So we must
have j = k. �

G.VII.5 Example. Let N = 97, a prime number ≡ 1 (mod 3). By the
results in the previous Chapter, the equation x2 + 3y2 = 97 is solvable in
integers. The solution to P 2 ≡ −3 (mod 97) is P ≡ ±26 (mod 97). By our
previous remarks it is enough to deal with P = 26 – changing the sign of
P will only change the sign of x or y, i.e., it produces essentially the same
solution.

We perform a little bit of Euclid:

1 · 97 + 0 · 26 = 97

0 · 97 + 1 · 26 = 26 97− 3 · 26 = 19

1 · 97− 3 · 26 = 19 26− 1 · 19 = 7

−1 · 97 + 4 · 26 = 7

Here x = 7 is the first remainder <
√

97 and we immediately read off the
solution x, y = 7, 4, 97 = 72 + 3 · 42. �

G.VII.6 Example. In this example we study the Diophantine equation

x2 +Dy2 = N,

with D = 17, N = 2922. The prime factorization of N is 2922 = 2 · 3 ·
487. The square roots of −17 modulo 2, 3, 487 are 1,±1, ±38, respectively.
Applying the Chinese Remainder Theorem gives the solutions to P 2 +D ≡ 0
(mod 2922) as ±449 and ±1423.

Let us try Extended Euclid on 2922, 1423 first. We stop as soon as the
remainder in the right member is less than the square root of 2922:

1 · 2922 + 0 · 1423 = 2922

0 · 2922 + 1 · 1423 = 1423

1 · 2922− 2 · 1423 = 76

−18 · 2922 + 37 · 1423 = 55

19 · 2922− 39 · 1423 = 21
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However, 212 +17 ·392 = 26298 = 9 ·2922, so there are no solutions belonging
to P = ±1423.

Now, let us try 449:

1 · 2922 + 0 · 449 = 2922

0 · 2922 + 1 · 449 = 449

1 · 2922− 6 · 449 = 228

−1 · 2922 + 7 · 1423 = 221

2 · 2922− 13 · 1423 = 7

This time we are successful:

72 + 17 · 132 = 2922

so the four couples (x, y) = (±7,±13), belonging to P = ±449, are the only
solutions to the given Diophantine Equation. �

G.VII: Exercises

1. Warmup. Solve x2 + 2y2 = 107. Note that the modular square root of −2
is a power of −2 modulo 107 (Section E.IV).

2. Further suggestions for computing: If you do not have a modular square
roots routine, solve x2 +2y2 = 4512273113 = p knowing that 34885593452 ≡
−2 (mod p).

3. N = 72022699481, a prime. Assuming that you already have a routine for
modular square rooting, decide which of the equations N = x2 +Dy2, where
D = 1, 2, 3, 5, 7, 11, 13, 17 are solvable in integers, and find solutions.

In at least one case with (−D/N) = 1 you will only find integers x, y satis-
fying N |(x2 + Dy2) but N 6= x2 + Dy2. Which?
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Chapter H

“QCF” and Pell’s Equation

H.I An Algorithm for Quadratic Irrational-

ities

H.I.1 Definition. A quadratic irrationality is a root to an equation
of the form

Ax2 −Bx+ C = 0, A 6= 0,

with integer coefficients.

(We assume that D = B2 − 4AC is not a perfect square; otherwise α
would be rational).

A quadratic irrationality looks like this:

α =
B ±

√
D

2A
, D = B2 − 4AC.

We can write it in the form

α =
P +

√
D

Q
where Q|(D − P 2). (∗)

223
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H.I.2 Theorem. Let α > 0 be as in (∗). Then all the irrationalities in
its continued fractions expansion are of the same form.

Proof. Let n = bαc and put

β =
1

α− n
.

Plugging in the expression for α, we get

β =
Q√

D + P − nQ
=

Q√
D − (nQ− P )

We then multiply by the quantity
√
D + (nQ− P ), obtaining

β =
Q(
√
D + nQ− P )

D − (nQ− P )2
.

Since Q|(D − P 2), the denominator is also divisible by Q.

We introduce the notation P ′ = nQ− P , and write D − (P ′)2 = QQ′. This
gives us

β =
P ′ +

√
D

Q′

where indeed Q′|
(
D− (P ′)2

)
, of the same form as in (∗), and the process can

be continued. �

In order to avoid cumbersome multi-name labels and sticky historic issues I
will simply call this algorithm QCF, Q as in “quadratic”.

Special Case α0 =
√
D

Let α0 =
√
D, D not a perfect square.

Reintroducing our old notation, we may write

αj =
Pj +

√
D

Qj

where Qj|(D − P 2
j ),
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starting with
P0 = 0, Q0 = 1.

Putting n = aj = bαjc, the computations above yield

αj+1 =
Pj+1 +

√
D

Qj+1

,

where
Pj+1 = ajQj − Pj and D − P 2

j+1 = QjQj+1.

.

This gives a recurrence for computing αj, aj and Pj, Qj.

We recall our old recurrence for the convergents:

p0

q0
= a0 = bα0c,

p1

q1
=

1 + a0a1

a1

,

pj+1

qj+1

=
aj+1pj + pj−1

aj+1qj + qj−1

, j ≥ 1.

Remark: From

Qj ·Qj+1 = D − P 2
j+1, Qj ·Qj−1 = D − P 2

j

we immediately see

(Qj+1 −Qj−1)Qj = P 2
j − P 2

j+1 = (Pj+1 + Pj)(Pj − Pj+1).

Here Pj+1 = ajQj − Pj, Pj+1 + Pj = ajQj.

So dividing by Qj, and transposing terms, we arrive at

Qj+1 = Qj−1 + aj(Pj − Pj+1).

This means that we can avoid division at the cost of a second-order recur-
rence, as for the pj, qj. It is then natural to extend the definition of the
Q one step backwards: Q−1 = D, which is consistent with the recurrence
(check!). This device cuts a few percent off the running time.

A computer program will start by initializing P0; Q−1, Q0; a0; p−1, p0; q−1, q0.
The update order is P, Q, a, p, q. Note, for instance, that the update for Q
involves the updated value of P .

We will need a simple (rational) way of computing the floors of the αj.
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H.I.3 Theorem. If Q > 0, settingm = b
√
Dc, the floor of our quadratic

irrationality is given by

⌊P +
√
D

Q

⌋
=

⌊P +m

Q

⌋
.

If Q < 0, ⌊P +
√
D

Q

⌋
=

⌊P +m+ 1

Q

⌋
.

Proof. The integer m is given by the requirement

m <
√
D < m+ 1.

Assuming that Q > 0, we have

P +m

Q
<
P +

√
D

Q
.

There can be no integer strictly between the two members. Indeed, assuming

P +m

Q
< n <

P +
√
D

Q

would lead to

m < Qn− P <
√
D.

But there is no integer strictly between the outer members, as m = b
√
Dc.

Therefore the quadratic irrationalities

P +
√
D

Q
,

P +m

Q
,

have the same floor, completing the case Q > 0.

If Q < 0, dividing the inequality P +m+ 1 > P +
√
D by Q reverses it:

P +m+ 1

Q
<
P +

√
D

Q
.
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If there were an integer n between the two members, we would get the in-
equality

m+ 1 > Qn− P >
√
D,

which again is impossible. �

H.II Conjugates

We have encountered irrationalities of the form

α = p+ q
√
D,

where p, q are rational and D is a positive integer, not a perfect square.
Alongside α we will have to study its conjugate

α′ = p− q
√
D.

(earlier we used the prime for complex conjugation).

It is easy to see that
α · α′ = p2 − q2D,

so that the product of α and its conjugate is rational.

If α is rational, i.e., q = 0, then α = α′, and conversely.

It is easy to prove the laws

(α+ β)′ = α′ + β′

(α · β)′ = α′ · β′,
and

(cα)′ = c · α′ for rational c,

not to mention
α′′ = α.

Simply expand the two members.

We also sometimes need to take the conjugate of a quotient:

(
α

β
)′ =

α′

β′
.
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This relation is trivially true if the denominator is rational. The general
proof runs like this:

(
α

β
)′ = (

α · β′

β · β′
)′ =

α′ · β′′

β · β′
=
α′ · β
β · β′

=
α′

β′
.

Note that multiplying the numerator and denominator by the conjugate of
the latter produced a rational denominator.

One important consequence is the following: If α satisfies a quadratic equa-
tion with rational coefficients, then α′ must satisfy the same equation. We
see this by conjugating the equation, and using the laws above.

We will make repeated use of the following observation.

Let α = p+q
√
D, p, q integers, and suppose α ·α′ = p2−Dq2 = M. Similarly,

let β = r + s
√
D, satisfying β · β′ = r2 −Ds2 = N.

Then the product γ = α · β = u + v
√
D satisfies u2 − Dv2 = γ · γ′ =

(αβ)(αβ)′ = αα′ββ′ = MN .

H.III x2 −Dy2 = ±1

We will show that Pell’s Equation x2 − Dy2 = ±1 (D > 0 not a perfect
square) has the solution x = pk, y = qk where pk/qk is a convergent to
α =

√
D.

Using the QCF (Section H.I) we will be able to find a convergent with that
property without computing p2

k −Dq2
k.

In the last two Sections, we will prove, in the case of α0 =
√
D, that there is

an m > 0 such that

αm+2 =
1

αm+1 − am+1

=
1

α0 − a0

= α1

(it will presently be revealed why we use m+ 1 for the period). That is,

αm+1 − am+1 = α0 − a0.

We then see that αm+1 − α0 = αm+1 −
√
D is an integer, namely am+1 − a0.

We therefore set αm+1 = α0 + n =
√
D + n.
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As shown in the same Section, the conjugate α′m+1 = n−
√
D will satisfy

−1 < α′m+1 < 0.

For this value of l, it must then hold that αm+1 = α0 + a0 =
√
D + b

√
Dc,

i.e., Pm+1 = n = b
√
Dc, Qm+1 = 1.

By our general formulas,

√
D =

pmαm+1 + pm−1

qkαm+1 + qm−1

=
pm

√
D + (pm−1 + npm)

qm
√
D + (qm−1 + nqm)

.

The equation above is of the following form

√
D =

p
√
D + q

r
√
D + s

,

where
ps− qr = pmqm−1 − pm−1qm = (−1)m+1.

From

√
D(r

√
D + s) = p

√
D + q;

(p− s)
√
D = rD − q,

we identify:
p = s, q = rD,

otherwise
√
D would be rational.

We conclude:
(−1)m+1 = p2 −Dr2,

proving:

H.III.1 Theorem. The equation x2 −Dy2 = ±1 is solvable in integers
x, y > 0, for at least one sign, and a solution is given by x = pmy = qm,
where pm/qm is a convergent to

√
D. If the period m+1 is odd, then the

equation x2 −Dy2 = −1 is solvable in positive integers x, y.
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�

Now if x2−Dy2 = (x− y
√
D)(x+ y

√
D) = −1 and u+ v

√
D = (x+ y

√
D)2

we see easily that u2−Dv2 = (x+y
√
D)2(x−y

√
D)2 = (−1)2 = 1. We have

proved:

H.III.2 Theorem. The equation x2 − Dy2 = 1 is solvable in integers
x, y > 0, and the solution is given by x = pm, y = qm, where pm/qm is a
convergent to

√
D.

�

The fact that a solution is given by a convergent was proved in the Section
on “Best Approximation” (G.IV).

Remark: The use of the “QCF” in solving Pell’s equation is implicit in the
work of the two Englishmen John Wallis (1616-1703) and William Brouncker
(1620-1684).

A method similar to theirs was known to the Indian mathematician Bhaskara
in the 12th century. It produces essentially the same calculations with a few
shortcuts along the way. A clear exposition of the two methods and their
relationship is given on pp. 25-36, in Edwards’ book, listed under “Historic”
in the Bibliography. That the “English method” actually works was proved
by Lagrange in 1769.

I am grateful to J White of the Australian National University for clearing
up some of the history.

The equation having −1 as right member need not be solvable. It is obviously
not solvable if −1 is a quadratic non-residue modulo D, e.g., if D has a prime
factor p ≡ 3 (mod 4). It is solvable if D = prime p ≡ 1 (mod 4) but that is
far from trivial (see the exercises).

By the same method of proof we show the general identity:

H.III.3 Theorem.

(−1)k+1Qk+1 = p2
k −Dq2

k.
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Remark: A moment’s reflection will make it clear that the period l = m+ 1
marks the first appearance of the denominator Ql = 1. Hence the following
converse to the previous result H.III.1.

H.III.4 Corollary. If the period of
√
D is even, the equation x2−Dy2 =

−1 has no integer solutions.

�

Let us prove the Theorem.

Proof. Once again we start from the identity

√
D =

pkαk+1 + pk−1

qkαk+1 + qk−1

,

where we substitute

αk+1 =
Pk+1 +

√
D

Qk+1

,

obtaining
√
D =

pk(Pk+1 +
√
D) + pk−1Qk+1

qk(Pk+1 +
√
D) + qk−1Qk+1

.

Multiplying up the denominators gives:
√
D · (qk(Pk+1 +

√
D) + qk−1Qk+1) = pk(Pk+1 +

√
D) + pk−1Qk+1.

By a similar identification as in the previous proof,

pk = qkPk+1 + qk−1Qk+1

Dqk = pkPk+1 + pk−1Qk+1

We eliminate Pk+1 multiplying the first equation by pk, and the second by
−qk, and adding:

p2
k −Dq2

k = (pkqk−1 − qkpk−1)Qk+1 = (−1)k+1Qk+1.

�

The condition for terminating the algorithm in solving the equation
x2 − Dy2 = ±1, therefore, is Qk+1 = 1. For the equation x2 − Dy2 = 1
the condition is Qk+1 = (−1)k+1 (or just ±1).
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In the next Section we will prove that the Qk remain of moderate size, which
is an important point. That is also the idea behind the use of continued
fractions in factorization.

H.III.5 Example (A Computation). Take D = 14, whose expansion we
determined in the previous Chapter.

√
14 = 3 + (

√
14− 3)

1√
14− 3

=

√
14 + 3

5
= 1 +

√
14− 2

5

5√
14− 2

=

√
14 + 2

2
= 2 +

√
14− 2

2

2√
14− 2

=

√
14 + 2

5
= 1 +

√
14− 3

5
5√

14− 3
=
√

14 + 3 = 6 + (
√

14− 3)

From the middle members we read off the Pk, Qk; the rightmost members
give the ak.

We verify that this is in tune with the QCF.

P0 = 0, Q0 = 1; a0 = b
√

14c = 3

P1 = 3 · 1− 0 = 3, Q1 = (14− 32)/1 = 5; a1 =
⌊3 + b

√
14c

5

⌋
= 1

P2 = 1 · 5− 3 = 2, Q2 = (14− 22)/5 = 2; a2 =
⌊2 + b

√
14c

2

⌋
= 2

P3 = 2 · 2− 2 = 2, Q3 = (14− 22)/2 = 5; a3 =
⌊2 + b

√
14c

5

⌋
= 1

P4 = 1 · 5− 2 = 3, Q4 = (14− 32)/5 = 1; a4 =
⌊3 + b

√
14c

1

⌋
= 6

From the usual recurrence

pk = akpk−1 + pk−2, qk = akqk−1 + qk−2, k ≥ 1,

p−1 = 1, q−1 = 0, p0 = a0, q0 = 1,
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we then get the following table:

k −1 0 1 2 3
pk 1 3 4 11 15
qk 0 1 1 3 4

Pk+1 0 3 2 2 3
(−1)k+1Qk+1 1 −5 2 −5 1

ak+1 3 1 2 1 6

�

From the last column we read off 152 − 14 · 42 = 1. This may be written

(15 + 4
√

14)(15− 4
√

14) = 1,

and x+ y
√

14 = 15 + 4
√

14 is known as the least positive solution to

(x+ y
√

14)(x− y
√

14) = 1.

That solution is defined as the least irrationality x+y
√
D, x, y ∈ Z, for which

x2−Dy2 = 1, x, y > 0. It can also be characterized as the least x+y
√
D > 1

for which x2 −Dy2 = 1.

All other solutions are plus or minus integral (positive or negative) powers
of that solution. This will result from the following Theorem:

H.III.6 Theorem. Let x0 + y0

√
D, x, y ∈ Z, be minimal among num-

bers x0 + y0

√
D > 1 satisfying x2

0 −Dy2
0 = 1. Let further x + y

√
D > 1

be an arbitrary solution of the equation x2 −Dy2 = 1. Then there is an
integer k > 0 such that

x+ y
√
D = (x0 + y0

√
D)k.

Proof. Let us deal with existence first. Any solution z = x + y
√
D > 1

must satisfy y > 0, as the inverse quantity, 1/z = x− y
√
D is < 1. And, as

x− y
√
D > 0 we must also have x > 0.

Further, x2−Dy2 = 1 entails x, y relatively prime. We have proved (G.IV.4)
that x/y = some convergent pk/qk. As the pk, qk increase with k, there must
be a smallest pk + qk

√
D satisfying p2

k −Dq2
k = 1.
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Now assume that the statement of the Theorem is false. Then there would
be a k ≥ 0 such that:

(x0 + y0

√
D)k < x+ y

√
D < (x0 + y0

√
D)k+1,

whence

1 < (x+ y
√
D)(x0 − y0

√
D)k < x0 + y0

√
D

(recall that (x0 − y0

√
D)(x0 + y0

√
D) = 1).

Setting u+ v
√
D = (x+ y

√
D)(x0 − y0

√
D)k we would then get

u2 −Dv2 = (u+ v
√
D)(u− v

√
D)

= (x+ y
√
D)(x0 − y0

√
D)k(x− y

√
D)(x0 + y0

√
D)k

= 1

contrary to the choice (minimality) of x0 + y0

√
D. �

A solution 0 < x + y
√
D < 1 is the inverse to the solution 1 < x − y

√
D, a

positive power of x0 + y0

√
D. So x+ y

√
D is a negative power of x0 + y0

√
D.

And a negative solution is the negative of a positive solution.

H.III.7 Example. We now give a more impressive example, D = 29, but
omit the computations.

k −1 0 1 2 3 4
pk 1 5 11 16 27 70
qk 0 1 2 3 5 13

Pk+1 0 5 3 2 3 5
(−1)k+1Qk+1 1 −4 5 −5 4 −1

ak+1 5 2 1 1 2 10

We obtain 702 − 29 · 132 = −1 with 70 + 13
√

29 as least positive solution.
According to a general result (see below) squaring it gives the least positive
solution to x2 − 29 · y2 = 1. The square is:

(70 + 13
√

29)2 = 9801 + 1820
√

29

so that

98012 − 29 · 18202 = 1

(corresponding to Q10 = 1).
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What happens, quite generally, when we move one period (five steps) forward
is that the elements pj+5 + qj+5

√
29 arise by multiplying pj + qj

√
29 by

70 + 13
√

29.

We will prove this fact in a later Section (J.VII).

For instance, p2
0 − 29 · q2

0 = −4, where p0 + q0
√

29 = 5 + 1 ·
√

29.

Hence p5 + q5
√

29 = (5 + 1 ·
√

29)(70 + 13
√

29) = 727 + 135 ·
√

29. with

7272 − 29 · 1352 = +4 = (−1) · (−4)

The table above verifies this claim:

p5 = a5p4 + p3 = 10 · 70 + 27 = 727;

q5 = a5q4 + q3 = 10 · 13 + 5 = 135.

�

We conclude this Section with an extension of our Theorem on solutions to
x2 −Dy2 = 1

H.III.8 Theorem. Assume that D is not a perfect square, and that the
Diophantine equation x2 − Dy2 = −1 is solvable. Let z0 = x0 + y0

√
D

be the smallest solution > 1 to that equation, and z1 = x1 + y1

√
D the

smallest solution > 1 to x2 −Dy2 = 1. Then z1 = z2
0 .

Proof. The fact that x0, y0 > 1, and the existence of a minimal solution,
are proved much in the same manner as the previous case.

Now, let us first prove that z0 < z1. Assume the contrary:

x0 + y0

√
D > x1 + y1

√
D.

Multiplying by the (positive) inverse quantity 1/z1 = x1 − y1

√
D < 1 yields

x0 + y0

√
D > u+ v

√
D = (x0 + y0

√
D)(x1 − y1

√
D) > x2

1 −Dy2
1 = 1

satisfying u2 −Dv2 = −1, contradicting the choice of z0.
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Next, assume

z2
0 = (x0 + y0

√
D)2 > x1 + y1

√
D = z1 > x0 + y0

√
D.

We derive a contradiction by multiplying by the inverse quantity 1 > 1/z0 =
−x0 + y0

√
D > 0:

x0 + y0

√
D > (x1 + y1

√
D)(−x0 + y0

√
D) = u+ v

√
D > 1,

with u2−Dv2 = −1, contradicting the choice of z0. This contradiction proves
that the first inequality is false.

And equality is then the only possibility; otherwise z2
0 = s+ t

√
D < z1 would

satisfy s2 −Dt2 = 1, contradicting the choice of z1. �

Combining the last two Theorems we derive the following Corollary:

H.III.9 Corollary. Suppose the equation x2 − Dy2 = −1, D > 0 not
a square, is solvable in positive integers. Let x0 + y0

√
D be the smallest

solution > 1 to that equation. Then the solutions x + y
√
D > 1 are

given by the odd positive powers of that quantity. And the solutions
x+ y

√
D > 1 to x2 − dy2 = 1 are given by the even powers.

�

H.III: Exercises

1. Show that −1 is a quadratic residue modulo 34, but that the equation
x2 − 34y2 = −1 is unsolvable in integers,

(a) by determining the (short) period of the expansion of
√

34, and/or

(b) by reduction modulo 8.

2. Give all integer solutions to the equation x2 − 10y2 = −1. Then use the
result to describe the solutions to the equation 4x2 +4xy−9y2 = −1. What
needs to be established about the solutions to the first equation?

3. Suppose that D = 4d + 1, positive, not a perfect square. Consider the
continued fractions expansion of (

√
D + 1)/2. Suppose

αl =
√

D + Pl

Ql
.
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Show that Ql is even, and that

p2 − pr + dr2 = ±Ql/2,

where p/r is a convergent to D.

4. D, k positive integers, D not a perfect square. Let p + q
√

n be minimal
among those p + q

√
n >

√
k, p, q ∈ Z satisfying the equation p2 − nq2 = k.

Show that p, q are positive. Hint: consider p− q
√

n.

5. Suppose x, y, both odd , satisfy the equation x2 − dy2 = ±4. Define the
rational numbers u, v by:

u + v
√

d = (
x + y

√
d

2
)3.

Show that u, v are integers satisfying the equation u2 − dv2 = ±1.

6. (a) Give the continued fractions expansions of a =
√

d2 ± 1, d ∈ Z . Give
examples of both kinds.

(b) Determine the least positive solution of Pell’s equation x2 − ny2 = 1,
where n = d2 + 2.

7. (a) Find, by inspection, the least positive solution to x2 − 13y2 = −1.
(Start by finding the class of x modulo 13.) Use it to find the least
positive solution to x2 − 13y2 = +1.

(b) Find, by inspection, the least positive solution to x2 − 30y2 = 1. Use
it to decide whether x2 − 30y2 = −1 is solvable.

8. (a) Show that the arithmetic sum 1+2+3+ · · ·+n is a perfect square for
infinitely many n. Reduce the question to the solvability of a suitable
Pellian equation.

(b) Show the same for the sums 1+2+3+· · ·+2n and 1+2+3+· · ·+2n+1.

9. D is a positive integer, not a perfect square. Let xn + yn

√
d > 1 be the

positive solutions (i.e., xn, yn > 0) to the equation x2 − dy2 = 1. Let p be
an arbitrary positive integer. Show that there exists an integer n such that
p|yn.

Hint: imitate the theory of order for invertible classes. Or reduce to some
other Pellian equation.

10. Let p ≡ 1 (mod 4) be a prime number. We want to show that the equation
x2−py2 = −1 is solvable in integers. Our starting point is the least positive
solution (t, u) to t2 − pu2 = 1. Show first that t is odd and u is even.

Then show that one of the following two cases holds:
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t + 1
2

= pa2,
t− 1

2
= b2,

or
t + 1

2
= a2,

t− 1
2

= pb2.

Show that the second case leads to a solution to x2 − py2 = 1, contrary to
the choice of (t, u).

Then deduce, using the first case, a solution to x2 − py2 = −1.

11. Use the techniques of the last Exercise to show that one of the equations
x2−py2 = ±2 is solvable if p ≡ 3 (mod 4). Describe the cases corresponding
to either sign.

12. D is an odd number (≥ 11, say) that we wish to factor, using its continued
fractions expansion. Suppose we have found a convergent p/q, (p, q) = 1,
giving the equation p2 −Dq2 = R2 where R is an integer:

Dq2 = (p−R)(p + R), D|(p−R)(p + R).

Suppose now that we face the failure of having D|(p − R) (we can assume
this, as we are not assuming that R is positive). Show that the explanation
is the following:

(a) q is odd. Show that ((p − R)/D, p + R) = 1. Conclude that there are
positive integers s, t, (s, t) = 1 such that

s2 −Dt2 = 2R,

and that s/t is an earlier convergent in the expansion of
√

D.

(b) q is even. Show that ((p−R)/D, p+R) = 2 and determine s, t as above,
but with

s2 −Dt2 = R.

Also show that R is odd.
How do the numbers p + q

√
D and s + t

√
D relate to one another?

13. Suppose |p1q2 − p2q1| = 1, p1, p2, q1, q2 integers. Further assume

p1

q1
< α <

p2

q2
,

where α is irrational. Show that one of the inequalities∣∣α− p1

q1

∣∣ <
1

2q2
1
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or ∣∣α− p2

q2

∣∣ <
1

2q2
2

must hold, so that one of the two fractions is a convergent to α.

Hint: Assume the reverse (non-strict) inequalities in both cases. Show, and
use

p2

q2
− p1

q1
=

∣∣α− p2

q2

∣∣ +
∣∣α− p1

q1

∣∣
and the inequality between the arithmetic and the geometric mean of two
numbers.
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H.IV x2 −Dy2 = N

The inquisitive reader will have asked about the relationship between two
integer solutions to x2 − Dy2 = N ; Q = |N | > 1 (still assuming that D is
not a perfect square).

We restrict ourselves to proper solutions, satisfying (x, y) = 1, forcing (y,Q) =
1. In that case there is an integer u satisfying yu ≡ 1 (mod Q), whence
(xu)2 ≡ D (mod Q). Setting P ≡ −xu (mod Q), −Q/2 < P ≤ Q/2, we
have P 2 ≡ D (mod Q), and x+ Py ≡ 0 (mod Q).

Furthermore, Px+Dy ≡ Px+ P 2y ≡ P (x+ Py) ≡ 0 (mod Q), hence

Px+Dy ≡ 0 (mod Q).

Our findings can be put together like this:

(P +
√
D)(x+ y

√
D) ≡ 0 (mod Q).

Note that the condition P 2 ≡ D (mod Q) can be reconstructed from that
relation as y(P 2−D) ≡ P (Py+x)−(Px+Dy) ≡ 0 (mod Q), and (y,Q) = 1.

By our earlier terminology (p. 217), the solution (x, y) or x + y
√
D belongs

to P , satisfying P 2 ≡ D (mod Q).

H.IV.1 Theorem. Let αi = xi + yi

√
D, i = 1, 2, be solutions to

x2
i −Dy2

i = εiN, εi = ±1,

belonging to the same P . Then their quotient u + v
√
D is an integer

solution to the equation u2 −Dv2 = ε1 · ε2.

Proof. Obviously u+ v
√
D = γ = α1/α2 satisfies

γ · γ′ = (α1 · α′1)/(α2 · α′2) = ε1N/ε2N = ε1 · ε2.

We must prove that u and v are integers.
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Let us compute the quotient:

x1 + y1

√
D

x2 + y2

√
D

=
(x1 + y1

√
D)(x2 − y2

√
D)

(x2 + y2

√
D)(x2 − y2

√
D)

=
(x1x2 −Dy1y2) + (x2y1 − x1y2)

√
D

ε2N
.

Again setting Q = |N | we must prove that

x1x2 −Dy1y2 ≡ 0 (mod Q),

x2y1 − x1y2 ≡ 0 (mod Q).

This follows immediately on substituting xi ≡ Pyi (mod N), i = 1, 2, and
P 2 −D ≡ 0 (mod N), in the two left members above. �

Here is a simple converse:

H.IV.2 Theorem. If x1+y1

√
D is a solution to the equation x2−Dy2 =

N , belonging to P , and u + v
√
D is a solution to u2 − Dv2 = ε = ±1,

then their product x2 +y2

√
D is a solution to x2−Dy2 = ε ·N , belonging

to P .

Proof. “Belonging” is the issue. However, (P +
√
D)(x1 + y1

√
D) ≡ 0

(mod Q) obviously implies

(P +
√
D)(x2 + y2

√
D) ≡ (P +

√
D)(x1 + y1

√
D)(u+ v

√
D) ≡ 0 (mod Q).

�

H.IV.3 Example. The cleanest case is that of N = a prime number p. In
that case there are at most two values (modulo p) for P . To be explicit, let
us study the equation

x2 − 2y2 = −17.

The solutions to P 2 ≡ 2 (mod 17) are P ≡ ±6 (mod 17). By simple trial
and error we find the solution x + y

√
2 = 1± 3

√
2 belonging to P = ∓6, as

1− 3 · 6 = −17.

The general solution to x2− 2y2 = ±1 is ±(1 +
√

2)m, m ∈ Z, so the general
solution to x2 − 2y2 = ±17 is

x+ y
√

2 = ±(1± 3
√

2) · (1 +
√

2)m, m ∈ Z,
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even powers giving the solutions to x2− 2y2 = −17, odd powers giving those
to x2 − 2y2 = 17. �

H.IV.4 Example. The two equations x2−34y2 = ±33 are both solvable in
integers. x + y

√
34 = ±(1± 1 ·

√
34) works for the minus sign, x + y

√
34 =

±(13± 2 ·
√

34) does it for the plus sign.

Their quotient is not an integer solution to x2−34y2 = −1. In fact the latter
equation is not solvable at all in integers as we have seen in an earlier exercise
(p. 236). The reason is that the first set of solutions belongs to P = ±1
whereas the second set belongs to P = ±10:

(10 +
√

34)(13 + 2
√

34) = 33(6 + 1
√

34) ≡ 0 (mod 33).

�

Obviously this case was possible because we had more than two square roots.
By contrast we have the following result:

H.IV.5 Theorem. Let p be a prime number, D a positive number, not a
perfect square, not divisible by p. Suppose the two equations x2−Dy2 =
±p are solvable in integers. Then so is the equation x2 −Dy2 = −1.

Proof. Let ±P + (p) be the square roots of D modulo p – by Lagrange
there are only two of them, as p is a prime number.

Let x1+y1

√
D satisfy x2

1−Dy2
1 = p, and let x2+y2

√
D satisfy x2

2−Dy2
2 = −p.

They each belong to either P or −P . Possibly by changing the sign of one
yi we can arrange that both belong to the same P .

Then by the previous Theorem their quotient provides an integer solution to
x2 −Dy2 = −1. �

Remark: The proof goes through also for odd prime powers pk, as D still
has only two square roots modulo pk. If the right members are ±2k, k ≥ 3,
the square roots of D are residue classes of the form ±P (mod 2k−1) (see p.
64). Following the proof above we will perhaps be left with a factor 2 in the
denominator, producing a solution to x2 −Dy2 = −22 = −4 (check this).

If x, y are even, (x/y)2 −D(y/2)2 = −1. If x, y are odd, an earlier exercise
(p. 237) shows that u + v

√
D = ((x + y

√
D)/2)3 is an integer solution to

u2 −Dv2 = −1.
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These results are contained in the work of Canadian mathematician Richard
Mollin.

H.IV: Exercises

1. Complete the discussion (case D = ±2k) of the last Remark.

2. Suppose x+y
√

D is a solution to x2−Dy2 = ±Q, Q > 0, belonging to P . As-
sume Q >

√
D and |P | ≤ Q/2. Using the relation (P +

√
D)(x + y

√
D) ≡ 0 (mod Q),

construct a solution u + v
√

D to u2−Dv2 = ±Q′, Q′ > 0, also belonging to
P , and with Q′ < Q. Do you see the significance of this reduction?

3. Describe the solutions to the Diophantine equation x2−5y2 = ±4. Show that
y = ±Fk, the Fibonacci numbers given by the recurrence Fk+2 = Fk+1 +
Fk, k ≥ 0, F0 = 0, F1 = 1 (in many accounts they start with F1.) Then
express the corresponding x in terms of Fibonacci numbers.
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H.V Inequalities

Still assuming α =
√
D, we now fill the gap we left in Section H.III. We show

some inequalities for the P,Q appearing in the QCF and conclude periodicity
(from k = 1 on).

Alongside

αk =
Pk +

√
D

Qk

we will have to study its conjugate

α′k =
Pk −

√
D

Qk

.

The αk and their conjugates α′k each satisfy a first-order recurrence (we are
using our general result on conjugates of quotients):

αk+1 =
1

αk − ak

; α′k+1 =
1

α′k − ak

; α0 =
√
D, α′0 = −

√
D.

Since 1 > αk−ak > 0 we immediately see αk+1 > 1, i.e., αk > 1 for all k ≥ 1.

As for the conjugates, an easy induction shows that all α′k are negative. From
this follows that the denominator of α′k+1 is < −1.

So −1 < α′k+1 < 0. That is, we inductively see that −1 < α′k < 0 for all
k ≥ 1. Summing up:

αk ≥ 1, −1 < α′k < 0, k ≥ 1;

There is a name for these conditions. The quadratic irrationality αk, k ≥ 1,
is reduced (more on that in H.VII.1).

From the inequality 0 < αk − α′k = 2
√
D/Qk then emerges that all Qk > 0.

Furthermore, αk + α′k = 2Pk/Qk > 0, k ≥ 1, yielding Pk > 0, k ≥ 1.

From α′k < 0 then follows Pk <
√
D.

Finally, αk = (Pk +
√
D)/Qk > 1 gives Qk < 2

√
D.

We have proved:
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H.V.1 Theorem. The Pk, Qk appearing in the QCF for
√
D satisfy the

following inequalities:

P0 = 0, 0 < Pk <
√
D, k ≥ 1,

and
0 < Qk < 2

√
D, k ≥ 0.

�

Thus the right members of the equations p2
k −Dq2

k = (−1)k+1Qk+1 are of a
smaller order of magnitude than D (not to mention pk, qk).

H.VI Periodicity

Since Pk, Qk can only assume finitely many values, two of the αj, say
αk, αk+l, l > 0, must be the same. This immediately gives periodicity from
αk on. And that also means that their denominators, the Qk, repeat period-
ically (eventually).

We now show that if periodicity occurs from k+1 ≥ 2 on, it also occurs from
k on. By backwards induction it then follows that the expansion of α0 =

√
D

is periodic from k = 1 on.

This is the idea. We know αk+1 = αk+1+l, l > 0. If we can prove that αk, k ≥
1, is uniquely determined by αk+1 (and the condition of being reduced), it
will follow that we also must have αk = αk+l.

We conjugate and invert the recurrence for the αk :

αk − ak =
1

αk+1

,

α′k − ak =
1

α′k+1

; ak = − 1

α′k+1

+ α′k.

Using −1 < α′k < 0, from the last displayed equation we get

− 1

α′k+1

− 1 < ak < − 1

α′k+1

.
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As ak is an integer, it is uniquely determined by that condition.

From this then follows that

αk = ak +
1

αk+1

is uniquely determined by αk+1, as desired.

Rejoice!

H.VI: Exercises

1. Suggestions for computing: The obvious project is to write a QCF rou-
tine, solving x2 −Dy2 = ±1, and determining the period. It is nice to have
later on for factoring, “wait-for-a square” (Section L.X).

As a test of your program, letting D = 1729, decide whether x2−Dy2 = −1
is solvable, and find the right member N of next smallest absolute value,
for which x2 −Dy2 = N is solvable. Finally, decide which of the equations
x2 −Dy2 = 4, 9, 16 are solvable in relatively prime integers. You could also
check the table at the end of the book.
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* H.VII Periodicity, Continued

We now give the full truth on the periodicity issue for quadratic irrationali-
ties.

We first show again that the expansion of a reduced irrationality is ultimately
periodic. The proof is independent of the previous Section.

We then turn to general quadratic irrationalities. We prove that the irra-
tionalities appearing in their expansions are ultimately reduced, hence that
their expansions are ultimately periodic.

Finally we prove that the irrationality α is reduced if and only if it its expan-
sion is purely periodic.

The immediate application is α =
√
D,D ≥ 1, as one easily sees that

α1 =
1√

D − b
√
Dc

is reduced.

First we recall the notation.

Given the positive irrationality α = α0 the αk, k ≥ 1, are recursively given
by

ak = bαkc, αk+1 =
1

αk − ak

.

We now assume that α satisfies the quadratic equation

AX2 −BX + C = 0,

with integer coefficients A,B,C, A ·C 6= 0, the discriminant, d = B2− 4AC,
of which is positive, but not a perfect square. The roots of the equation are
the conjugate irrationalities

α, α′ =
B ±

√
d

2A
,

whose denominator 2A divides d− B2. One can prove by induction that all
the succeeding αk are of the same form (cf. the beginning of this Chapter).

We denote the larger root by α, the smaller one by α′. Which is which
depends on the sign of A.
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Remark: In our old notation

X = αk =
Pk +

√
D

Qk

, D − P 2
k = QkQk+1.

The quantity αk is seen to satisfy the equation

(QkX − Pk)
2 −D = 0, Q2

kX
2 − 2PkQkX − (D − P 2

k ) = 0

which simplifies to QkX
2 − 2PkX − Qk+1 = 0, by the identities above. Its

discriminant is d = 4P 2
k + 4QkQk+1 = 4D.

We spell out the relationship between the roots and the coefficients of the
equation AX2 −BX + C = 0:

α · α′ =
C

A
, α+ α′ =

B

A
.

Let us recall the definition of “reduced”.

H.VII.1 Definition. The quadratic irrationality α is reduced if

α > 1, 0 > α′ > −1.

We record a few observations in the following Lemma. Most of the proofs
are easy exercises.

H.VII.2 Lemma.

a) α is reduced if and only if −1/α′ is.

b) If α is reduced, then the same holds for

β =
1

α− bαc
.

So, if αk is reduced, the same holds for all the succeeding αj.
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c) In fact,

β =
1

α− n

is reduced if and only if n = bαc.

d) Suppose α is reduced, bαc = n. If

β =
1

α− n

is the first step in the expansion of α, then

−1

α′
=

1

(−1/β′)− n

is the first step in the expansion of −1/β′.

e) Assume α reduced. The product of the roots, α · α′, being equal to
C/A, and negative, implies that A,C are of opposite sign, i.e., AC < 0.

Proof. We prove d). The second equation is easily derived from the first,
solving for α, and then conjugating:

α = n+
1

β
1

α
=

1

n+
1

β
−1

α′
=

1

−n+ (
−1

β′
)
.

The main issue is that the floor of −1/β′ also equals n. We have seen that

− 1

β′
= −α′ + n.

As 0 > α′ > −1 this proves that

n < − 1

β′
< n+ 1.
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�

Our next observation requires a more detailed proof:

H.VII.3 Lemma. Assuming α reduced, and A,B,C, d as above, it holds
that

|A|+ |C| <
√
d.

Proof. The following inequality,

(α− 1)(α′ + 1) > 0,

is immediately clear from the definition.

The expressions for α, α′ yield

α− α′ =

√
d

|A|
.

Expanding the inequality therefore gives

0 < α · α′ + α− α′ − 1 =
C

A
+

√
d

|A|
− 1.

The coefficients A,C being of opposite sign, we have −C/A = |C|/|A|,
whence

1 +
|C|
|A|

= 1− C

A
<

√
d

|A|
,

and the result follows. �

Remark: In our old notation, the Lemma states that Qk + Qk−1 <
√
d =

2
√
D.

The following Lemma helps us put everything together.

H.VII.4 Lemma. Suppose α is reduced, and satisfies the quadratic
equation

AX2 −BX + C = 0
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with discriminant d > 0. Then β = 1/(α − bαc) satisifies a quadratic
equation

A′X2 −B′X + C ′ = 0

having the same discriminant.

Proof. The proof is pure computation.

Let us set n = bαc and invert the relation above:

α = n+
1

β
.

We plug this into the equation:

A(n+
1

β
)2 −B(n+

1

β
) + C = 0.

Multiplying by β2 we obtain the equation

(An2 −Bn+ C)β2 + (2An−B)β + A = 0,

of discriminant

d′ = (2An−B)2 − 4(An2 −Bn+ C) · A = · · · = B2 − 4AC = d.

�

We can now state and prove the weaker form of our principal result:

H.VII.5 Theorem (Provisional). Assume the quadratic irrationality
α reduced. Then its continued fractions expansion is ultimately periodic.

Proof. By our Lemmas, each αk is reduced, satisfying a quadratic equation

Ax2 −Bx+ C = 0

with integer coefficients, and of the same discriminant d.
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The coefficients A,B,C satisy the following inequalities:

|A|+ |C| <
√
d; d = B2 − 4AC.

There can be only a finite number of pairs A,C satisfying that condition. For
each pair A,C there are at most two integers B satisfying B2 − 4AC = d.

Hence there are only a finite number of αk and ak appearing in the expansion
of α. For some k ≥ 0, l > 0 it must then hold that αk+l = αk . But then
automatically αn+l = αn for all n ≥ k.

This proves the Theorem in the stated weaker form. �

We now show how the general case can be reduced to the case of a reduced
irrationality α.

H.VII.6 Theorem. If α is a quadratic irrationality, its continued frac-
tions expansion is ultimately periodic.

Proof. We prove that one αj is reduced; we are then back in the situation
ot the preceding Theorem.

The construction makes it clear that αk > 1 for all k ≥ 1. We are finished if
we can prove that some α′k is negative, because then:

αk+1 =
1

αk − bαkc
> 1, 0 > α′k+1 =

1

α′k − bαkc
> −1,

i.e., αk+1 is reduced.

Now, if αk, α
′
k are both positive, they are the roots of an equation

AX2 −BX + C = 0,

where A and C are of equal sign, AC > 0, as the product of the two roots,
C/A, is positive.

Putting n = bαkc then gives

αk =
B +

√
d

2A
> n.
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We are assuming

α′k =
B −

√
d

2A
> 0.

Summing the two inequalities we then get

B

A
> n;

AB

A2
> n; A(An−B) < 0.

We saw above that

αk+1 =
1

αk − bαkc
, α′k+1 =

1

α′k − bαkc

satisfy the quadratic equation A′X2 +B′X + C ′ = 0, where

A′ = An2 −Bn+ C

B′ = 2An−B

C ′ = A

(recall n = bαkc ≥ 1, k ≥ 1).

The product of the first and third coefficients of this equation then equals

A2n2 − ABn+ AC = AC + An(An−B) < AC,

as n > 0 and A(An−B) < 0.

As long as this product is positive it will therefore diminish by at least one
unit in each step. It can never become zero, because in this case one of the
roots would equal zero. But all the αk, α

′
k are irrational.

So, after a finite number of steps we must arrive at an equation
A′′X2 − B′′X + C ′′ = 0 where A′′C ′′ < 0, and the product of the roots,
C ′′/A′′, is negative.

But then the smaller root must be negative. By the beginning of the proof,
that is exactly what we had to prove. �

We now turn to the proof of the definitive Theorem on reduced irrationalities.

H.VII.7 Theorem. The quadratic irrationality α has a purely periodic
continued fractions expansion if and only if it is reduced.
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Proof.

α reduced necessary:

In the proof of the last Theorem we showed that the αk are reduced from
some k = k0 on. However, if the sequence of the αj is periodic from k = 0
on it must hold that α0 is reduced. For if the period is l > 0, then for some
multiple nl > k0 we must have α0 = αnl, so that α0 is reduced, as αnl is.

α reduced sufficient:

We assume that α is reduced. We already know that the sequence of the αj

is ultimately periodic. We also know that they are all reduced.

So we can assume that some αk+1 has a purely periodic expansion.

We also know that

αk = ak +
1

αk+1

is reduced.

Denoting the period by l, by assumption, αk+1+l = αk+1. If we can prove
that αj+1+l = αj+1 implies αj+l = αj, we can show by backwards induction
that α0 = αl, proving the Theorem.

The proof is the same as at the end of the preceding Section: αj is uniquely
determined by αj+1, and the condition that αj, too, is reduced. �



Chapter J

Special Topics on Continued
Fractions

J.I Matrix Notation

In this Section we show how to rewrite some of our previous relations in
matrix form. First we have the recursion for the convergents pk/qk:

(
qk+1 qk
pk+1 pk

)
=

(
qk qk−1

pk pk−1

) (
ak+1 1

1 0

)
, k ≥ 0.

We have the following initial condition:(
q0 q−1

p0 p−1

)
=

(
1 0
a0 1

)
=

(
0 1
1 0

) (
a0 1
1 0

)
.

Repeating we thus obtain:

(
qk+1 qk
pk+1 pk

)
=

(
qk qk−1

pk pk−1

) (
ak+1 1

1 0

)
=

(
qk−1 qk−2

pk−1 pk−2

) (
ak 1
1 0

) (
ak+1 1

1 0

)
= . . .(

q0 q−1

p0 p−1

) (
a1 1
1 0

)
· · ·

(
ak 1
1 0

) (
ak+1 1

1 0

)
=

255



256 CHAPTER J. SPECIAL TOPICS ON CONTINUED FRACTIONS

=

(
0 1
1 0

) (
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
ak 1
1 0

) (
ak+1 1

1 0

)
.

Replace k by k − 1 in the first and last members above:(
qk qk−1

pk pk−1

)
=

(
0 1
1 0

) (
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
ak−1 1

1 0

) (
ak 1
1 0

)
.

Premultiplying both members by the matrix(
0 1
1 0

)
interchanges the rows of the left member and cancels the first matrix factor
of the right member.

(
pk pk−1

qk qk−1

)
=

(
a0 1
1 0

)
· · ·

(
ak−1 1

1 0

) (
ak 1
1 0

)
(∗)

The recurrence for the αk,

αk+1 =
1

αk − ak

(∗∗)

may be inverted:

αk = ak +
1

αk+1

=
akαk+1 + 1

αk+1

and rewritten as a matrix product:(
αk

1

)
= C ·

(
ak 1
1 0

) (
αk+1

1

)
.

The constant C = 1/αk+1 cancels on dividing the two components.

By successive combination we thus obtain(
α
1

)
=

(
α0

1

)
= C ′ ·

(
a0 1
1 0

)
· · ·

(
ak−1 1

1 0

) (
ak 1
1 0

) (
αk+1

1

)
= C ′

(
pk pk−1

qk qk−1

) (
αk+1

1

)
,



J.II. EQUIVALENT QUADRATIC IRRATIONALITIES 257

where we used (*). C ′ is again a constant that cancels on division.

So we have proved again that the recurrence (**) implies

α =
pkαk+1 + pk−1

qkαk+1 + qk−1

.

We also see again that

det

(
pk pk−1

qk qk−1

)
= pkqk−1 − pk−1qk = (−1)k+1

as the matrix is the product of k + 1 matrices of determinant = −1.

J.II Equivalent Quadratic Irrationalities

J.II.1 Definition. Given two quadratic irrationalities α, β, β is said to
be equivalent to α if there are integers p, q, r, s, ps− qr = ±1 satisfying

β =
pα + q

rα + s
.

In view of the previous Section it is natural to think of the equivalence as
given by the matrix (

p q
r s

)
,

ps− qr = ±1 being its determinant.

It is also given by the matrix

−
(
p q
r s

)
of the same determinant.

We now prove that ”equivalence” is indeed an equivalence relation!

It is trivially reflexive,

α =
1α+ 0

0α+ 1
.
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The proof of symmetry proceeds by inverting the above relation:

α =
sβ − q

−rβ + p

of the same determinant.

The matrix (
s −q
−r p

)
is plus or minus the inverse of the matrix(

p q
r s

)
,

depending on the sign of the determinant.

As for transitivity we rewrite the relation

β =
pα + q

rα + s
,

in matrix form:

c ·
(
β
1

)
=

(
p q
r s

) (
α
1

)
, c 6= 0.

Assuming that γ is equivalent to β,

d ·
(
γ
1

)
=

(
t u
v w

) (
β
1

)
, d 6= 0,

we arrive at

dc ·
(
γ
1

)
=

(
t u
v w

) (
p q
r s

) (
α
1

)
, cd 6= 0,

where the product matrix is of determinant plus or minus one, proving that
γ is then equivalent to α.

J.III Equivalence and Continued Fractions

We have seen in the first and second Sections that two quadratic irrationali-
ties that appear in the same continued fractions expansion are equivalent. We
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have also seen (H.VII.6, proof) that every quadratic irrationality is equivalent
to a reduced one.

In this section we will prove that two reduced quadratic irrationalities are
equivalent if and only if they appear in the same expansion. What remains
to prove is ”only if”. We will be led to a non-symmetric assumption on the
signs of the p, q, r, s, so it may appear that we can expand from one quantity
to the other but not conversely. But if we arrive at the reduced irrationality
α from the likewise reduced quantity β, the converse will also hold, as the
expansion of β is periodic, so that β appears again, after α.

We now enter a lengthy discussion on the signs of the matrix elements
p, q, r, s.

Given

β =
pα + q

rα + s
, ps− qr = ±1,

where β, α are reduced quadratic irrationalitites. Our aim is to prove that
we can assume that the p, q, r, s are of equal sign, hence can all be assumed
non-negative.

We may assume that all coefficients, except possibly one, are non-zero. If two
coefficients are zero (remembering that ps − qr = ±1), then either β = ±α
– and only the plus sign can hold, as α, β > 0. Or β = ±1/α, which is
impossible as α, β > 1.

We then note that we cannot have three of them positive and the fourth
negative (or the other way around). In that case ps− qr would be a sum of
two integers of equal sign, hence of absolute value greater than one.

Nor can it happen that p, q are of one sign and r, s of the opposite sign (one
of the four possibly=0).

As α is positive, that would force β to be negative.

We can also rule out the case with p, r of equal sign and q, s of the opposite
sign (one of the four possibly =0). Conjugating:

β′ =
pα′ + q

rα′ + s
,

would give β′ positive, as α′ is negative.

There remain the two possibilities(
p q
r s

)
= ±

(
+ −
− +

)
or ±

(
+ +
+ +

)
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(one of the four quantities possibly zero).

In the first case we simply invert the relation

α =
sβ − q

−rβ + p
,

where all coefficients are of the same sign. Possibly after changing our nota-
tion we may therefore assume

β =
pα + q

rα + s
,

with non-negative coefficients.

We are now ready to prove the following Theorem.

J.III.1 Theorem. If α and β are equivalent reduced quadratic irra-
tionalities, then β appears in the continued fractions expansion of α,
and conversely.

Proof. Our introductory discussion proves that we may assume

β =
pα + q

rα + s
, p, q, r, s ≥ 0, ps− qr = ±1.

If r = 0, then p = s = 1 and β = α+ q, q ≥ 0. Conjugating gives β′ = α′+ q.
This forces q = 0, otherwise we would have β′ > 0, as α′ > −1. So in that
case β = α and the assertion is trivially true.

If s = 0, we see in the same manner that

β =
pα + 1

α
= p+

1

α
, bβc = p,

that is,

α =
1

β − bβc
,

so that α is reached in one single step from β.

We now show that we achieve this situation after a finite number of steps in
the expansion of β.
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Thus let n = bβc. A simple computation shows the relation

1

β − n
=

1

(
pα + q

rα + s
)− n

=
rα + s

(p− rn)α+ (q − ns)

between reduced quadratic irrationalities. We are assuming r, s > 0, hence
the coefficients in the denominator must be non-negative (by the introductory
discussion).

If p− rn = 0 or q − ns = 0 we are through by the above discussion.

Otherwise we continue. Note that we are always obtaining irrationalities > 1.

As each step diminishes the sum of the positive coefficients the process must
finally produce a zero coefficient in the denominator, and then we are finished,
by the introductory discussion. �

J.III.2 Example. The Theorem says that the reduced irrationalities of the
form

[P,Q] =
P +

√
D

Q
; Q|(D − P 2),

fall into disjoint cycles of equivalent irrationalities.

For D = 19, there is only one cycle, of length 6:

[4, 1] → [4, 3] → [2, 5] → [3, 2] → [3, 5] → [2, 3] → [4, 1] . . .

For D = 29 there is a cycle of length one, α = [5, 2], as

bαc =
⌊5 +

√
29

2

⌋
= 5;

1

α− 5
=

2√
29− 5

= α

and one of length five:

[5, 1] → [5, 4] → [3, 5] → [2, 5] → [3, 4] → . . .

�
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J.III: Exercises

1. Pell’s equation revisited.

Consider the reduced quadratic irrationality

α =
√

D + n, n = b
√

Dc,

D still denoting a positive integer, not a perfect square.

Find the quadratic equation (with integer coefficients) satisfied by α (and
its conjugate).

Denoting the period of α by l, deduce a relation

α = αl =
pα + q

rα + s
; ps− rq = (−1)l,

and, from that, another quadratic equation for α. Deduce

(p + s)2 − 4r2D = (−1)l · 4.

How do you deduce a solution to Pell’s equation t2 −Du2 = ±1 from that?

2. Using the theory of equivalence, and relations of the form

α =
pα + q

rα + s
, ps− qr = −1,

prove that the period of α is odd if and only if t2 −Du2 = −1 is solvable in
integers. (cf. H.III.1, H.III.4.)

3. Let (t, u) be a solution to Pell’s equation t2 − Du2 = ±1. Multiply the
equation you derived in the first problem above by u; by suitably re-writing
the first-degree term, and retracing the steps of the previous problem, derive
a relation of the form

α =
pα + q

rα + s
, ps− qr = ±1.
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* J.IV An Alternative Approach

We give here an alternative proof of the equivalence Theorem (J.III.1) looking
at the expansion “from the other end”. Although the proof will be slightly
longer, and perhaps more difficult, we gain a little more information.

We start with a Lemma, providing the base step of a “hidden induction”. In
the sequel β is always a positive irrational number, and α > 1.

J.IV.1 Lemma. Suppose

β =
(rt+ 1)α+ r

tα+ 1
,

where r > 0, t ≥ 1 are integers. Then α = β2 in the expansion of β, and
(rt+ 1)/t, r/1 are successive convergents.

Proof. Setting

γ = t+
1

α
> 1, α =

1

γ − t
,

we see that t is the floor of γ and that

β =
rt+ 1 + r(γ − t)

t+ (γ − t)
=
rγ + 1

γ
= r +

1

γ
, r = bβc, γ =

1

β − bβc
,

whence γ = β1, α = β2.

Furthermore, recalling our vector notation, and the basic recurrence, from
G.I.1,

v−1 =

(
0
1

)
, v0 =

(
1
r

)
, v1 = t

(
1
r

)
+

(
0
1

)
=

(
t

rt+ 1

)
,

whence
p1

q1
=
rt+ 1

t
,

p0

q0
=
r

1
,

proving the assertion about convergents. �

Now we look at a more general case.
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J.IV.2 Theorem. Still assuming β > 0, α > 1.This time assume that

β =
rα + s

tα+ u

with ru− st = ±1, t > u > 0 (forcing r, s ≥ 0). Then α = βk for some k,
and

r

t
=
pk

qk
,

s

u
=
pk−1

qk−1

,

so, again, two successive convergents may be read off from the coefficients
of the relation expressing β in α.

Proof. If r or s were negative, both would be, as ru−st = ±1, and t, u > 0.
But then β < 0. This contradiction proves the statement in parentheses.

Basically we will perform Euclid on t and u, remembering that (t, u) = 1 as
ru− st = ±1. If u > 1, the first step is t = nu+ v, u > v > 0. Introducing

γ = n+
1

α
; n = bγc, α =

1

γ − bγc
,

the given relation turns into

β =
r + s(γ − n)

t+ u(γ − n)
=
sγ + (r − ns)

uγ + (t− nu)
,

where, still, u > t− nu > 0. We cannot have r − ns < 0 if the determinant
is to remain = ∓1, and β > 0.

We continue in the same manner until arriving at

β =
aδ + b

cδ + 1

with c > 1. We must then have a = bc± 1 as the determinant will still equal
±1.

The plus sign is the situation of the Lemma. We see that δ is reached in two
steps from β, and, inductively, that α is reached in a number of additional
steps. Assuming this proved for γ, by induction (on u) we see that α is
reached in the next step.
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As for the convergents the Lemma dealt with the base step. Assume γ =
βk−1, α = βk and, by way of induction, that(

qk−1

pk−1

)
=

(
u
s

)
,

(
qk−2

pk−2

)
=

(
t− nu
r − ns

)
.

Remembering that bβkc = bαc = n we then get(
qk
pk

)
= n ·

(
qk−1

pk−1

)
+

(
qk−2

pk−2

)
= n ·

(
u
s

)
+

(
t− nu
r − ns

)
=

(
t
r

)
,

proving the statement about convergents.

In the case of the minus sign we introduce

ω = (c− 1) +
1

δ
, bωc = c− 1, δ =

1

ω − (c− 1)
,

leading to

β =
aδ + b

cδ + d
=
a+ b[ω − (c− 1)]

c+ [ω − (c− 1)]
=
bω + (b− 1)

ω + 1
,

which is again the situation of the Lemma, and the rest of the proof is as in
the previous case. �

We finally give our most general result, an observation due to Australian
mathematician Keith Matthews.

J.IV.3 Theorem. Still assuming α > 1, β > 0, assume that

β =
rα + s

tα+ u

with r, t, u > 0, s ≥ 0, ru − st = ±1. Then there exists an m ≥ 0 such
that α + m = βk for some k, and at least r/t is a convergent in the
continued fractions expansion of β.

Proof. Assume u ≥ t, else we are in the case of the previous Theorem.
Divide: u = mt+ v, 0 ≤ v < t.

We first deal with the case v = 0, u = mt. As (t, u) = 1 we must have t = 1,
hence

β =
rα + s

α+m
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and s = rm± 1, so that

β =
r(α+m)± 1

α+m

The plus sign means that α+m is produced from β in one step.

In the case of the minus sign we rewrite thus:

β =
r(α+m− 1) + (r − 1)

(α+m− 1) + 1

and the Lemma applies (with t = 1, r replaced by r − 1, and α +m − 1 in
place of α).

If v > 0, then

β =
r(α+m) + (s− rm)

t(α+m) + (u−mt)
,

with 0 < u − mt < t. Further s − rm ≥ 0, as the determinant equals ±1.
Now apply the previous Theorem and its proof (the end) to this situation.

�

J.V Reciprocal Expansions

Let α, β, connected by

β =
pα + q

rα + s
, ps− qr = ±1,

be equivalent quadratic irrationalities. By our previous convention the ex-
pansion from β leading to α is afforded by the matrix(

p q
r s

)
.

We have proved its product representation(
p q
r s

)
=

(
b0 1
1 0

)
· · ·

(
bk−1 1
1 0

)
·
(
bk 1
1 0

)
,

where the bj are the partial quotients of the expansion:

b0 = bβc,

β = b0 +
1

β1

=
b0β1 + 1

β1

,



J.V. RECIPROCAL EXPANSIONS 267

and so on.

We proved earlier (H.VII.2) that −1/β′,−1/α′ are reduced as α, β are. Start-
ing from

β =
pα + q

rα + s
,

conjugating,

β′ =
pα′ + q

rα′ + s
,

and inverting:

α′ =
sβ′ − q

−rβ′ + p
,

it is straightforward to prove that

− 1

α′
=

p(
−1

β′
) + r

q(
−1

β′
) + s

,

i.e., that transition is afforded by the matrix transpose(
p r
q s

)
=

(
bk 1
1 0

)
·
(
bk−1 1
1 0

)
· · ·

(
b0 1
1 0

)
with the same factors, but in the opposite order.

Now the matrix (
bk 1
1 0

)
performs the transition from the reduced quantity βk, bk = bβkc, to the
reduced quantity α:

α =
1

βk − bk
; βk = bk +

1

α
. (∗)

In an earlier Section (H.VII.2) we proved that then, also:

bk =
⌊−1

α′

⌋
. (∗∗)

This means that the matrix (
bk 1
1 0

)
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does represent the first step in the expansion of

−1

α′
.

From this we see, inductively, that the last derived matrix product represents
the expansion leading

from
−1

α′
to
−1

β′
.

If the original expansion is

β → β1 → β2 → · · · → α,

the derived expansion is

−1

α′
→ · · · → −1

β′2
→ −1

β′1
→ −1

β′
.

We therefore obtain this expansion from that leading from β to α by revers-
ing the order of the partial quotients. We say that the two expansions are
reciprocal to one another.

In particular, if β = α, and the given relation represents one period in the
expansion of α, the period of −1/α′ will be the same running backwards.

A simple example is

α =
√

6 + 2 = [4, 2];
−1

α′
=

√
6 + 2

2
= [2, 4].

Check!

J.VI Selfreciprocity, Partial Quotients

If
α = α0 =

√
D + n, n = b

√
Dc,

is reduced, of period l, then

−1

α′l
=
−1

α′0
=

1√
D − n

= α1

which means that the expansion in this case is self-reciprocal.
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Looking at the identical expansions

α1 → α2 → α3 → · · · → αl

−1

α′l
→ −1

α′l−1

→ −1

α′l−2

→ · · · → −1

α1

we conclude that

αk =
−1

α′l+1−k

, k ≥ 1.

As (*) and (**) of the previous Section show, αk and −1/α′k+1 have the same
floor. Therefore:

ak = bαkc =
⌊ −1

α′k+1

⌋
= bαl−kc = al−k, k ≥ 0,

(the case k = 0 is covered by periodicity).

Note that in the first identity the index sum is l + 1, in the second it is l.

For α =
√
D the expansion is the same, except for α0, a0, so the expansion

in this case is “almost” self-reciprocal. The above identities then hold for
k ≥ 1.

For the convenience of the reader we repeat our previous examples to illus-
trate this symmetry. It is visible in the last row of the two tables. Note again
that we were studying the expansion of

√
D, where al = 2a0.

D = 14:
k −1 0 1 2 3
pk 1 3 4 11 15
qk 0 1 1 3 4

Pk+1 0 3 2 2 3
(−1)k+1Qk+1 1 −5 2 −5 1

ak+1 3 1 2 1 6

D = 29:
k −1 0 1 2 3 4
pk 1 5 11 16 27 70
qk 0 1 2 3 5 13

Pk+1 0 5 3 2 3 5
(−1)k+1Qk+1 1 −4 5 −5 4 −1

ak+1 5 2 1 1 2 10

Remark 1: An interesting thing happens when the period l is odd, l = 2m−1.
As we have seen, this is equivalent to the equation p2 − Dy2 = −1 being
solvable in integers.
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In this case,

α1 =
−1

α′2m−1

, α2 =
−1

α′2m−2

, . . . , αm =
−1

α′2m−l

=
−1

α′m
,

i.e.,
√
D + Pm

Qm

=
Qm√
D − Pm

so that

D = P 2
m +Q2

m. (∗ ∗ ∗)

This is illustrated in the example D = 29 above, with period 5 and 29 =
P 2

3 +Q2
3 = 22 + 52.

Clearly, (D,Qm) > 1 or −1 is a quadratic residue modulo D. We prove below
that the first case is impossible.

If D is a prime number ≡ 1 (mod 4) earlier Exercises show that the period
is in fact odd, as the equation p2 − Dy2 = −1 is then shown to be solv-
able. So we have here a new method for representing p a a sum of squares,
(cf. Section E.I), in fact one that does not depend on solving the congru-
ence x2 ≡ −1 (mod p). In all fairness it should be pointed out that the
method explained earlier, using Euclid, is much faster (of polynomial, not
exponential, complexity).

Remark 2: By the QCF (Section H.I) D − P 2
m = Qm ·Qm−1 so (***) means

that Qm−1 = Qm. If D = P 2
m +Q2

m is odd this entails that Q = Qm must be
the odd term. This is because we have the following situation:

p2 −Dq2 ≡ ±Q
r2 −Ds2 ≡ ∓Q

where p/q, r/s are successive convergents.

As ps − qr = ±1, we cannot have all p, q, r, s odd. And if one of p or q is
even, the other must be odd; and correspondingly for r, s. This proves that
Q must be odd.

Also, we cannot have d = (Q,D) > 1. If that were the case, d would divide
both p2 and r2, which is impossible, as ps− qr = ±1, so that (p, r) = 1.
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J.VII Symmetry of the Pk, Qk

From the examples above it appears that the Qk exhibit the same symmetry
as the ak, and that the Pk do so with a slight shift. We now explain this.

First recall the QCF recurrence:

Pk+1 = akQk − Pk, D − P 2
k+1 = QkQk+1.

Starting from

αk =

√
D + Pk

Qk

and using the above recurrence (with k − 1 in place of k) we get
√
D + Pl+1−k

Ql+1−k

= αl+1−k =
−1

α′k
=

Qk√
D − Pk

=
Qk(

√
D + Pk)

D − P 2
k

=

√
D + Pk

Qk−1

, k ≥ 1,

hence, as we hoped to prove:

Pl+1−k = Pk, k ≥ 1; Ql−k = Qk, k ≥ 0.

The examples above (p. 269) give ample illustration.

* J.VIII Moving Forward One Period

We take another look at the relation

√
D =

pk(Pk+1 +
√
D) + pk−1Qk+1

qk(Pk+1 +
√
D) + qk−1Qk+1

,

or
√
D ·

(
qk(Pk+1 +

√
D) + qk−1Qk+1

)
= pk(Pk+1 +

√
D) + pk−1Qk+1.

We rewrite it differently this time:

(Pk+1 +
√
D)(qk

√
D − pk) = Qk+1(pk−1 − qk−1

√
D)

and conjugate:

−(Pk+1 −
√
D)(qk

√
D + pk) = Qk+1(pk−1 + qk−1

√
D).
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As (Pk+1 −
√
D)(Pk+1 +

√
D) = −Qk+1Qk by the QCF, we can also

rewrite it thus:

pk + qk
√
D =

Pk+1 +
√
D

Qk

(pk−1 + qk−1

√
D)

or

pk + qk
√
D =

Qk+1

Qk

Pk+1 +
√
D

Qk+1

(pk−1 + qk−1

√
D)

=
Qk+1

Qk

αk+1(pk−1 + qk−1

√
D), k ≥ 0.

Driving this recurrence all the way to the bottom, remembering that
Q0 = 1, p−1 + q−1

√
D = 1, we arrive at:

pk + qk
√
D =

Qk+1

Qk

· αk+1 · (pk−1 + qk−1

√
D)

=
Qk+1

Qk

· Qk

Qk−1

· αk+1 · αk · (pk−2 + qk−2

√
D)

...

=
Qk+1

Qk

· Qk

Qk−1

· · · Q1

Q0

· αk+1 · αk · · ·α1,

hence:

J.VIII.1 Theorem (Lagrange’s Product Formula).

pk + qk
√
D = Qk+1 · αk+1 · αk · · ·α1.

�

From the account in Edwards’ book it appears that this Product Formula, is
already present in the work of Wallis and Brouncker. In fact, their idea was to
choose Pk+1 so as to make both components of (Pk+1 +

√
D)(pk−1 + qk−1

√
D)

divisible by Qk. Among the possible choices they picked the largest Pk+1 <√
D. Bhaskara’s approach differed from theirs in allowing Pk+1 >

√
D, i.e.,

he chose to minimize the absolute value |D − P 2
k+1|.
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Implicit in this discussion is the fact that x + y
√
D = pk−1 + qk−1

√
D is a

solution to the equation x2 − Dy2 = ±Qk belonging to −Pk, hence also to
Pk+1 ≡ −Pk (mod Qk), cf. pp. 217 and 240.

We now look at a special case. If the period is l, so that Ql = 1, we get

pl−1 + ql−1

√
D = αl · αl−1 · · ·α1

and
pk+l + qk+l

√
D = Qk+l+1 · αk+l+1 · αk+l · · ·αl+1 · αl · · ·α1 =

Qk+1 · (αk+1 · αk · · ·α1) · (αl · · ·α1) = (pk + qk
√
D)(pl−1 + ql−1

√
D).

We have proved:

J.VIII.2 Theorem. Let α =
√
D, D a positive integer, not a perfect

square. Let l be the period of its expansion so that (H.III.3)

p2
l−1 −Dq2

l−1 = (−1)l.

Then it holds that

pl+k + ql+k

√
D = (pk + qk

√
D)(pl−1 + ql−1

√
D) (∗)

for all k ≥ −1.

�

The Theorem says that we move one period forward by multiplication with
the least positive solution to x2 −Dy2 = ±1.

We have given Examples in an earlier Section, see p. 235.
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J.VIII: Exercises

1. Generalize Lagrange’s Product Formula to the case α = (P +
√

D)/Q where
Q|(D − P 2).

2. Give a new derivation of (*) by noting that the two members (running over a
full period) satisfy the same first order recurrence with positive coefficients,
and begin and end the same.
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* J.IX Running a Period Backwards

Due to self-reciprocity, within a period the solutions to p2
k − Dq2

k = ±Qk

appear in pairs, except possibly in the middle. For instance, in the case
D = 29, we have (look back at the Examples above, p. 269)

112 − 29 · 22 = 5,

162 − 29 · 32 = −5,

corresponding to k = 1, 2. How do they relate to one another? The answer is
that the respective solutions will differ by a factor x+ y

√
D, x2−Dy2 = ±1,

after one of them is conjugated.

In order to prove this we recall the two symmetry relations (J.VII), with a
slightly different indexing.

Qk+1 = Ql−k−1, k ≥ −1,

and

α′l−k−1 =
−1

αk+2

, k ≥ −1.

Start again with

pk + qk
√
D = Qk+1 · αk+1 · αk · · ·α1.

Replace k by l − k − 2 and conjugate:

pl−k−2 − ql−k−2

√
D = Ql−k−1 · α′l−k−1 · α′l−k−2 · · ·α′1 =

Qk+1 · α′l−k−1 · α′l−k−2 · · ·α′1 = Qk+1 ·
−1

αk+2

· · · −1

al

.

Now multiplying this by

pl−1 + ql−1

√
D = αl · αl−1 · · ·α1 = (αl · · ·αk+2) · (αk+1 · · ·α1)

we get

(pl−k−2 − ql−k−2

√
D)(pl−1 + ql−1

√
D) = (−1)l−k−1Qk+1 · αk+1 · αk · · ·α1

= (−1)l−k−1(pk + qk
√
D),

proving:
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J.IX.1 Theorem. Let α =
√
D, D a positive integer, not a perfect

square. Let l be the period of its expansion so that

p2
l−1 −Dq2

l−1 = (−1)l.

Then it holds that

pk + qk
√
D = (−1)l−k−1(pl−k−2 − ql−k−2

√
D)(pl−1 + ql−1

√
D)

for −1 ≤ k ≤ l − 1.

�

J.IX.2 Example. In the case D = 29, with k = 2, the left member is

p2 + q2
√
D = 16 + 3

√
29

Here the period is l = 5, and l − k − 2 = 1, p4 + q4
√

29 = 70 + 13
√

29,
p1 − q1

√
29 = 11− 2

√
29. And:

(70 + 13
√

29) · (11− 2
√

29) = 16 + 3
√

29.

�

J.IX: Exercises

1. If Q = Qj = ±Qk appear within the same period, the corresponding x, y
satisfying x2 −Dy2 = ±Q cannot belong (cf. p. 217) to the same P (why
not?). Show, by examining the QCF recurrence, that if one belongs to P
the other belongs to −P .

2. Give an alternative proof along the same lines as the last exercise of the
previous Section (comparing recurrences that begin and end the same).
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* J.X More on Pell-Like Equations

An intriguing special case is that of D = a prime number, D ≡ 3 (mod 4).
In that case the period l must be even, by H.III.1, l = 2k + 2. Using that
value of k, still setting zj = pj + qj

√
D for arbitrary j, the general identity

(J.IX.1)
zk = (−1)l−k−1z′l−k−2 · zl−1

becomes:
zk = (−1)k+1z′k · zl−1.

Multiplying by zk, and remembering

zk · z′k = p2
k −Dq2

k = (−1)k+1Qk+1,

we obtain:
(pk + qk

√
D)2 = z2

k = Qk+1 · (pl−1 + ql−1

√
D).

This means that Qk+1 must divide p2
k + Dq2

k. As it is also plus or minus
p2

k −Dq2
k, Qk+1 must divide both the sum and difference, 2p2

k and 2Dq2
k. As

(p2
k, q

2
k) = 1 this means that Qk+1 divides 2D. We cannot have Qk+1 = 1

as that would force a shorter period. And, as Qk+1 < 2
√
D, temporarily

assuming D > 3, it cannot divide the odd prime factor D. Hence Qk+1 = 2.

So we have proved the solvability of one of the two Diophantine equations

x2 −Dy2 = ±2.

We assumed D > 3; however, the case D = 3 is trivially true (x = y = 1).

The sign must be chosen so that ±2 is a quadratic residue modulo D. Recall
that −1 is a non-residue in this case, so exactly one of the two cases holds.

If D ≡ 3 (mod 8), we must take the minus sign, as (2/D) = −1. If D ≡ 7
(mod 8), the plus sign holds, as (2/D) = 1.

We arrive at the following Theorem:

J.X.1 Theorem. Let D be an odd prime.

a) If D ≡ 3 (mod 8), the equation x2−Dy2 = −2 is solvable in integers,
x2 − Dy2 = 2 is unsolvable, and the period of the continued fractions
expansion of

√
D is congruent to 2 modulo 4.
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b) If D ≡ 7 (mod 8), the equation x2 −Dy2 = 2 is solvable in integers,
x2 − Dy2 = −2 is unsolvable, and the period of the continued fractions
expansion of

√
D is divisible by 4.

Proof. It remains only to discuss the length of the periods.

The period is 2k+ 2, the sign in the right member is (−1)k+1 (see the begin-
ning of this Section).

In case a) the sign is −1, hence k + 1 is odd, k is even, k = 2m, and the
period is 2k + 2 = 4m+ 2.

In case b) the sign is +1, hence k + 1 is even, k is odd, k = 2m− 1, and the
period is 2k + 2 = 4m. �

Although this result is of a very classical type, I have not found the explicit
statement about the periods in older books.

The solvability in either case can be proved more directly, as previous exer-
cises show, see p. 238.

J.X.2 Example. One example with D ≡ 3 (mod 8) is D = 19. We have
132 − 19 · 32 = −2 and the period is 6, almost accessible to hand cal-
cuation (the ak of the first period are 4, 2, 1, 3, 1, 2, the convergents are
4/1, 9/2, 13/3, 48/11, 61/14, 170/39).

An example with D ≡ 7 (mod 8) is D = 31, having period 8 and leading
(halfway through, of course) to 392 − 31 · 72 = 2.

Note that
39 + 7

√
31

39− 7
√

31
=

1

2
(39 + 7

√
31)2 = 1520 + 273

√
31

gives the least positive solution to x2−31 ·y2 = 1 according to the discussion
in the previous Section.

The reader might want to try D = 23, having period 4, by hand. �

The last Theorem states that one half of the period determines the other
half. Can we hope that the first occurence of Qk+1 = 2 determines the least
positive solution to x2−Dy2 = ±1 as in the Example above? Indeed we can,
by the following Theorem.
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J.X.3 Theorem. Still assuming that D is a prime ≡ 3 (mod 4), the
situation Qk+1 = 2 can occur only once every period, i.e., only halfway
through it.

Proof. Let x/y, u/v be convergents to
√
D satisfying

x2 −Dy2 = u2 −Dv2 = ±2.

Assume x+ y
√
D > u+ v

√
D. Then

r + s
√
D =

x+ y
√
D

u+ v
√
D
> 1; r2 −Ds2 = 1.

Let us prove that r, s are integers. Multiplying the numerator and denomi-
nator by u− v

√
D we get

r + s
√
D =

(x+ y
√
D)(u− v

√
D)

±2
.

As x, y, u, v must be odd we see that xu−Dyv and yu− xv are even, hence
r, s are integers.

As r + s
√
D > 1 it is a positive power of the least solution p + q

√
D > 1

to p2 − Dq2 = 1 (cf. H.III.6), say r + s
√
D = (p + q

√
D)n. By an earlier

result (cf. Section J.VII) this means that x+y
√
D is n periods removed from

u+ v
√
D, hence that they do not belong to the same period. �

As is clear from Edwards’ book, the trick of stopping at Qk+1 = 2, squaring
the solution, and dividing by two, was known to Bhaskara.

Now, let us deal with primes D ≡ 1 (mod 4).

J.X.4 Theorem. Let D be a prime number ≡ 1 (mod 4). Then the
equation x2 − Dy2 = ±2 is unsolvable; the period of

√
D is odd, and

x2 −Dy2 = −1 is thus solvable.

Proof. The first statement is easy, as x2 ≡ 0, 1 (mod 4) and also Dy2 ≡
0, 1 (mod 4), hence x2 −Dy2 ≡ 0,±1 6≡ 2 (mod 4).
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However, by exactly the same reasoning as in the next to last Theorem, if
the period of

√
D were even, the equation x2−Dy2 = ±2 would be solvable.

Hence the period is odd, and x2 −Dy2 = −1 is therefore solvable. �

So, of the three Diophantine equations

x2 −Dy2 = −1,±2

for a given odd prime D, one is solvable, the other two not, and all three
cases occur.

We conclude this Section by looking at products D = pq, where p 6= q are
odd prime numbers. We derive two special results.

J.X.5 Theorem. Assume p ≡ q ≡ 3 (mod 4). Then the period of
√
pq

is even, and the equation px2−qy2 = ±1 is solvable for exactly one choice
of the sign. From this follows one special case of Quadratic Reciprocity,
that of p ≡ q ≡ 3 (mod 4).

Proof. The period is even because x2−pqy2 = −1 is unsolvable in integers,
−1 being a quadratic non-residue modulo p (and q).

As before (p. 277) we can solve x2 − pqy2 = Q, (x, y) = 1, where Q is a
divisor of 2D = 2pq, hence Q = ±2, ±2p, ±2q, ±p, or ± q.

In the cases with Q even, x, y must be odd. That would give 1 − 1 ≡ 2
(mod 4), impossible. Hence, x2 − pqy2 = ±p or ±q, say ±p (by choice of
notation), is solvable. Then x is divisible by p, x = pz, hence pz2− qy2 = ±1
is solvable in relatively prime integers z, y.

We then have (p
q

)
=

(pz2

q

)
=

(±1

q

)
= ±1,

so the sign must be chosen as (p/q).

At the same time (q
p

)
=

(qy2

p

)
=

(∓1

q

)
= ∓1 = −

(p
q

)
,

giving the special case of Quadratic Reciprocity. �



* J.X. MORE ON PELL-LIKE EQUATIONS 281

J.X.6 Example. p = 7, q = 11. The period of
√

77 is 6. Halfway through
the period (3 steps, easy hand calculation) we arrive at 352− 7 · 11 · 42 = −7,
hence 7 · 52 − 11 · 42 = −1. �

J.X.7 Theorem. Assume p ≡ q ≡ 1 (mod 4). If the period of
√
pq is

even, the Diophantine equation px2 − qy2 = ±1 is solvable for at least
one choice of the sign. In this case (p/q) = (q/p) = 1.

Hence, if (p/q) = −1 (hence, by Quadratic Reciprocity, also (q/p) = −1),
the period of

√
pq must be odd, and the Diophantine equation x2−pqy2 =

−1 is solvable.

Proof. Assume that the period in question is even. Exactly as in the proof
of the previous Theorem we can exclude the cases x2−pqy2 = ±2, ±2p, ±2q.
(Check!)

So (possibly after changing our notation), the equation x2 − pqy2 = ±p is
solvable, and again we conclude that pz2 − qy2 = ±1 is solvable in relatively
prime integers z, y. Then(p

q

)
=

(pz2

q

)
=

(±1

q

)
= 1,

and (q
p

)
=

(qy2

p

)
=

(∓1

p

)
= 1,

and the Theorem follows. �

J.X.8 Example. The smallest example would be p = 5, q = 13, (13/5) =
(3/5) = −1; but as 5 · 13 = 82 + 1, 82 − 65 · 12 = −1, this example is trivial,
of period 1.

The next smallest example, p = 17, q = 29, pq = 493, is quite formidable.
The least positive solution is x = 683982, y = 3085:

6839822 − 493 · 30852 = −1,

and the period is 9. �

J.X.9 Example. The condition (p/q) = (q/p) = −1 is sufficient, but not
necessary, for the solvability of x2 − pqy2 = −1.
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A trivial counterexample is p = 5, q = 29, (29/5) = (4/5) = 1, and

122 − 5 · 29 · 12 = −1.

�

The following problems partly prepare for the questions to be dealt with in
in the next Section. They show, amongst other things, that if D = 2, 3, we
can restrict our attention to equations x2 −Dy2 = N where N is positive.

J.X: Exercises

1. Using the ideas of the first few Theorems of this Section, prove that x2 −
2py2 = −1 is solvable in integers if the prime number p ≡ 5 (mod 8).

If you have written a QCF routine you will easily find examples of two primes
p ≡ 1 (mod 8), with x2 − 2py2 = −1 solvable or unsolvable.

2. Check that the period of D = 23 is in accordance with Theorem J.X.1.

3. Prove that the equation x2−2y2 = N , N an integer, is solvable in relatively
prime integers if and only if x2 − 2y2 = −N is.

4. (a) Let N be an integer. Prove that the equation x2 − 3y2 = N is not
solvable in relatively prime integers (“properly solvable”) if 4|N .

(b) Out of the two equations x2 − 3y2 = ±N at most one is properly
solvable.

(c) Let N be odd. Then x2 − 3y2 = N is properly solvable if and only if
x2 − 3y2 = −2N is.



J.XI. MORE ON X2 −DY 2 = N 283

J.XI More on x2 −Dy2 = N

In this Section we discuss the Diophantine equation x2 − Dy2 = N , where
D > 0 is not a perfect square. Setting Q = |N | we will deal with the cases
x2 −Dy2 = ±Q simultaneously.

There will be one exception: D = 2, 3, where we assume N > 0 for the
time being. Later we will remove that assumption. K Matthews has shown
in Expositiones Mathematicae, 18 (2000), 323-331, how to avoid this proce-
dure. His treatment leans heavily on a discussion on equivalent quadratic
irrationalities that we wished to avoid here. We will sketch his approach at
the end of the Section.

Now, if x, y is a solution satisfying (x, y) = 1, then also (y,Q) = 1, so y
is invertible modulo N . Hence there is some integer P , unique modulo Q,
such that x + Py ≡ 0 (mod Q). Plugging this into x2 − Dy2 = N we get
y2(P 2 −D) ≡ 0 (mod Q). By invertibility, the factor y2 cancels, and we are
left with P 2 −D ≡ 0 (mod Q).

We say that x, y is a solution produced by, or belonging to, P , (cf. p. 217).
Recall from an earlier Section (H.IV) that this amounts to

(P +
√
D)(x+ y

√
D) ≡ 0 (mod Q). (∗)

Our concern is to find all solutions belonging to any P satisfying P 2 ≡ D
(mod N). Clearly, if ±x,±y is a solution belonging to P , then ∓x,±y is one
belonging to −P , and conversely. We may assume −Q/2 < P ≤ Q/2.

In that same Section we showed how to find all solutions belonging to a given
P , from one single solution. So we will concentrate on how to find one of
them, or prove nonexistence.

We precede our algorithm with a Lemma.

J.XI.1 Lemma.

a) Let P be an integer satisfying P 2 − D ≡ 0 (mod Q). Let further
x, y 6= 0 be integers satisfying x+ Py ≡ 0 (mod Q), and x2 −Dy2 = N .
Then (x, y) = 1 (and (y,N) = 1). This is also true if x2 − Dy2 = 2N ,
with N odd.
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b) With x, y, P as in a), put (x + Py)/Q = p, y = q. Assume x, y >
0. Then p = pk, q = qk for some convergent pk/qk to the quadratic
irrationality (P +

√
D)/Q.

c) For every convergent p/q, (p, q) = 1, to (P +
√
D)/Q,

N |
(
(Qp− Pq)2 −Dq2.

)

Proof.

a) We know that (x + y
√
D)(x − y

√
D) = x2 − Dy2 = N . Formula (*)

above may be written (P +
√
D)(x+ y

√
D) = (a+ b

√
D)N, a, b,∈ Z. Hence,

dividing by x+ y
√
D, P +

√
D = (a+ b

√
D)(x− y

√
D), so that bx− ay = 1,

proving (x.y) = 1.

In the second case we similarly find that (x, y) = 1 or 2. However, as
x2 −Dy2 = 2N , and N is odd, only the first case can be true.

b) As (x, y) = 1, we easily see that (x + Py)/Q, y are also relatively prime.
We now use the criterion from the Section on Best Approximation, G.IV.
Assuming x2 −Dy2 = (x+ y

√
D)(x− y

√
D) = Q, form the difference:∣∣∣(x+ Py)/Q

y
− P +

√
D

Q

∣∣∣ =
∣∣∣x− y

√
D

yQ

∣∣∣ =
∣∣∣ 1

y(x+ y
√
D)

∣∣∣.
We need to prove that the denominator is greater than 2y2. This is obvious if
D ≥ 5. If D = 2, 3 we are assuming x2−Dy2 > 0, x > y

√
D, x+ y

√
D > 2y

so this case goes through as well.

c) This follows immediately from the fact that N |(P 2 −D). �

The Algorithm

We now have a closer look at the continued fractions expansion of α0 =
(P +

√
D)/Q. Setting αk+1 = (R +

√
D)/S we have

P +
√
D

Q
=
pkαk+1 + pk−1

qkαk+1 + qk−1

=

=
(Rpk + Spk−1) + pk

√
D

(Rqk + Sqk−1) + qk
√
D

=
pk

√
D + rk

qk
√
D + sk
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with

pksk − qkrk = pk(Rqk + Sqk−1)− qk(Rpk + Sqk−1)

= S(pkqk−1 − qkpk−1)

= (−1)k+1S.

From
(P +

√
D)(sk + qk

√
D) = Q(rk + pk

√
D)

the usual identification yields

sk + Pqk = Qpk,

Dqk + Psk = Dqk.

Multiplying the two equations by sk, −qk, and adding, we get

s2
k −Dq2

k = (−1)k+1QS. (∗∗)

Now if the equation x2−Dy2 = N, x, y > 0, has a proper solution belonging
to P , the solution must be of the form

x = Qpk − Pqk = sk

y = qk

according to the Lemma.

Equation (**) then tells us to look for |S| = 1 in the expansion of (P +√
D)/Q. Note that a pre-period S need not be positive.

It can then happen that

I) The pre-period produces an S, |S| = 1, and the right sign. Then we have
found a solution.

or:

II) Neither the pre-period nor the first period produces |S| = 1. Then there
are no solutions.

or:

III) The first period produces S = 1 with the right sign. Then we have found
a solution.

or:
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IV) It produces S = 1, with the wrong sign, and even period. Then there is
no solution.

or, finally,

V) The first period may give S = 1, with the wrong sign, and an odd period
length. Then the next period will give a solution.

We enter the first period as soon as we obtain a reduced quantity. We enter
the second period as soon as the first quantity of the first period is repeated.

The condition for α > 1, 0 > α′ > −1 can be stated as a number of suitable
inequalities involving only rational integers.

J.XI.2 Example. Let D = 5. Suppose 5 is a quadratic residue modulo Q.
There are only two reduced quantities of the form (R +

√
5)/S, S|(5 − R2),

namely α = 2 +
√

5, (1 +
√

5)/2. They each form a cycle of length 1, i.e.,
1/(α− bαc) = α.

Letting P 2 ≡ 5 (mod Q), and expanding (P +
√

5)/Q, we will sooner or
later land in one of the two cycles. However, as x2 − 5y2 = ±2 is impossible
(already modulo 4), we can only land in the first cycle.

If one step produces a solution for x2 − 5y2 = ±Q, the next step will give a
solution to x2 − 5y2 = ∓Q, as the period is one.

So, if 5 - Q, the Diophantine equation x2 − 5y2 = ±Q is solvable if and only
if 5 is a quadratic residue modulo Q!

Earlier exercises (p. 158) outlined a proof using Thue’s Lemma (E.I.1). �

J.XI.3 Example. Let D = 3, and Q not divisible by 3 or 2. Assume that
3 is a quadratic residue modulo Q. This means that p ≡ ±1 (mod 12) for
each prime dividing Q (exercise). Let P 2 ≡ D (mod Q).

There are exactly two reduced irrationalities (R+
√

3)/S; S|(3−R2), namely
1 +

√
3 and (1 +

√
3)/2, forming one single period. That is, if one is α, and

the other is β, then 1/(α− bαc) = β.

This means that the denominators S = 1, 2 will both appear, at the latest
when we enter the first period of (P +

√
3)/Q. One will produce a solution

to x2 − 3y2 = ±Q; the other to x2 − 3y2 = ∓2Q.

As (±Q/3) = ±(Q/3) we see that the upper signs hold if and only if Q is a
quadratic residue modulo 3. Note that we get solutions belonging to each P .
�
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J.XI.4 Example. The equations x2 − 2y2 = ±Q, Q odd, are even easier,
assuming that 2 is a quadratic residue modulo Q, i.e., that p ≡ ±1 (mod 8)
for all prime factors p|Q.

In this case there is only one admissible irrationality, 1 +
√

2, with period
one. So the algorithm will produce solutions to both equations belonging to
any P with P 2 ≡ 2 (mod Q). �

J.XI.5 Example. It could very well happen that x + Py = 0, and not
just x + Py ≡ 0 (mod Q), for some solution x, y and some P satisfying
−Q/2 < P ≤ Q/2, P 2−D ≡ 0 (mod Q). That would mean y = ±1, x = ∓P ,
as x, y are supposed to be relatively prime, that is P 2 −D = ±Q.

One example is the equation x2 − 17y2 = 19, where x = 6, y = 1 is one
solution belonging to P = −6, and 6− 6 · 1 = 0

This happens because zero is a convergent to (P+
√
D)/Q! In fact, as−1/2 <

β0 = (−6 +
√

17)/Q < 0, b0 = −1, and we get β1 = 1/(β0 + 1) < 2, b1 = 1,
hence (

q−1

p−1

)
=

(
0
1

)
,(

q0
p0

)
=

(
1
−1

)
,(

q1
p1

)
= b1

(
1
−1

)
+

(
0
1

)
=

(
1
0

)
.

The choice P = 6, gives a faster solution, x = −6, y = 1, because the floor
of (6 +

√
17)/19 equals zero. The reader might want to check that. �

J.XI.6 Example. Let us try to solve x2 − 79y2 = 97. 79 and 97 are both
prime numbers, and (79/97) = (18/79) = (2/79) = 1. The square roots of
79 modulo 97 are P ≡ ±46 (mod 97).

Expanding (46 +
√

79)/97 gives the following preperiod:

[R,S] = [46, 97] → [−46,−21] → [25, 26] → [1, 3].

We then land in a period of reduced quantities, of length 6:

[R,S] = [8, 5] → [7, 6] → [5, 9] → [4, 7] → [3, 10] → [7, 3].

No denominator has absolute value 1, hence the equation x2− 79y2 = 97 has
no solutions belonging to P = 46.
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Trying P ≡ −46 (mod 97), the pre-period again will produce nothing, and
we will then land in another cycle of length 6, and no denominator =1. If
the elements of the previous cycle are of the form α, the new cycle consists of
the various −1/α′. The reader who has written a QCF program might want
to check this. �

J.XI.7 Example. Let us try x2 − 79y2 = ±15. The square roots of 79
modulo 15 are P ≡ ±2,±7 (mod 15).

Trying P ≡ ±2 lands in the wrong cycle. P ≡ 7 is more successful; we land
in the right cycle

[7, 15] → [8, 1](→ [8, 15] → [7, 2])

right away. No computation is needed to find the solution x = 8, y = 1
to x2 − 79y2 = −15. As the period is even we will find no solutions to
x2 − 79y2 = 15. �

J.XI.8 Example. Now, let us try x2 − 79y2 = ±27 = 33. The values for P
are P ≡ ±5 (mod 27).

After the preperiod
[5, 27] → [−5, 2]

producing nothing, we again land in the right cycle,

[7, 15] → [8, 1](→ [8, 15] → [7, 2])

The convergents are easily determined:(
q−1

p−1

)
=

(
0
1

)
;

(
q0
p0

)
=

(
1
0

)
;

(
q1
p1

)
=

(
1
1

)
;

(
q2
p2

)
=

(
2
1

)
;

yielding
x = Qp2 − Pq2 = 27 · 1− 5 · 2 = 17; y = q2 = 2,

satisfying x2−79y2 = −27. As the period is even, the equation x2−79y2 = 27
is not solvable. �

J.XI.9 Example. The square roots of 34 modulo 33 are P ≡ ±1, ±10.

The equation x2−34y2 = −33 has the obvious solution x = y = 1, belonging
to P = −1.

The equation x2 − 34y2 = 33 has the less obvious solution x = 13, y = 2
belonging to P = 10 : 13 + 2 · 10 = 33.
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That may seem odd, as the period of the reduced quantity 5 +
√

34 in this
case is even, =4. However, the solution to the second equation appears only
in the preperiod of (10 +

√
34)/33, in fact, after one step. The reader may

wish to check this. �

Remark: Matthews’ Approach

We begin by recalling the notation. x, y > 0 will denote an integer solution
to x2 −Dy2 = ±Q = N . It is assumed to belong to P > 0, where P 2 ≡ D
(mod Q), and x + Py ≡ 0 (mod Q). Then also Px + Dy ≡ Px + P 2y ≡ 0
(mod Q).

Matthews’ approach starts with the following equivalence between
√
D and

(P +
√
D)/Q:

P +
√
D

Q
=

(P +
√
D)(x+ y

√
D)

Q(x+ y
√
D)

=
(x+ Py)/Q)

√
D + (Px+Dy)/Q

y
√
D + x

with determinant (x(x+Py)− y(Px+Dy))/Q = (x2−Dy2)/Q = ±1. Note
that the coefficients are indeed integers.

Then invoking our last result on equivalent irrationalities (J.IV.3) he painlessly,
without restriction on the sign of N in the case D = 2, 3, infers that the ex-
pansion of (P +

√
D)/Q leads to

√
D, and that

(x+ Py)/Q

y

is the corresponding convergent!

The significance of Matthews’ proof is that, working directly with x2−Dy2 =
N , D = 3, (i.e., not with −2N , if N < 0), we are guaranteed to find the
fundamental solution x+ y

√
D with minimal y > 0, in these cases too.

A generalization was later published in K. Matthews, “The Diophantine
equation ax2 + bxy + cy2 = N,D = b2 − 4ac > 0”, Journal de Théorie
des Nombres de Bordeaux, 14 (2002) 257-270.

It is available on the Internet at http://www.numbertheory.org/papers.

html#patz.

J.XI: Exercises
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1. Write the condition for a quadratic irrationality to be reduced as at most
four inequalitites involving rational integers. One possible extension is to
write a program determining all admissible reduced quantities (P +

√
D)/Q,

Q|(D − P 2), for a given integer D > 0, not a square.

2. If the period of a +
√

D, a = b
√

Dc, is of even length, then the same holds
for the periods of all reduced quantities (P +

√
D)/Q, Q|(D − P 2). And

conversely. Prove!

3. (Hand calculation possible).

(a) Determine the solutions to x2 − 2y2 = ±17. In particular, in either
case find those solutions for which y > 0 is minimal.

(b) Determine the solutions to x2− 3y2 = ±13 (whichever is solvable) and
x2 − 3y2 = ±26 (whichever is solvable). In particular, in either case
find those solutions for which y > 0 is minimal.

(c) Solve x2 − 3y2 = ±73,±146, knowing that 212 ≡ 3 (mod 146).

4. Suggestions for computing: If you have written a QCF routine, modify,
and extend, it to find solutions to the equations

(a)
x2 − 28y2 = ±111

knowing that 192 ≡ 28 (mod 37).

(b)
x2 − 237y2 = 1009

knowing that 6742 ≡ 237 (mod 1009). (1009 is a prime number).



Chapter K

Z[i], Other Number Rings

K.I Preparations

We prepare our discussion on unique factorization in Z[i] with a few defini-
tions. The first one should be familiar by now.

K.I.1 Definition. A number ring is a set R of complex or real num-
bers, containing zero and one, and closed under addition, subtraction and
multiplication.

Closure under the arithmetic operations simply means that they do not lead
outside the set, i.e., the sum, difference, and product of two numbers in R
belong to R.

K.I.2 Definition. A number field is a number ring F where every
non-zero element α has its multiplicative inverse 1/α in F .

K.I.3 Example. Our number fields will almost invariably be F = Q[
√
D]

or F = Q[i
√
D] where D is a positive integer, not a perfect square.

The latter type of field is often denoted F = Q[
√
−D].

291
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The elements are m+ n
√
D, m, n ∈ Q, or m+ in

√
D, respectively. Closure

under addition and subtraction are obvious. Multiplication is no big issue,
e.g., (m+ n

√
D)(s+ t

√
D) = ms+ ntD + (ns+mt)

√
D.

And the multiplicative inverse of α = m+ n
√
D 6= 0 is

α−1 = (m− n
√
D)/(m2 −Dn2).

The denominator m2−Dn2 is non-zero, cf. p. ??. Division by α is multipli-
cation by α−1. �

K.I.4 Example. Our number rings will be suitable subrings of the fields
just described. We have already encountered Z[i].

For a less obvious example, take Z[ε] where ε =(−1 + i
√

3)/2, the root to
X3 = 1 of least positive argument. The other roots are 1 and (−1−i

√
3)/2 =

ε′ = 1/ε = ε2.

As X3 − 1 = (X − 1)(X2 +X + 1) it also holds that ε2 + ε+ 1 = 0.

Closure under addition and subtraction is obvious. Let us have a closer look
at multiplication:

(m+ nε)(s+ tε) = ms+ (mt+ ns)ε+ ntε2 = (ms− nt) + (mt+ ns− nt)ε,

as ε2 + ε + 1 = 0. The crucial fact is that ε satisifies a polynomial equation
with leading coefficient 1, and all coefficients integers. It is an algebraic
integer.

In the same manner one verifies the ring property of Z[ω] = Z[(1 +
√
D)/2]

where D is an integer, positive or negative, |D| square-free (not divisible by
a square > 1) satisfying D ≡ 1 (mod 4).

The idea is the same, ω is an algebraic integer, satisfying ω2−ω+(1−D)/4 =
0.

In fact, all elements of Z[ω] are algebraic integers, and all algebraic integers
in Q[

√
D] lie in Z[ω]. Exercise.

If D 6≡ 1 (mod 4), square-free, the corresponding statement is true for the
ring Z[

√
D]. �

When discussing prime factorization in the ring Z we achieved uniqueness by
insisting on dealing only with positive numbers. Otherwise, we would have
had to take signs into account.
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When dealing with negative integers as well, the negatives of prime numbers
should be given equal status to the primes themselves. Primes and their
negatives are the irreducibles in Z; they still allow only the trivial factors
±1, ±p. And we will now have unique factorization in irreducibles, up to the
signs of the various factors.

What would the “trivial” factors be in more general number rings? What is
so trivial about ±1 is they are the invertible elements in Z, also known as
units ; in fact they are their own (multiplicative) inverses.

K.I.5 Definition. Let R be a number ring. The element α ∈ R is a
unit in (of) R if there is some β ∈ R satisfying αβ = 1.

K.I.6 Definition. Let R be a number ring. The non-unit, non-zero
element π ∈ R is irreducible in R if the relation αβ = π, α, β ∈ R,
implies that α or β is a unit.

Before we determine the units of some rings it is convenient to introduce the
norm in certain number fields.

K.I.7 Definition. Let K be a quadratic number field, i.e., K = Q[
√
D]

or K = Q[i
√
D], D positive, not a perfect square. The norm,

N(a+ b
√
D), of α = a+ b

√
D, a, b ∈ Q is the element α · α′ = a2 −Db2.

The norm of α = a+ ib
√
D, a, b ∈ Q is α · α′ = a2 +Db2.

Recall that α′ denotes a−b
√
D in the real case, and a−ib

√
D in the complex

case.

In the complex case the norm is always ≥ 0, and only 0 has zero norm. In
the real (first) case the norm can assume both positive and negative values.

But, again, only 0 is of zero norm. For, if a2 − Db2 = 0, looking at an
arbitrary prime factor p|D we get vp(D) = 2(vp(a)− vp(b)), hence all vp(D)
are even, and D would be a square, contrary to assumption.
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We have used the following multiplicativity property many times in earlier
Chapters.

K.I.8 Lemma. In any quadratic number field,

N(αβ) = N(α)N(β).

Proof.

(αβ)(αβ)′ = αβα′β′ = (αα′)(ββ′).

�

We are now ready to determine the units in a few number rings. We start
with two complex quadratic rings having more than two units.

K.I.9 Theorem. The units in R = Z[i] are ±1, ±i.

Proof. Obviously these four elements are invertible.

Assume m + ni, m, n ∈ Z invertible: (m + ni)(r + si) = 1, r, s ∈ Z. Taking
norms we get (m2 + n2)(r2 + s2) = 1 which is possible only if both norms
equal 1. This gives us m+ ni = ±1,±i as the only possible units. �

K.I.10 Theorem. Let ε = (−1+ i
√

3)/2. The units in R = Q[ε] are the
six elements ±1 ± ε, ±ε2 (the roots of X6 − 1).

Proof. We first determine the norm of m + nε in Z[i
√

3]. As m + nε =
(m − n/2) + in

√
3/2 we can rewrite the elements as (r + si

√
3)/2 where

r = 2m − n, s = n and r, s are congruent modulo 2, i.e., both even or both
odd. The norm is then (r2 + 3s2)/4 so we are to solve the Diophantine
equation r2 + 3s2 = 4. The solution r = ±2, s = 0 immediately gives the
trivial units ±1.
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Then there are the solutions r = ±1, s = ±1 (independent signs) giving the
four solutions ±(1±

√
3)/2. The solutions with r = −1 are ε, ε2; those with

r = 1 are −ε2,−ε. �

In the real number ring Z[
√
D] the units are the elements of norm +1 or −1,

i.e., the solutions to m2 −Dn2 = ±1.

We already know, from the theory of continued fractions, that there are
infinitely many units of norm +1, and we know of cases where units of norm
−1 exist, or not.

We should give a final, more exotic, example, of units in a ring.

K.I.11 Example. Let ω = (1 +
√

5)/2. Consider the number ring Z[ω].
Recall that this is a ring, as ω satisfies the equation X2 + X − 1 = 0 with
leading coefficient one.

The elements m + n(1 +
√

5)/2 are more conveniently written
(r + s

√
5)/2 where r ≡ s (mod 2). The units are the elements of norm

±1, r2 − 5s2 = ±4. The square roots of 5 modulo 4 are, trivially, P = ±1.

For −4 we immediately find the solutions (1±
√

5)/2 belonging to ±1 respec-
tively. We know from Section H.IV that we get all solutions by multiplying
each with all solutions to x2 − 5y2 = ±1. They are x+ y

√
5 =±(2 +

√
5)n,

n ∈ Z. Their number is infinite. �

We should give a name to the other trivial factor of an irreducible.

K.I.12 Definition. Two elements of a number ring R are associates if
they differ by a unit factor.

Of course, if α = δβ, δγ = 1, then β = γα, so the situation is totally
symmetric. We also see that associates are mutually divisible.

The converse is also true, for if α = δβ, β = γα, then (1 − δγ)α = 0, hence
δγ = 1.

So the only factors of an irreducible element are its associates and the units.

K.I.13 Example. We will presently determine all irreducibles in Z[i]. Here
we give just a few examples.
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A couple of examples are π = 1 + i, 4 + i, 3 + 2i, 5 + 2i, 5 + 4i having prime
norm 2, 17, 13, 29, 41. Recall that the norm is multiplicative. If π = αβ,
one of the two factors must then have norm equal to 1, i.e., one factor must
be a unit. Hence these five, and in fact all elements of prime norm, are
irreducible.

Another class of examples is represented by π = 11 of norm 112 = 121.
Again, if π = αβ, neither factor a unit, both factors must be of norm 11.
However, a norm is a sum of two squares, and 11 ≡ 3 (mod 4) is not such
a sum. Recall that this was the easy case, accessible by simple computing
modulo 4. �

K.II Unique Factorization in Z[i]

As in Z the key to unique factorization is Euclid and Bézout, so our first task
is to establish an analogue to the division algorithm in Z[i]. What should
we demand of the remainder on division of a + bi by m + ni? It should be
in some sense smaller than m+ ni, and the natural measure of its size is the
norm.

K.II.1 Theorem (Complex Division). Let a+ bi and m+ ni 6= 0 be
elements of R = Z[i]. Then there are elements p + qi, r + si ∈ R, such
that

a+ bi = (p+ qi)(m+ ni) + r + si, 0 ≤ N(r + si) < N(m+ ni).

Proof. We start by exact division in the field K = Q[i]:

a+ bi

m+ ni
= t+ ui, t, u ∈ Q.

We then replace the rational numbers t, u by the nearest integers p, q with
|p− t| ≤ 1/2, |q−u| ≤ 1/2, so that N((t+ui)− (p+ qi)) ≤ (1/2)2 +(1/2)2 =
1/2 < 1.

Setting r + si = [(t− p) + i(u− q)](m+ ni) we then have

a+ bi = (p+ qi)(m+ ni) + [(t− p) + i(u− q)](m+ ni)

= (p+ qi)(m+ ni) + (r + si)
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and

N(r + si) = N [(t− p) + i(u− q)]N(m+ ni)

≤ 1

2
N(m+ ni) < N(m+ ni).

�

Remark: Students sometimes ask how we can be so sure that the remainder
is a complex integer. By its expression it does not exactly look like one. It
is the difference of two complex integers!

K.II.2 Example. We want to divide 4 + 7i by 3 − i. The exact, rational,
quotient is (4+7i)(3+ i)/(3− i)(3+ i) = (5+25i)/10 = (1+5i)/2. Here the
real and imaginary parts sit halfway between two integers so we have four
choices of a nearest complex integer. We pick 0 + 2i, and the result is:

4 + 7i = 2i(3− i) + 2 + i,

where N(2 + i) = 5 < 10 = N(3− i). �

We now give the theory of common divisors parallelling that of Z. A greatest
common divisor would be one of greatest possible norm, but how unique is
it? We take a Bézoutian route to it.

K.II.3 Theorem (On the Greatest Common Divisor). Let the
two elements α1, α2 6= 0 in R = Z[i] be given. Then among the non-zero
elements β1α1 + β2α2, β1, β2 ∈ R there is some, δ, of smallest possible
norm.

The number δ is a common divisor of α1, α2.

Every common divisor of α1, α2 divides δ. It is therefore a common
divisor of greatest possible norm. Two such greatest common divisors
are mutually divisible, hence associates.

Proof. Only the statement in the second paragraph wants proof.

Suppose, e.g., that δ does not divide α1. Then perform the division: α1 =
κδ + ρ, with 0 ≤ N(ρ) < N(δ). But ρ is of the form α1 − κ(β1α1 + β2α2)=
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λ1α1 + λ2α2, hence of the same form as δ. As δ was chosen 6= 0, and of
minimal norm, we must have ρ = 0. �

We write δ = (α1, α2), for any greatest common divisor of α1, α2 although it
is not quite unique. For instance, (α1, α2) = 1 means that the only common
divisors in R are ±1,±i.

K.II.4 Example. We can find the greatest common divisor by Euclid, just
as in Z. Let us try (7 + 6i, 4 + 7i):

7 + 6i = 1 · (4 + 7i) + (3− i)

4 + 7i = 2i · (3− i) + (2 + i)

3− i = (1− i)(2 + i)

so (7 + 6i, 4 + 7i) = 2 + i. �

The two Divisibility Theorems for rational integers (A.II.1, A.II.2) carry over
with almost the same proofs, so we omit these.

K.II.5 Theorem (The Two Divisibility Theorems).

a) If α divides βγ, and (α, γ) = 1, then α divides β.

b) If α, β divide γ, and (α, β) = 1, then the product αβ divides γ.

�

K.II.6 Corollary. If the irreducible element π divides αβ, then it di-
vides one of the factors.

Proof. If π - α, then (π, α) = 1, hence π|β. �

An immediate induction gives
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K.II.7 Corollary. If the irreducible element π divides α1α2 · · ·αd, then
it divides one of the factors.

�

So now we can prove the existence and (in some sense) uniqueness of factor-
ization in R.

K.II.8 Theorem. Every non-zero, non-unit, element of R is a product
of irreducible elements.

Proof. Otherwise there is a counterexample α of minimal norm. It is not
irreducible, i.e., α = βγ, where neither factor is a unit, hence both factors
are of lower norm. By the choice of α they are then products of irreducibles.
But then so is their product α, contradiction. �

The next Theorem states that factorization into irreducibles is unique up to
unit factors.

K.II.9 Theorem (Unique Factorization). Suppose

α = π1 · π2 · · ·πd = ε · π′1 · π′2 · · ·π′e, d ≤ e,

where ε is a unit, the πi, π
′
j irreducible.

Then d = e, and the factors π′k may be reordered in such a way that πk

and π′k are associates.

Proof. The proof is an easy induction on d. If d =1, then obviously e = 1,
otherwise π1 would decompose into several non-unit factors.

Now for the step d − 1 → d. Suppose the Theorem already proved for
d−1 ≥ 1. As π1 divides the product in the right member, it must divide one
of the factors, say π′j, π

′
j = π1κ. As π′j is irreducible, and π1 is a non-unit, κ
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must be a unit, i.e., π1 and π′j are associates. We reorder the factors of the
right member so that new π′1 = old π′j.

We can then divide both members by π1 and move κ to the unit factor ε.

As the product of units, εκ, is a unit, the induction step goes through. �

We will refer to the above result as the Unique Factorization Property of R.

K.II.10 Example. 13 = (3 + 2i)(3 − 2i) = i(3 + 2i)(−i)(3 − 2i) =
(−2 + 3i)(−2− 3i). �

K.II.11 Example. In an earlier Example (K.II.4) we determined
(7 + 6i, 4 + 7i) = 2 + i. For hand calculation it might be more convenient
to look at the norms first: N(7 + 6i) = 85, N(4 + 7i) = 65. Any common
factor must divide the two norms, hence it must divide (85, 65) = 5. The gcd
cannot be 5 = (2 + i)(2− i) so it must be one of the two irreducible factors
2 + i or 2− i. A simple check gives 2 + i. �

We now finally determine which primes in Z are reducible or irreducible in
R.

K.II.12 Lemma. The prime number p ∈ Z is reducible in R if and only
if it is a sum of two squares, i.e., if and only if it is a norm.

Proof. One direction is immediate: If p = a2+b2, then p = (a+ib)(a−ib).

In the opposite direction, if p = (a+ bi)(c+ di), neither factor a unit, then,
taking norms, p2 = (a2 + b2)(c2 + d2). As neither factor equals one, both
must equal p. �

K.II.13 Corollary. Primes p ∈ Z, p ≡ 3 (mod 4) remain irreducible in
R.

Proof.
a2 + b2 ≡ 0, 1, or 2 (mod 4).
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�

We can now give a new proof of an old result:

K.II.14 Theorem. Primes p ≡ 1 (mod 4) are reducible in R, hence
they are sums of two squares.

Proof. As (−1/p) = 1, the congruence

x2 ≡ −1 (mod p)

is solvable. So, for some x ∈ Z, p|(x2+1) = (x+i)(x−i). If p were irreducible
it would have to divide one of the factors. This is impossible as p does not
divide the imaginary parts ±1. Hence p is reducible. �

Note that the prime 2 = (1 + i)(1− i) is also reducible.

We conclude this Section by determining all the irreducible elements of R.

K.II.15 Theorem. The irreducible elements are the associates to

a) 1 + i

b) prime numbers p ≡ 3 (mod 4)

c) a± bi where p = a2 + b2 is a prime number ≡ 1 (mod 4)

Proof. Let the irreducible be α = a + ib, of norm N = N(α) = α · α′ =
a2 + b2. The number α, being irreducible, must divide some prime factor p
of N , p = α · γ. If γ is a unit, α and p are associates, and we are in case b),
as other prime numbers are reducible.

Otherwise p2 = N(p) = N(α)·N(γ) with both factors > 1, N(α) = α·α′ = p.
If p = 2 = −i(1+i)2 = (1+i)(1−i) we are in case a), as α must be associated
to one of the two irreducible factors. If p ≡ 1 (mod 4) we are in case c). �
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K.II.16 Example (Computation of π). From Calculus the reader may
know about the series

arctanx = x− x3

3
+
x5

5
− · · · , |x| < 1

derived by expanding 1/(1+t2), |t| < 1, in a geometric series, and integrating
from 0 to x.

Actually, the series converges for x = ±1 as well, and gives the expected result
±π/4. However, it takes a greater effort to prove that sum, and convergence
is too slow to be of practical value for the computation of π.

The arctan series is a Leibniz series, i.e., it is of the form

∑
n>0

(−1)nan, a0 ≥ a1 ≥ a2 · · · ≥ an−1 ≥ an · · · → 0

Approximating the sum of such a series with a partial sum, the error is
majorized by the absolute value of the first term excluded – these facts are
proved in any serious book on Analysis. (If the an sequence is convex, i.e., if
the (positive) differences an − an+1 decrease, one can prove that the error is
minorized by half that term).

In our specific example, if the last term included is (−1)nx2n+1/(2n+ 1) the
error is ≤ |x2n+3|/(2n+ 3). So one would want to substitute as small values
as possible for x.

One way to do this is to use the identity

arctan
1

2
+ arctan

1

3
=
π

4

and substitute x = 1/2, 1/3 in the series. The identity follows directly from
(2 + i)(3 + i) = 5(1 + i) on comparing arguments.

It is natural to ask for improvements. We need identities involving products
or quotients of numbers of the form a + i resulting in an associate of 1 + i,
or an odd power.
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Let us check the factorization of some small numbers:

2 + i = 2 + i

3 + i = (1 + i)(2− i)

4 + i = 4 + i

5 + i = (1 + i)(3− 2i)

6 + i = 6 + i

7 + i = (1− i)(2 + i)2

Here we see by mere inspection that

(7 + i)(3 + i)2 = 50 · (1 + i)

whence

arctan
1

7
+ 2 arctan

1

3
=
π

4

which is a slight improvement.

The reader may enjoy writing a small program finding numbers of the form
a2 + 1 that factor over a small base consisting of 2 and a few prime numbers
p ≡ 1 (mod 4), then factoring further, and combining to produce the desired
multiples of 1± i.

The numbers a = 8, 18, 38, 57, 239, 268 will probably strike the reader as
useful. He/she will probably discard findings like (13 + i)(2 + i)(4 + i) =
85(1 + i).

�

K.II: Exercises

1. (a) Factor 12 and 6 + 8i into irreducibles in the ring Z[i] = R.

(b) Same ring. Determine the gcd g = (15, 3 + i).

(c) g as in the previous item. Find the inverse class of 66 + 171 i modulo
g in R (suitably defined).
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2. Solve, whenever possible, or prove unsolvability, in complex integers x, y:

(a) x(1 + 2i) + y(3 + i) = 1

(b) x · 2 + y(3 + i) = 1− i

(c) x(4 + i) + y(3 + 2i) = 1

3. (a) We study the residue classes m+ni+(2+2i), i.e., the sets of complex
integers m+ni+(a+ib)(2+2i), a+ib ∈ Z[i]. Show that each class has
a representative m + ni, with |m| ≤ 1,−1 ≤ n ≤ 2. Find the number
of classes.

(b) Then show that each complex integer m+ni, of odd norm, is associated
to exactly one number ≡ 1 (mod 2 + 2i).

4. Show that the equation x2 + y2 − 3t2 − 3u2 = 0 is unsolvable in integers.

5. R = Z[i].

(a) Let q be a prime number, ≡ 3 (mod 4). Show that q divides m+ in in
R if and only if q divides both m and n. Conclude that the number of
residue classes modulo q is N(q) = q2.

(b) Let p = a2 + b2 be a prime number, ≡ 1 (mod 4). Let the integer j
satisfy j2 ≡ −1 (mod p). Show that j can be chosen so that a+bj ≡ 0
(mod p).

(c) Show, using the last item, that there is a bijection between the classes
modulo p in Z and the classes modulo a + ib in R. The number of
residue classes modulo a + ib, therefore, equals p = N(a + ib).

6. A geometric (and more general) approach to the norm. Let z = a+ib, (a, b) =
1. Consider the square with vertices at 0, z, iz, (1 + i)z.

(a) Show that the area of the square is N(a + ib) = a2 + b2.

(b) Convince yourself that the number of lattice points (complex integers)
in the interior of the square, plus 0, equals the area a2 +b2. Hint: Find
a suitable set of unit squares that cover the same area.

(c) Show that every complex integer is congruent modulo z to exactly one
of the lattice points considered above. Conclude that N(z) equals the
number of residue classes modulo z.

(d) Can you modify the above proof to deal with the case (a, b) > 1 as
well?
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7. Let K denote the quadratic number field Q[
√

D], where D is a positive or
negative square-free number (i.e., not divisible by a perfect square > 1).

Show that the set of algebraic integers (p. 292) in K is the ring

(a) Z[
√

D] if D ≡ 2, 3 (mod 4).

(b) Z[(1 +
√

D)/2] if D ≡ 1 (mod 4).

8. Suggestions for computing. See the last Example above.
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K.III The Number of Representations

Assume that N admits the representation

N = x2 + y2 = (x+ iy)(x− iy)

as a sum of two squares. Recall the condition for this: primes p ≡ 3 (mod 4)
should only enter the factorization of N with even multiplicity. We now
determine the number of all representations.

As a byproduct one will be able to determine the number of proper repre-
sentations, (x, y) = 1, very quickly.

We first fix some notation. Assume that

N =
∏

1≤j≤r

p
ej

j ·
∏

1≤k≤s

qfk

k · 2g

where pj = a2
j + b2j = (aj + ibj)(aj − ibj) = πj · π′j are primes ≡ 1 (mod 4),

and qk are primes ≡ 3 (mod 4).

In Z[i] the full factorization is

N = (x+ iy)(x− iy) =
∏

1≤j≤r

(πjπ
′
j)

ej ·
∏

1≤k≤s

qfk

k · (1 + i)g(1− i)g

=
∏

1≤j≤r

(πjπ
′
j)

ej ·
∏

1≤k≤s

qfk

k · (−i)g(1 + i)2g

We first determine a complete set of non-associate x+ iy. “Complete” means
that each u + iv,N = (u + iv)(u − iv), is to be an associate to (exactly)
one member of the set. Note that within the set we do (and must) allow
conjugates.

For instance, if N = 172, then (4 + i)2 = 15 + 8i, 172 + 0i, (4− i)2 = 15− 8i
is such a complete set, and the number of representations is 4 · 3 = 12, the
factor 4 coming from the number of units.

First of all, if qd
k|(x + iy) then also qd

k|(x − iy) so x + iy and x − iy contain
the same number of qk, and we rediscover the fact that all the fk are even.

And, as 1+ i, 1− i are associates, and 1+ i|(x+ iy) if and only if 1− i|(x− iy)
we see that x+ iy and x− iy contain the same number of factors 1 + i.

As for the factors π
ej

j · π′jej we note that πd
j |x ± iy if and only if π′j

d|x ∓ iy.
Therefore we simply have the ej + 1 choices how many factors πj go into
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x+ iy and how many go into x− iy, determining the corresponding numbers
for the π′j.

Our complete set therefore has ∏
1≤j≤r

(ej + 1)

elements. We then get all possible x+ iy by multiplying these with the four
units.

We have proved:

K.III.1 Theorem. Notation as above. Assume that prime numbers
q ≡ 3 (mod 4) only enter the factorization of N with even multiplicity.

The number or representations N = x2 + y2, taking the order and sign
combinations of x, y into account, is then

4
∏

1≤j≤r

(ej + 1).

�

K.III.2 Example. N = 17 · 293 = 414613. Fixing one factor, 4 + i, of 17,
gives us the following four possibilities:

(4 + i)(5 + 2i)3 = 118 + 633i

(4 + i)(5 + 2i)2(5− 2i) = 29(4 + i)(5 + 2i) = 29(18− 14i)

(4 + i)(5 + 2i)(5− 2i)2 = 29(4 + i)(5− 2i) = 29(22− 3i)

(4 + i)(5− 2i)3 = 402− 503i

Choosing the factor 4−i leads to the conjugates of these four (in the opposite
order). Then, finally, we have the choice of four unit factors. That accounts
for the 4(1 + 1)(3 + 1) = 32 representations of N .

We easily read off the proper representations of N . They are

N = 414613 = 1182 + 6332 = 4022 + 5032.

�
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We now sketch the result on the number of proper representations of an odd
number N . We leave 2N as an exercise.

K.III.3 Theorem. Assume that N is the product

t∏
j=1

p
ej

j

of t prime powers, each prime pj ≡ 1 (mod 4). Then the number of
proper representations N = x2 + y2, (x, y) = 1, taking the order and sign
combinations of x, y into account, is 2t+2. Ignoring these, the number is
2t−1.

Proof. (sketch). Refer to the notation of the previous Theorem and its
proof. When distributing the πj, π

′
j over the factors x+ iy, x− iy the whole

power π
ej

j must go into one factor and the conjugate power into the other.
Otherwise one of them would be divisible by πj · π′j = pj, hence x, y would
have the common factor pj. So for each prime pj we have two choices which
power goes where. That gives 2t choices, all of them proper (cf. E.II.4).

Then we have counted everything twice, so there are really 2t−1 genuinely
different representations. Taking order and sign combinations into account
we have to multiply by 8, hence the number is 2t+2. �

K.IV Z[−1
2 + i

√
3

2 ]

Our next example of a quadratic number ring is Z[i
√

3]. The elements are
m + in

√
3, m, n ∈ Z and the norm is m2 + 3n2. The only elements of norm

1 are ±1, hence these are the only units.

We try to establish a division algorithm as we did for Z[i]. Just as in that
case we want to replace an exact quotient p+ iq

√
3, p, q ∈ Q by the nearest

m+in
√

3, m, n ∈ Z. But taking the norm of the difference (p−m)+i(q−n)
√

3
we only get the estimate

(p−m)2 + 3(q − n)2 ≤ (1/2)2 + 3(1/2)2 = 1,

and we need strict inequality (cf. the proof of Theorem ??).
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No use trying! If there were a division algorithm we would be able to prove
unique factorization the same way as in Z[i]. But the following is a very
simple counterexample:

4 = 2 · 2 = (1 + i
√

3)(1− i
√

3).

The numbers entering both factorizations are irreducible. As their norms
are =4, any nontrivial factor would have to have norm =2, which is clearly
impossible.

And, as the only units are ±1, the number 2 is not associated with 1 + i
√

3
or 1− i

√
3.

We are looking at the wrong ring! Look instead at R = Z[ε], where ε =
(−1 + i

√
3)/2. In that ring we have shown (1 ± i

√
3)/2 to be units, and in

this larger ring 1± i
√

3 = 2 · (1± i
√

3)/2. Hence, in R the two factorizations
differ by unit factors.

So we try to prove the existence of a division algorithm in that ring, instead.
We have shown (K.I.10) that the norm of p+ qε, p, q,∈ Q, is

(2p− q)2 + 3q2

4
=

4p2 − 4pq + 4q2

4
= p2 − pq + q2.

Let m,n be integers; then

N((p−m) + (q − n)ε) =
(2p− q + n− 2m)2 + 3(q − n)2

4
.

We first choose n so that |q − n| ≤ 1/2. We then choose m so that
|p− q/2 + n/2−m| ≤ 1/2. Then

N((p−m)+(q−n)ε) =
(2p− q + n− 2m)2 + 3(q − n)2

4
≤ 1 + 3/4

4
=

7

16
< 1.

So now the whole theory goes through, and

K.IV.1 Theorem. R has the Unique Factorization Property (cf.
K.II.9).

�



310 CHAPTER K. Z[I], OTHER NUMBER RINGS

Remark: A more direct proof would have been to look at the expression
(p−m)2− (p−m)(q−n)+ (q−n)2 and choosing m,n to be nearest integers
to p, q. This gives the inequality (p−m)2−(p−m)(q−n)+(q−n)2 ≤ 3/4. The
above procedure gives a sharper estimate and therefore covers more cases,
e.g., where 3 is replaced by 7 or 11.

The following results are analogous to those on Z[i] and admit similar proofs.

K.IV.2 Theorem. R = Z[ε], where ε = (−1 + i
√

3)/2.

a) The prime number 3 is reducible. Its factorization into irreducibles is

3 = −ε2(1− ε)2.

b) A rational prime is reducible in R if and only if it is the norm of an
element in R.

c) Primes p ≡ 2 (mod 3) remain irreducible in R.

d) Primes p ≡ 1 (mod 3) are reducible in R. They are the norms
m2 − mn + n2 of irreducible elements m + nε, or, stated differently ,
p = (m+ nε)(m+ nε′) = m2 −mn+ n2.

Proof. Part a) is a simple computation, taking into account that ε2+ε+1 =
0. The number 1− ε = (3− i

√
3)/2 is irreducible, as its norm, 3, is prime.

For part b), simply note that N(m+nε) = (m+nε)(m+nε′) = N(m+nε′),
where both factors have the same norm. So if p is a norm it is the product
of two non-unit factors.

Conversely, suppose p = α · β, where neither factor is a unit. Then N(p) =
p2 = N(α)N(β) where the factors are ordinary positive integers > 1. There-
fore p = N(α) = N(β).

For part c) we use b). If p = N(m + nε) = m2 − mn + n2 then 4p =
(2m− n)2 + 3n2. Modulo 3 we get 2 ≡ 0 or 1 (mod 3), contradiction.

For part d) we note that (−3/p) = 1 by an early Example on Quadratic
Reciprocity (Ex. D.I.13). Let x2 ≡ −3 (mod p), so that p|(x+i

√
3)(x−i

√
3).
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If p were irreducible it would have to divide x+ i
√

3 or x− i
√

3, impossible.
So p is a norm, by part b). �

And, now, in a manner very similar to Z[i] we can prove the following The-
orem.

K.IV.3 Theorem. The irreducible elements in R are the associates of

a) 1− ε = (3 + i
√

3)/2;

b) prime numbers p ≡ 2 (mod 3);

c) m + nε,m + nε′ = m + nε2, m, n ∈ Z; satisfying m2 −mn + n2 = p
where p is a prime number ≡ 1 (mod 3).

Proof. Let the irreducible be α, of norm N = N(α) = α ·α′. The number
α, being irreducible, must divide some prime factor p of N , p = α · γ. If γ is
a unit, α and p are associates, and we are in case b), as other prime numbers
are reducible.

Otherwise p2 = N(p) = N(α)·N(γ) with both factors > 1, N(α) = α·α′ = p.
If p = 3 = −ε2(1− ε)2 we are in case a). If p ≡ 1 (mod 3) we are in case c).
�

Remark: In Section E.III we proved that all primes p ≡ 1 (mod 3) can be
written in the form p = x2 + 3y2 and derived the form m2 ±mn + n2 from
that.

Going in the opposite direction is easy if n (or m) is even, n = 2s, because
then m2 − 2ms + 4s2 = (m − s)2 + 3s2. If both m and n are odd, then
m2 −mn+ n2 = ((m+ n)/2)2 + 3((m− n)/2)2 (cf. old exercise, page 20).

In the exercises you are invited to study further number rings using the
techniques just established.

K.IV: Exercises

1. The norm. Refer to the last problem on p. 304.
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We are in the ring R studied in this Section. Let z = (m+in
√

3)/2 ∈ R, with
m,n of equal parity. Form the parallellogram with vertices in 0, z, θz, (1+θ)z,
where θ = (1 + i

√
3)/2.

Relate its area, and the number of ring elements inside the parallellogram
to the norm of z, and the number of residue classes modulo z, copying the
ideas of the cited problem as closely as possible.

2. In the ring R = Z[i
√

5], show that that 2 · 3 = (1 + i
√

5)(1 − i
√

5) are two
factorizations of 6 into irreducible factors (check the norms) showing that R
does not possess the Unique Factorization Property.

3. (You may have worked this problem before, in the context of Thue’s Lemma,
E.I.1.)

(a) Let θ = (1 +
√

5)/2 and let R denote the number ring Z[θ] (check the
ring property!). Copy the theory for the ring Z[ε] as closely as possible
to show that R has the Unique Factorization Property.

(b) Let p 6= 2, 5 be a prime number representable as p = x2 + xy− y2, x, y
integers. Show that p ≡ 1 or 4 (mod 5).

(c) Show that (5/p) = 1 if and only if p ≡ 1 or 4 (mod 7). Copying the
theory for Z[ε], show that p is representable as p = x2 + xy − y2, x, y
integers (the norm in R).

(d) Conclude that p = u2 − 5v2 for suitable integers u, v. The case where
x, y are both odd is solved by setting y = x− 2z.

4. (a) Let θ = (1 + i
√

7)/2 and let R denote the number ring Z[θ] (check the
ring property!). Copy the theory for the ring Z[ε] as closely as possible
to show that R has the Unique Factorization Property.

(b) Let p 6= 2, 7 be a prime number representable as p = x2 + xy + 2y2,
x, y integers. Show that p ≡ 1, 2 or 4 (mod 7).

(c) Show that (−7/p) = 1 if and only if p ≡ 1, 2, or 4 (mod 7). Copying
the theory for Z[ε], show that p is representable as p = x2 + xy + 2y2,
x, y integers (the norm in R).

(d) Determine the parities of x, y in that representation and conclude that
p = u2 + 7v2 for suitable integers u, v.

5. An algorithm for solving x2 + xy + y2 = p, p = 3 ·n + 1, a prime. Fill in the
details, comparing to the algorithm given previously (E.I.5) for x2 + y2 = p.

First, find x, y, such that a0 = xn 6≡ 1 (mod p), b0 = yn ≡ 1 (mod p).
Using a3

0 − b3
0 ≡ 0 (mod p), prove that a2

0 + a0b0 + b2
0 = r0 · p. By division,

find A0, B0, such that A2
0 + A0B0 + B2

0 = r1r0, with r1 < r0. Prove that
a1 − b1ε = (a0 − εb0)(A0 − ε2B0)/r0 is an integral linear combination of 1
and ε, and proceed inductively from there.



Chapter L

Primality and Factorization

L.I Introduction

In this Section we present some of the primality tests and factorization meth-
ods in use up until the early 80’s. There are several reasons for presenting
these apparently outmoded algorithms.

First, they are still useful in finding small factors of a number. Second, they
are for the most part easy to program, and therefore invite some instructive
experimentation and toying with the concepts and the basic theory. Third,
several of the modern methods elaborate on the classical methods so that
the latter are still of didactical value as an introduction to the former.

The running times given should be taken with a grain of salt. For all the
examples I used a 1.83 GHz 32–bit computer, and all of the programs were
written in the high-level language Python 2.5. They would run several times
faster if written and run in C.

No serious effort was spent on optimizing the programs. While it is certainly
essential to minimize, e.g., the number of multiplications at each turn of a
loop, my main concern was the programming effort involved.

Perhaps the inclusion of the now-defunct CFRAC algorithm wants justifica-
tion. I am assuming that the reader has already devised a QCF routine and
wants to put it to further use. The least he can do is “wait-for-a square”
that requires very little additional programming.

Also, several of the techniques involved, among them Gaussian elimination

313
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mod 2, large prime variation, and the Brillhart-Morrison square-rooting pro-
cess, are essential to the Quadratic Sieve algorithm, as is the earlier discussion
on prime generation.

The early abort strategy is useful in other algorithms involving trial division
over lists, e.g., the Index Calculus algorithm (p. 100) for discrete logarithms.
Therefore, CFRAC could serve as a gentle introduction to these algorithms.
It is also easier to illustrate in small examples.

So here we are, back in the 70’s, but with the computer power of the 21st cen-
tury. Hopefully, this Chapter will urge the reader to study the comprehensive
texts listed under “Computational” in the Bibliography, and the surveys by
Montgomery and Bernstein listed in the Web section there.

L.II Special Numbers, Special Factors

Numbers of the form an ± 1 have attracted a lot of attention through the
years. In order to study them we recall the geometric sum identity:

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1).

For odd n, replacing x by −x, and multiplying by −1, we also have

xn + 1 = (x+ 1)(xn−1 − xn−2 + · · · − x+ 1).

L.II.1 Theorem. Let a, n be integers, a even, n ≥ 2. If an + 1 is a
prime, then n is a power of two.

Proof. Suppose n = t · u where u > 1 is odd. Then, putting x = at in the
last identity above, we get

an + 1 = (at)u + 1 = xu + 1 = (x+ 1)(xu−1 − xu−2 + · · · − x+ 1)

with the first factor strictly between 1 and an + 1, showing an + 1 to be
composite. Hence n has no odd factors. �
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L.II.2 Theorem. Let n, a be integers, a > 1, n ≥ 1. If (an− 1)/(a− 1)
is a prime, then n is prime, too.

Suppose n is composite, n = t · u, where t, u > 1. Then, putting x = at in
the first identity above,

an − 1

a− 1
=
xu − 1

a− 1
=
x− 1

a− 1
(xu−1 + xu−2 + · · ·+ x+ 1)

= (at−1 + at−2 + · · ·+ 1)(xu−1 + xu−2 + · · ·+ x+ 1),

showing (an − 1)/(a− 1) to be composite. Hence n is a prime. �

Numbers of the form Fn = 22n
+ 1 are known as Fermat numbers. The first

five of them, F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537, are prime
numbers. No further Fermat primes are known. We will later (L.VII.6) give
a necessary and sufficient condition for a Fermat number to be a prime.

Numbers of the form Mp = 2p−1 are known as Mersenne numbers. Numbers
of the form (10p − 1)/(10− 1) are called (decimal) repunits.

In September 2008 46 Mersenne primes were known. The prime number

243 112 609 − 1

was announced on August 23, 2008. Most prime number records have been
Mersenne primes.

The prime decimal repunits known as of this writing are those with exponents
2, 19, 23, 317, 1031. A few more repunits have been found to be ”probable”
primes.

We can say something about the possible prime factors of either kind.

L.II.3 Theorem (Factors of Mersenne Numbers). Let p ≥ 3 be a
prime, and q a prime factor of 2p− 1. Then q ≡ 1 (mod 2p), also q ≡ ±1
(mod 8).

Proof. By assumption, 2p ≡ 1 (mod q), and by Little Fermat, 2q−1 ≡ 1
(mod q). So ordq(2) divides both the prime number p and q − 1. It cannot
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be 1, so it must equal p, whence p|(q − 1), q = 1 +mp. As q and p are odd,
m must be even, m = 2k, q = 1 + 2kp.

So p divides (q − 1)/2. As 2p ≡ 1 (mod q), also 2(q−1)/2 ≡ 1 (mod q). By
Euler’s Criterion, (2/q) = 1, and by the Ergänzungssatz (D.I.11) q ≡ ±1
(mod 8). �

L.II.4 Theorem (Factors of Fermat Numbers). If
N = 22n

+ 1, n ≥ 2, and p is prime factor of N , then p ≡ 1 (mod 2n+2).

Proof. As 22n ≡ −1 (mod p), 22n+1 ≡ 1 (mod p), and 2 is the only prime
factor of 2n+1, we see that ordp(2) = 2n+1, for any prime factor p (cf. A.V.6).
By Little Fermat, this implies that p− 1 is divisible by 8, as n ≥ 2.

Further, as p ≡ 1 (mod 8), 2 must be a quadratic residue modulo p. By
Euler’s Criterion that means that ordp(2)|(p − 1)/2, so that, in fact, p ≡ 1
(mod 2n+2). �

L.II.5 Example. A simple but classic example. The factors of the Fermat
number

N = F5 = 232 + 1

must be of the form 1 + k · 128. In fact, the prime factorization is

N = 641 · 6 700 417 = (5 · 128 + 1) · (52 347 · 128 + 1).

N is a ten-digit number, accessible by trial division, to be discussed below.

A quick way to verify the factor 641 is:

641 = 24 + 54 = 5 · 27 + 1

Hence,

54 · 228 ≡ 1 (mod 641),

−24 · 228 ≡ 1 (mod 641),

232 ≡ −1 (mod 641).

�

Riesel’s book has lots of material on numbers of special algebraic forms.
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L.III Trial Division

Almost the only method that factors a number and simultaneously verifies the
primality of the factors is trial division. It is all but useless, however, when
dealing with, say, 15-16-digit-numbers composed of two primes of similar size.

Let the number be N . We set a ceiling at its square root. We then keep
dividing N by 2, 3, 6 − 1, 6 + 1, 2 · 6 − 1, 2 · 6 + 1, . . . The first time the
division leaves no remainder we have found a prime factor p. We check the
multiplicity k of p and list these numbers. Then we set N = N/pk and lower
the ceiling to the square root of that number. We continue in this manner.
When we hit the ceiling possibly one factor remains. It is determined by yet
another division.

This method verifies the primality of

N = 45122 73113

in perhaps 0.2 seconds. An 11-digit-number like

N = 4 13369 70097

requires slightly more, but well less than a second.

Factoring

N = 31 61907 57417 40159 = 39 229 207 · 806 008 537

even today takes about half a minute, way too slow!

Therefore the practical use of trial division is limited to perhaps finding the
smallest prime factors up to, say, 5 · 105 or even smaller.

If trial division is required on several numbers it might be profitable to create
a list of prime numbers once and for all, using the Sieve of Eratosthenes.

L.IV Lists of Primes

Some factoring algorithms require a list of prime numbers of moderate size.
The classical way to create such a list is the Sieve of Eratosthenes. Say we
want to list all prime numbers from 2 to 150. We start by making a list of
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all odd numbers from 3 to 149:

[3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,

33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59,

61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89,

91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119,

121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149]

Starting with the 3 in position 0 we run through the list in steps of 3 and
replace each following multiple of 3 by a zero:

[3, 5, 7, 0, 11, 13, 0, 17, 19, 0, 23, 25, 0, 29, 31,

0, 35, 37, 0, 41, 43, 0, 47, 49, 0, 53, 55, 0, 59,

61, 0, 65, 67, 0, 71, 73, 0, 77, 79, 0, 83, 85, 0, 89,

91, 0, 95, 97, 0, 101, 103, 0, 107, 109, 0, 113, 115, 0, 119,

121, 0, 125, 127, 0, 131, 133, 0, 137, 139, 0, 143, 145, 0, 149]

Next we look at the 5 in position 1, and replace the numbers 5 · 5, 7 · 5, etc.,
i.e., the numbers in positions 1+m ·5, m ≥ 2 = (5−1)/2, by zeros. We need
not look at multiples below the square, as they have already been zeroed.
The starting position for any given p in the list is (p2 − 3)/2, in this case
(52 − 3)/2 = 11.

[3, 5, 7, 0, 11, 13, 0, 17, 19, 0, 23, 0, 0, 29, 31,

0, 0, 37, 0, 41, 43, 0, 47, 49, 0, 53, 0, 0, 59,

61, 0, 0, 67, 0, 71, 73, 0, 77, 79, 0, 83, 0, 0, 89,

91, 0, 0, 97, 0, 101, 103, 0, 107, 109, 0, 113, 0, 0, 119,

121, 0, 0, 127, 0, 131, 133, 0, 137, 139, 0, 143, 0, 0, 149]

We proceed similarly with the 7 in position 2, zeroing all numbers in positions
2 +m · 7, m ≥ 3 = (7− 1)/2 (21 and 35 already zeroed):

[3, 5, 7, 0, 11, 13, 0, 17, 19, 0, 23, 0, 0, 29, 31,

0, 0, 37, 0, 41, 43, 0, 47, 0, 0, 53, 0, 0, 59,

61, 0, 0, 67, 0, 71, 73, 0, 0, 79, 0, 83, 0, 0, 89,

0, 0, 0, 97, 0, 101, 103, 0, 107, 109, 0, 113, 0, 0, 0,

121, 0, 0, 127, 0, 131, 0, 0, 137, 139, 0, 143, 0, 0, 149]
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Next in line is a zero in position 3. We simply skip that position and proceed
to the 11 in position 4. This time only the numbers 121 and 143 are zeroed.

[3, 5, 7, 0, 11, 13, 0, 17, 19, 0, 23, 0, 0, 29, 31,

0, 0, 37, 0, 41, 43, 0, 47, 0, 0, 53, 0, 0, 59,

61, 0, 0, 67, 0, 71, 73, 0, 0, 79, 0, 83, 0, 0, 89,

0, 0, 0, 97, 0, 101, 103, 0, 107, 109, 0, 113, 0, 0, 0,

0, 0, 0, 127, 0, 131, 0, 0, 137, 139, 0, 0, 0, 0, 149]

Next in line would be 13. However, 132 = 169 > 150, and we have already
zeroed all the lower multiples of 13, so we stop here. It only remains to put
in the number 2 and throw out the zeros:

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59,

61, 67, 71, 73, 79, 83, 89,

97, 101, 103, 107, 109, 113,

127, 131, 137, 139, 149]

One time- and space-saving device is to start with a list of ones, and work
with the positions rather than the numbers. Sieving will produce a list of
ones and zeros, indicating the positions of the odd primes and composites.

With limited storage one will have to sieve in blocks. For instance, my
computer readily sieves out the prime positions up to 108 in a matter of
seconds, but resists sieving out the primes beyond 3 · 107.

Here is one possible solution. Fix the upper limit = n, and a blocklength B,
say 106. Use an ordinary sieve to find all primes up to r =

√
n. Use only

these to sieve beyond that limit. Let pmax be the largest prime ≤
√
n.

Imagine the odd numbers from T = 2 + pmax to n divided into blocks, each,
except the last, of length B. We sieve each block for positions. Initialize
each block with all 1’s. After sieving, for each remaining 1 output the prime
corresponding to that position, and append it to your list, or whatever.

For each prime p you will need to know where to start sieving within a block.
Suppose its left endpoint is L, odd (it is of the form T + 2kB). It is in
position 0. Where is the nearest multiple of p located? If the position is y,
we have to solve

L+ 2y = (2m+ 1)p
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with 0 ≤ y < p, i.e., 2y = (p − L) + 2mp, y = (p − L)/2 + mp. In other
words, y is the least non-negative remainder of (p − L)/2 on division by p.
We zero the ones in positions y, y + p, y + 2p · · · < B. From one block to
the next each y is simply updated as the remainder of y − B on division by
the corresponding prime number p.

This suggestion is an adaption of algorithm 3.2.1 in Crandall-Pomerance,
designed to find primes in a given interval.

That book, and that of Bach-Shallit, suggest further improvements.

L.V Fast Exponentiation

Many tests and algorithms require the computation of high powers of some
given number modulo a positive number, an ≡? (mod m). Just multiplying
one factor at a time is far too slow. The fast algorithm to be explained can
be shown to be quadratic in (the bitlength of) the modulus, and linear in
the exponent.

It is a built-in function in Python, Maple, and Mathematica.

Say we are supposed to compute a55 (mod m). We determine the binary
representation 55 = 25 + 24 + 22 + 2 + 1 = (110111)2 (cf. Section L.XII)
which we read from left to right,

1 = 1
(11)2 = 2 · 1 + 1 = 3,

(110)2 = 2 · 3 + 0 = 6,
(1101)2 = 2 · 6 + 1 = 13,

(11011)2 = 2 · 13 + 1 = 27,
(110111)2 = 2 · 27 + 1 = 55.

Here the ones and zeros in the left members are the bits of 55.

Each step in our algorithm consists of a squaring, followed by a multiplication
by a (always a) if there is a one in the left member:

a→ a2 · a = a3 → (a3)2 · a0 = a6 →
→ (a6)2 · a = a13 → (a13)2 · a = a27 →
→ (a27)2 · a = a55.

All operations are of course to be taken modulo m.
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Another, slower, variant, proceeds from right to left: a55 = (a2)27 · a =
(a4)13 · a2 · a = (a8)6 · a4 · a2 · a = (a16)3 · a4 · a2 · a etc. Here we need
not establish the binary representation of the exponent beforehand. What is
computed at each stage is the product of all factors except the first. Each
time the base is squared.

In the last step indicated above, corresponding to a zero in the binary rep-
resentation, the base is squared, but not multiplied to the product.

A recursive variant starts with 55 = 27+28, then splits these two exponents,
and so on.

L.VI Primality: Fermat and Miller-Rabin

There are mainly two types of primality tests. Here we deal with negative,
or probabilistic, tests that declare a number either composite or probably
prime. Some prefer the term “compositeness tests”. Later we will deal with
some deterministic tests.

For numbers of some special form, e.g., Fermat or Mersenne numbers, there
are simple necessary and sufficient conditions for their primality. We will deal
with those too. The practicality of these tests when applied to very large
numbers is a different matter, of course. We start with the contrapositive to
Little Fermat:

The number N is composite if, for some a, (a,N) = 1, aN−1 6≡ 1 (mod N).

Unfortunately, there are composite numbers N such that no a, (a,N) = 1,
falsifies Little Fermat. They are known as Carmichael numbers (see p. 90).
One such number is 1729 = 7·13·19. The reason for the failure of the Fermat
test is that 7 − 1, 13 − 1, 19 − 1 all divide 1729 − 1. Therefore, if a is not
divisible by 7, 13, or 19, a1728 ≡ 1 modulo 7, 13, and 19, hence also modulo
their product.

An improvement is offered by the Miller-Rabin- test, which rests on the
following simple, but extremely useful observation:

N is certainly composite if there are x, y such that x 6≡ ±y (mod N),
but x2 ≡ y2 (mod N).

For, if N is prime, and N |(x− y)(x+ y), then N must divide one of the two
factors.



322 CHAPTER L. PRIMALITY AND FACTORIZATION

The Miller-Rabin test applies this observation for y = 1. Assuming N odd
(of course), write N − 1 = 2du where d > 0, and u is odd. We find the factor
u by repeatedly dividing N − 1 by 2, until the result is odd (division by 2 is
a shift, checking parity is a bitwise “and” with 1).

If au ≡ ±1 (mod N) no conclusion is possible.

If au 6≡ ±1 (mod N) we keep squaring. If it happens that x = a2ku 6≡ −1
(mod N) while x2 ≡ 1 (mod N), then N is composite. The same holds, of
course, if aN−1 6≡ 1 (mod N).

If N is composite, at least 3/4 of the possible a will reveal it (for the proof
see Bressoud-Wagon, Childs, Rosen). The strategy of the Miller-Rabin test
is, of course, to test several bases.

The estimate 3/4 is, on the average, very pessimistic. The analytically
minded reader will find some results in Damgard-Landrock-Pomerance: “Av-
erage Case Error for the Strong Probable Prime Test”, Mathematics of Com-
putation, Vol.61, 1993, No. 203, pp. 177-194.

L.VI.1 Example. Let us look at the Carmichael number N = 1729. We
easily find N − 1 = 26 · 27. Now

x = 254 ≡ 1065 6≡ −1 (mod 1729),

and
x2 = 2108 ≡ 1 (mod 1729).

This proves that N is composite.

We were lucky in not reaching the highest level, the Fermat test. That fact
gives us a factorization for free. From

(1065− 1)(1065 + 1) ≡ 0 (mod 1729)

we find the factors
(1064, 1729) = 133

and
(1066, 1729) = 13,

whence 1729 = 133 · 13. �

The Miller-Rabin test can fail in two ways. Either already au ≡ 1 (mod N),
or there is some k, 0 ≤ k ≤ d − 1, such that a2ku ≡ −1 (mod N). If N is
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composite, in either case we say that N is a strong pseudoprime to the base
a. Cf. the weaker concept “pseudoprime”, introduced in earlier exercises, p.
31.

If the choice of several bases a fails to expose N as composite the time is ripe
to try some deterministic test.

Prime Generation

Sometimes one wants to create large (probable) primes, e.g., for use in an
RSA cipher (see page 33). For the multipolynomial version of the Quadratic
Sieve, or for the purpose of creating examples, one may want whole lists of
moderately-sized primes.

We suggest here a number of simple algorithms for finding the smallest prime
number ≥ than a given odd integer N .

Consider the arithmetic progression N, N +2, N +4, . . . . Before subjecting
any of these numbers to a Miller-Rabin test we want to throw out those
having small factors. There are basically three strategies.

We start by creating a list of small odd primes using a basic Eratosthenes
routine. The optimal upper bound of this list depends on the number N .
It could be as low as 10 for small N (no Eratosthenes required!) or several
thousand for N with a few hundred digits.

The first strategy begins by trial-dividing the candidate N + 2 · k against
the list. As soon as we find a prime dividing N + 2 · k it is discarded. With
the bound 10 (primes 3, 5, 7) we will exclude about one half of all the odd
numbers; with the bound 1000 we will keep approximately 1/6 of them.

If N + 2 · k is not divisible by any prime in the list we apply Miller-Rabin to
it. For smaller N it seems faster to take the product P of all the primes in
the list and then compute the gcd g = (P,N + 2 · k). If g = 1 the candidate
is tested.

The second strategy is to use a sieve. We compute for each pk in the list the
least positive remainders qk of (pk−N)/2, modulo pk We decide on a sieving
interval, say from N to N + 1022; for smaller N that is more than we need,
but that seems to matter very little. We start with a list of 512 ones, and
change each of these in positions ≡ qk (mod pk) to zero. For each remaining
one, say in position j, the number N + 2 · j is tested for primality.
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Sieving seems to be fastest alternative for larger numbers.

The third strategy is to list the residues of N modulo all the pk. If at least one
of these is zero we updateN toN+2, simultaneously augmenting the residues
by 2, and reducing modulo pk (preferably by subtraction, not division). As
soon as we have created a list without zeros we continue with a Miller-Rabin
test as above.

As an indication of the significance of the parameters involved, I have ex-
perimented with the number N = b

√
10519c, a 260-digit odd number. With

primes up to 1000, after 67 trials I finally found a candidate, N + 782, that
passed the Miller-Rabin test. With primes up to 8167 (1024 primes) this
number was reduced to 50. Going up to 50 000 reduced the number of can-
didates further, to 36, but the over-all performance was slowed down by the
greater number of divisions.

Sieving, by contrast, profited from the use of more primes.

L.VI: Exercises

1. Let N = 1105. Show that N is Carmichael number (p. 90). Find the
factorization 1105− 1 = 2t · u, with u odd. Then show how to find numbers
a, b, such that aubu 6≡ a2u ≡ b2u ≡ −1 (mod 1105), and conclude that 1105
is a strong pseudoprime to the bases a, b, but not to their product.

(You may even be able to solve the resulting Chinese congruence system by
hand.)

The bases a, b are perhaps not the first ones you would try!

2. Using a powering routine of your own (or one built in your favorite program-
ming language), write a program that Miller-Rabin-tests a given number to
a given base, or a list of bases.

As a warmup, expose the numbers 7 418 629, 564 651 361 as composite. Check
that the number 25 326 001 passes the test to the bases 2, 3, 5. Also check
that N = 1502 40184 97471 76241, is a strong pseudoprime to the bases
2, 3, 4, 6 but not to the base 12.

(Miller-Rabin-testing to the base 12 will factor N , and there is a very simple
relationship between the two factors. Explore!)

3. (a) Find the smallest base exposing the number

6 85286 63395 04691 22442 23605 90273 83567 19751 08278 43866 81071

as composite.
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(b) D Bleichenbacher, who constructed this example may have wanted to
make the test look bad. The penalty for this is that the Miller-Rabin
test finds a factor (this is rare)! Does your program find it?

4. Prime power detection. Let n = pk, an odd prime power.

(a) Let a, (a, n) = 1, be an integer. Show that p|(an−1 − 1, n)

(b) If n|a2s − 1, then either n|as − 1 or n|as + 1.

(c) Assume now that n is revealed as composite by a Miller-Rabin-test,
base a. Show that g = (an−1 − 1, n) is a proper factor of n, i.e., a
factor satisfying 1 < g < n. Hint: Let n − 1 = 2t · u, u odd, and
consider the smallest f such that a2f ·u ≡ 1 (mod n).

(d) Now devise a test that with high probability determines whether the
odd number n is a prime power or not.

(e) If you want examples of (an−1 − 1, n) 6= p, try n = p3, a = 2, where
p = 1093, 3511, the two known so-called Wieferich primes, satisfying
2p−1 ≡ 1 (mod p2).

5. This exercise connects with the RSA cryptographic scheme, discussed briefly
in Section A.VI. It uses the ideas behind the Miller-Rabin Test. Let p 6= q
be two large prime integers, n = pq their product, and φ(n) = (p−1)(q−1).
Assume that d and e are inverses of one another modulo φ(n). The purpose
of the exercise is to show that with great probability the factorization n = pq
may be found from the knowledge of d and e.

(a) Let de − 1 = 2t · u, where t ≥ 1 (why?), and u odd. Assume that
au, (a, n) = 1, is of greater order modulo p than modulo q (the orders
are powers of 2, prove this). Then show that, for some s < t,

(a2s·u − 1, n) = q.

(b) We now need to prove that, for a substantial portion of the invertible
classes modulo a+(n), au has different orders modulo p and q. In fact,
at least φ(n)/2 of them have this property. Let g be a primitive root
modulo both p and q (existence by CRT, prove it). Now study the
Chinese congruence system:

a ≡

{
gx (mod p)
gy (mod q)

First, if gu is of higher order modulo p than modulo q, choosing x odd,
and y arbitrary, show that the solution a is of higher order modulo p
than modulo q.
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Next, if the two orders are the same, let x, y be of opposite parities,
but otherwise arbitrary, and show that the solution a is of different
order modulo p and q.

Now devise a probabilistic algorithm determining the factors p, q from the
knowledge of d, e.
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L.VII Lehmer, Lucas, Pocklington

We now turn to positive, or deterministic, tests. Such a test will reveal with
absolute certainty that N is prime, or it will reveal N as probably composite.
Of course, we never test for primality without doing a Miller-Rabin test first.

The following Theorem, due to French mathematician E. Lucas (1842-1891),
is the simplest converse to Little Fermat.

L.VII.1 Theorem (Primitive Root Criterion). If, for some a,

aN−1 ≡ 1 (mod N),

and, for all prime numbers q dividing N ,

a(N−1)/q 6≡ 1 (mod N),

then N is a prime, and a is a primitive root modulo N .

Proof. The assumption means that the order of a modulo N is N − 1.
That order is also a factor in φ(N), so N − 1 ≤ φ(N).

But modulo a composite number there are always non-zero non-invertible
classes, so in that case φ(N) < N − 1.

The only possibility left is that N is a prime. �

If N is really prime, then there is a 50% chance of a being a quadratic
residue modulo N . Euler’s Criterion then gives a(N−1)/2 ≡ 1 (mod N), so
quite probably the base first chosen will reveal nothing.

L.VII.2 Example. We exemplify with

N = 1 02233 38353 29657

Here is the result of the test, using the base 3. The Fermat test is superfluous
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if the number has already been subjected to the Miller-Rabin test.

N − 1 = 2 · 2 957 · 146 063 · 295 877

3N−1 ≡ 1 (mod N)

3(N−1)/2 ≡ 1 02233 38353 29656 (mod N)

3(N−1)/2957 ≡ 32422 47673 63906 (mod N)

3(N−1)/146063 ≡ 69730 26463 21792 (mod N)

3(N−1)/295877 ≡ 73678 57524 08036 (mod N)

All the results, except the first, being 6≡ 1 (mod N), this proves N prime.

The factors of N−1 were found by trial division, which should really be com-
bined with some other method. Determining the primality of N by complete
trial division is slower, but feasible. �

Here is a variant due to H.C. Pocklington (1870-1952).

L.VII.3 Theorem (Pocklington). Let p be a prime factor of N , and
q one of N − 1, vq(N − 1) = k, so that qk|(N − 1). If, for some a,

(a(N−1)/q − 1, N) = 1,

and
aN−1 ≡ 1 (mod N),

then p ≡ 1 (mod qk).

If q is not too small, we might use trial division, over the sparse sequence
1 +m · qk, m ≥ 1, in order to determine the primality of N . The larger q is,
the fewer divisions will be required.

If q >
√
N no division at all is required! In that case, all prime factors of N

must be larger than its square root, which is possible only if N is a prime
number.

Further, one could lump together several of the q (all taken with their proper
multiplicity) satisfying the conditions of the Theorem, possibly with different
bases, thus producing an even sparser sequence.
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And, again, if their product exceeds
√
N , we have proved the primality of

N .

We will give a more systematic approach later, in Example L.IX.3.

Here is the proof of the Theorem:

Proof. The second part of the assumption means that

ordp(a)|(N − 1).

The first part of the assumption implies that

p - a(N−1)/q − 1 so that ordp(a) -
N − 1

q
.

We spell things out. Write d =ordp(a) = q` ·s, N −1 = qk · t, where q divides
neither s nor t. Then d|(N − 1) gives ` ≤ k, s|t, and d - (N − 1)/q gives
` 6≤ k− 1. Hence ` = k, so that the full power qk dividing N − 1 must divide
ordp(a).

By Little Fermat we conclude that qk| ordp(a)|(p− 1). �

L.VII.4 Example. Just to illustrate what the Theorem says, we take the
following example:

N = 61 89700 19642 69013 74495 62111.

Luckily, N − 1 has many small prime factors, and easily cracks on trial
division:

N − 1 = 2 · 3 · 5 · 17 · 23 · 89 · 353 · 397 · 683 · 2113 · 29315 42417

Note that the largest prime factor q is much smaller than the square root of
N :

b
√
Nc = 2487 91080 95803.

We cannot use the base 2, as

2(N−1)/q ≡ 1 (mod N).

In fact, this relation holds for all the prime factors, except 89 (which happens
to be the order of 2 modulo N).
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So we test the base 3:

m = 3(N−1)/q − 1 ≡ 18 05910 65836 31708 35540 66745 (mod N) (∗)

and, indeed,
(m,N) = 1.

The possible factors therefore are of the form 1 + k · q, where we need only
look at 1 < 1 + k · q <

√
N , i.e., 0 < k ≤ 8486. Trialdividing against these

candidates reveals N to be prime in no time at all.

We could have done without trial division by verifying (*) for the three
largest prime factors 683, 2113, 29315 42417, the product of which exceeds
the square root of N . The base 3 works for all three of them. �

L.VII.5 Example. We have mentioned Mersenne numbers (L.II.3) like

N = 2127 − 1

(note that 127 is a prime). Later we will give a necessery and sufficient
condition for their primality. Let us see how Pocklington applies to this
number.

It is easy to find all factors of N − 1 below a million, by trial division. Their
product is

Q = 2 · 33 · 72 · 19 · 43 · 73 · 127 · 337 · 5419 · 92 737 · 649 657.

Removing all factors ≤ 73 we still get

P = 127 · 337 · 5419 · 92 737 · 649 657 >
√
N.

Here we give the results of a computer run using the base 3. Base 2 does not
work at all.

base= 3

prime factors to be used are

[649657, 92737, 5419, 337, 127, 73, 43, 19, 7, 3, 2]

fermat test: 3 **(N-1)=1 modulo N

factor= 649657 , multiplicity= 1

acc. product= 649657

power= 3 **((N-1)/ 649657 )=

53406944723912930814563848724821333530 modulo N

gcd(power-1,N)= 1
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factor= 92737 , multiplicity= 1

acc. product= 60247241209

power= 3 **((N-1)/ 92737 )=

150550836351600033767904108065981737908 modulo N

gcd(power-1,N)= 1

factor= 5419 , multiplicity= 1

acc. product= 326479800111571

power= 3 **((N-1)/ 5419 )=

26695659649525653566430798996420549056 modulo N

gcd(power-1,N)= 1

factor= 337 , multiplicity= 1

acc. product= 110023692637599427

power= 3 **((N-1)/ 337 )=

95859789961691791874930359127846942304 modulo N

gcd(power-1,N)= 1

factor= 127 , multiplicity= 1

acc. product= 13973008964975127229

power= 3 **((N-1)/ 127 )=

1237940039285380274899124224 modulo N

gcd(power-1,N)= 1

acc. product now exceeds sqrt(N)

The Primitive Root Criterion could also be put to work. One has the choice
of stepping up the base from 2 and upwards, until a primitive root is found,
or finding candidates by a random process. In this case the latter approach
would probably be faster, as the least positive primitive root is 43.

The original test, by E Lucas, is based on the factorization of N + 1, which
is not that hard to determine. See the end of the Chapter, L.XV. �

Remark: Dividing out the prime factors of N − 1 = 2127 − 2 that we found,
leaves the quotient M = 771586 73929. We easily see that it is less than the
square of the last prime factor that we found, q = 649 657 (q2 > 1011 > M).

But this means that M cannot be composite, as all of its prime factors must
be larger than q. So, without further effort, we find the complete factorization
of N .

This idea is also exploited in the so-called “large prime variation” of the
Continued Fractions and Quadratic Sieve methods, for factoring.

Our next Example is elevated to the status of a Theorem.
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L.VII.6 Theorem (Pépin’s Test for Fermat Numbers). Let N be
the Fermat number

Fm = 22m

+ 1, m ≥ 1.

Then N is a prime if and only if

3(N−1)/2 ≡ −1 (mod N).

Proof. For the “if” part we note that q = 2 is the only prime factor of
N − 1, that 22m|(N − 1), and that (N − 1)/2 >

√
N . The condition of the

Theorem yields that

(3(N−1)/2 − 1, N) = (−2, N) = 1,

which proves the “if” part.

The “only if” part follows at once from Euler’s Criterion and the simple fact
that ( 3

N

)
=

(22m
+ 1

3

)
=

(2

3

)
= −1.

�

L.VII.7 Example. The only known Fermat primes so far are Fk, 0 ≤ k ≤ 4:
3, 5, 17, 257, 65537. The smallest composite Fk is N = F5 = 232 + 1 =
28633 11531, as we have seen above. For that number,

3(N−1)/2 ≡ 10 324 303 6≡ −1 (mod N).

Fermat numbers are a popular testing ground for factorization algorithms.�

Proth’s test gives a primality criterion for another restricted class of numbers:

L.VII.8 Theorem (Proth’s Test). Let N = k · 2m + 1, m ≥ 1, where
k is odd, and k < 2m. Suppose, for some base a, that

a(N−1)/2 ≡ −1 (mod N).

Then N is a prime.
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Proof. Again (a(N−1)/2 − 1, N) = (−2, N) = 1, and 2m >
√
N , yielding

the result. �

Proth’s test reveals nothing if N is prime and a is a quadratic residue modulo
N . In that case

a(N−1)/2 ≡ +1 (mod N)

by Euler’s Criterion.

If, however,
a(N−1)/2 6≡ ±1 (mod N),

then, of course, N is composite.

A variant, then, is the folllowing:

L.VII.9 Theorem. Assumptions as in the previous Theorem. Suppose
the Jacobi symbol ( a

N

)
= −1.

Then N is prime if and only if

a(N−1)/2 ≡ −1 (mod N).

The proof is really the same as for Pépin’s test. �

Trial and error will produce an a satisfying( a

N

)
6= 1

in a very short time.

L.VII: Exercises

1. Using little more than fast powering and a gcd routine, verify (interactively)
that the following numbers are primes:

(a) 1 + 2 · 3 · 5278

(b) 934(2127 − 1) + 1
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(c) N = 180 · (2127 − 1)2 + 1 (a 78 digit number).

In the last two examples, assume known that 2127 − 1 is a prime.

2. By a combination of Miller-Rabin and Proth tests, determine which of the
following numbers are prime:

(a) 199 · 2854 + 1

(b) 409 116 489 · 287 + 1

(c) 1 205 1351 · 296 + 1
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L.VIII Factoring: Pollard p− 1

We now turn to factoring algorithms, and begin with one by British math-
ematician J. Pollard, from the early 70’s. Its historic importance is that it
inspired the powerful Elliptic Curves Method of factorization. It is therefore
given in all texts as an introduction to the ideas of the latter algorithm.

Suppose the number N to be factored has a prime factor p, such that all the
prime factors of p− 1 are small. p− 1 then divides k!, k! = (p− 1)q, where
k is not too large. By Little Fermat we get, for a such that p - a,

ak! = (ap−1)q ≡ 1 (mod p)

so that
(ak! − 1, N) ≥ p > 1.

With luck we get a factor < N .

One can make this procedure more efficient by instead taking inductively
the lcm M(k) of all numbers up to k. If k + 1 is not a prime power, then
M(k + 1) = M(k). If k + 1 is a prime power pd then M(k + 1) = pM(k).

A more direct approach to this variant, perhaps easier to program, would be
to create a prime list up to a suitable limit B, using Eratosthenes. Then for
each prime q ≤ B determine the highest power qe ≤ B2. Then we take one
prime q at a time and raise our base to the power q e times.

To save time one does not compute the gcd at every turn of the loop, but
does so at intervals, e.g., at every 100 turns of the loop.

A simple variant of the p− 1 method inputs a list of bases a, the number to
be factored, N , a period for taking gcd’s (see the previous paragraph), and
a ceiling for k, indicating when to change the base.

L.VIII.1 Example. Let N = 540143. We compute b = 26! ≡ 518 077
(mod N), however (b− 1, N) = 1. Next turn is b = 27! ≡ 167 138 (mod N),
giving (b− 1, N) = 421 and N = 421 · 1283. �

L.VIII.2 Example. The p−1-method, with base 2, cannot handle 14 111 =
p · q = 103 · 137.

This is because p− 1 and q − 1 have the same largest prime factor, 17, and
the orders of 2 modulo 103 and 137 are 51 and 68, both divisible by 17. So
the lowest k giving

(2k! − 1, N) > 1,
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is k = 17. And then
N |2k! − 1,

as both 51 and 68 divide 17!.

The probability for something similar happening for large N is negligible.
Also, really small factors should be found by trial-division before attempting
anything else. �

L.VIII.3 Example. Factoring

N = 83910 72126 67598 13859 = 45456 46757 · 1 84595 78087,

using the base 2, and a gcd-period of 100, takes little more than a second on
my machine, in fact much less, when using the lcm approach. This is because
one of the prime factors minus one has small prime factors:

45456 46757− 1 = 22 · 7 · 8837 · 18371.

N = 31 61907 57417 40159 = 806 008 537 ·39 229 207 takes longer. Here is the
reason:

806 008 537− 1 = 2 · 3 · 3 731 521,

39 229 207− 1 = 2 · 3 · 6 538 201.

Using the naive k! approach is at least ten times slower than using a prime
list as indicated above.

There are further improvements (“phase two”, “stage two”) see, e.g., Crandall-
Pomerance. Without these refinements, the Pollard rho algorithm, to be
presented below, usually wins. �

L.IX Factoring, Pollard rho

The rho method, another invention of Pollard’s, is very easy to program. It
does not depend on exponentiations, but does require Euclid. Each turn of
the loop requires three polynomial evaluations, and half of the values are
computed twice, a waste we can live with. Richard Brent has proposed a
variant avoiding this, see the end of this Section.

N is the number we want to factor. The number p is an unknown prime fac-
tor, e.g., the smallest one. We already know, by a Miller-Rabin test (Section
L.VI), that N is composite.
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We try to create a sequence of numbers x0, x1, x2, . . . which appears to ex-
hibit a random distribution modulo N , such that eventually two of them are
congruent modulo p. One does this by repeated application of a simple poly-
nomial function f – often f(X) = X2 + c, c 6= 0,−2, or f(X) = X2 +X + 1
will do the trick. The optimal number of iterations is some moderate multiple
of N1/4, which we set as the ceiling for the number of turns of the loop.

We then choose some x0 and form x0, x1 = f(x0), x2 = f(x1), . . .

If xj − xi ≡ 0 (mod p) then also f(xj) − f(xi) ≡ 0 (mod p). Therefore it
seems reasonable to form x2k − xk so that the distance keeps increasing. So
we work with the two sequences xk, yk = x2k in parallel, which means three
evaluations for each iteration, as the y-sequence is updated twice.

In our quest for factors, at each turn of the loop we compute the gcd d =
(x2k−xk, N) and output d,N/d if i d 6= 1, N (and then Miller-Rabin-test the
factors and continue). If we do not achieve a factorization before hitting the
ceiling we repeat with a different function. A recursive program (starting by
trialdividing out all factors below, say, 104) will handle at least any 30-digit
number in a few minutes, with reasonable confidence. The worst case is a
number composed of two primes of similar size.

This particular iteration scheme is due to the American computer scientist
Robert Floyd (1936-2001).

L.IX.1 Example. N = 540143.

Using f(x) = x2 + 1 and x0 = y0 = 1 we get

x1 = 2, y1 = 5, (5− 2, N) = 1

x2 = 5, y2 = 677, (677− 5, N) = 1

x3 = 26, y3 = 455 057, (455 057− 26, N) = 1

. . .

x24 = 26 630, y24 = 174 822, y24 − x24 = 148 192, (148 192, N) = 421.

�

One should not take gcd’s at every turn of the loop. Better to assign a
period and multiply that number of differences (modulo N , of course) before
taking the gcd. In order not to miss small factors, we trial-divide as already
mentioned.

The optimal period would depend on the expected number of iterations.
Already a period of 100 makes the time spent on Euclid relatively negligible.
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L.IX.2 Example. In the Sections on trial division and Pollard p−1 we stud-
ied the factorization of the number N = 31 61907 57417 40159 = 39 229 207 ·
806 008 537, Using f(X) = X2 +X + 1, x0 = 1, gives a factorization within
a fraction of a second. Taking gcd’s at intervals of 100 speeds things up by
a factor 10.

Using f(X) = X2 + 1, x0 = 1, is about 8 times as slow. The performance
may vary greatly and unpredictably with the choice of the iterating function
f . �

The expected number of iterations lies somewhere around a moderate multi-
ple of the square root of the smallest prime factor, assuming random behavior.

Suppose we randomly pick one out of p objects numbered 0, 1, . . . , p− 1. (In
our application the objects are the classes modulo the smallest prime factor
p.) Suppose we do so m times, repeats allowed.

For each j, 0 ≤ j ≤ p − 1, we let Xj denote the stochastic variable defined
by Xj = 1 if the j:th element is picked at least once, Xj = 0 otherwise.

Consider the sum
X = X0 +X1 + · · ·+Xp−1.

X = k if k different objects are picked. The expected number q(m, p) of
different outcomes on m trials therefore equals the expected value of X.

The expectation of any Xj obviously equals the probability that element j
is picked. The probability that it is not picked is (1− 1/p)m, the probability
that it is picked therefore equals 1−(1−1/p)m. From this we see, by summing
the expectations, that

q(m, p) = p ·
(

1− (1− 1

p
)m

)
.

Applying Taylor’s Theorem to f(x) = (1 + x)m gives

f(x) = 1 +mx+
m(m− 1)

2
x2 + error

where the absolute value of the error term is less than m(m−1)(m−2)|x|3/6.

Substituting x = −1/p we obtain the following approximation for q(m, p) :

q(m, p) = m− m(m− 1)

2p
+ error
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with error term less than m(m− 1)(m− 2)/(6p2). So q(m, p) is less than m
by a couple of units if m is a small multiple of

√
p, in other words, for such

a choice of m the expected number of repeats is positive.

More on this topic, with explicit calculations of probabilities can be found in
elementary textbooks on probability, under the heading “birthday paradox”.

Brent’s Modification

We give here a modified approach by Australian mathematician R Brent
(1946-). Let the iterates be xm, yn. We update m,n and x, y according to
the following scheme:

(m,n) =(1,2)

(2,4)

(4, 7), (4,8)

(8, 13), (8, 14), (8, 15), (8,16)

(16, 25), (16, 26), (16, 27), (16, 28), (16, 29), (16, 30), (16, 31), (16,32)

. . .

The number of pairs in each row is a power of 2. Note how the index difference
increases by one unit in each step, and only y is iterated on. Try to see the
whole of the pattern before reading further.

One could program this scheme as follows. Initialize m = 1, n = 2, and
the iterates x = x1 (input value) and y = x2 = f(x1). Suppose we have
reached (m,n) = (2k−1, 2k), x = xm, y = yn. We then put r = n, x = y, n =
m + n + 1, and y is iterated on m + 1 times. Then put m = r, and iterate
on y, update n, until n = 2 ·m = 2k+1. Simultaneously form the differences
x−y and multiply them to the product. Take gcd’s at intervals, as indicated
above.

Clearly higher iterates will be formed than with the Floyd method, but there
will be fewer evaluations, about 2/3 as many. The actual gain in speed is
about 20 − 25%. Riesel’s book discusses the mathematics involved in this
estimate, at least for f(X) = X2 + a.

L.IX.3 Example (A Pratt Certificate). Wishing once to factor the re-
punit (1041 − 1)/9 completely, I trial divided to the limit 106 (again, we
should really combine this with some other factoring method) and Miller-
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Rabin-tested (to several bases) the cofactor:

1041 − 1

9
= 83 · 1231 · 53897 · 20176 37099 00322 80374 86579 42361.

Here the large cofactor N is a strongly suspected prime. We need to know
with absolute certainty that it is prime. Hoping to expose it with Pockling-
ton’s method (L.VII.3) I tried to factor N−1, again trialdividing to the limit
106, and Miller-Rabin-testing the cofactor:

N − 1 = 23 · 3 · 5 · 11 · 41 · 9661 · 3 85889 69828 15807 76323.

The cofactor M = 3 85889 69828 15807 76323 is again a strong suspect, and
is subjected to the same procedure:

M − 1 = 2 · 13 · 947 · 15 67255 69929 97351.

This time a Miller-Rabin test shows that the large cofactor

L = 15 67255 69929 97351

is composite. Pollard rho finds the factors L = 271 58563 ·5770 76077. These
factors are so small that full trial division will expose their primality. If
instead we stick to trialdividing only up to 106, we find 271 58562 = 2 ·32 ·19 ·
79411 and 5770 76077−1 = 22 ·34 ·17 81099, with 1781099−1 = 2·11·19·4261.

I could now work from the bottom up, verifying the primality of
1718099, 577076077, 27158563, L, M, and, finally, N , using Pocklington. Ob-
viously this test lends itself splendidly to recursive programming.

Note that one need not really use all prime factors of N − 1. For instance,
we can always exclude the factor 2.

In our example, the smallest base b for which

(b(N−1)/2 − 1, N) = 1

is 19 (a primitive root, in fact), and we do not need that step at all.

One could of course work with the factors of N −1 in descending order, until
their product exceeds

√
N . Problems arise, of course, when the second largest

prime factor is so large that we cannot even achieve a tentative factorization.

This certification scheme due to V. Pratt, combines equally well with the
Primitive Root Test. The primality proof achieved goes under the name of
Pratt certificate. �
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L.IX: Exercises

1. (H W Lenstra, J Pintz, W L Steiger, E Szemeredi). Prove the following
statements.

(a) Suppose n is a positive integer satisfying n ≤ 33m. If there is a positive
integer a such that

a3m ≡ 1 (mod n), (a3m−1 − 1, n) = 1,

then n is a prime or a product of two primes ≡ 1 (mod 3m).

(b) Suppose n = (x · 3m + 1)(y · 3m + 1) ≤ 33m and

n = A · 32m + B · 3m + 1, 0 < A < 3m, 0 < B ≤ 3m.

Then xy = A, x + y = B.

(c) Suppose n = A · 32m + B · 3m + 1, 0 < A < 3m, 0 < B ≤ 3m. Then n
is a prime if and only if

i. there is a positive integer a such that

a3m ≡ 1 (mod n), (a3m−1 − 1, n) = 1,

and
ii. B2 − 4A is a square

Hint: (X − x)(X − y) = X2 − (x + y)X + xy.

2. Use the rho method with f(X) = X2 + 1 to factorize

(a) 36563 94819 17866 84703 into two factors, and

(b) 3245 64576 76789 98977 into three. Miller-Rabin-test the factors to sev-
eral bases (if you have a program for complete trial division, you can
use that as a deterministic primality test.)

3. A more ambitious project would be to write a full recursive factoring pro-
gram trialdividing out the factors below 105 or 104, then using rho to find
further factors, returning a full set of Miller-Rabin-tested factors. Ideally,
if running too long, it should output the factors it found, along with the
cofactor, certified to be composite.

Your program should be able to handle

(a) 526 31814 39815 23188 28920 59893

(b) 12051351 · 296 + 1

(c) 2109 − 255 + 1
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(d) (1037 − 1)/9

(e) (1047 − 1)/9

(f) 2136 + 1

(g) 593 + 1

(h) 34 56456 45675 75787 68689 79790 808113

(i) 3225 − 1 (This one will take some time, possibly 15 minutes).

4. The performance of the rho method varies greatly with the input. The same
holds for the p−1 method of the previous section, but, as indicated there, for
other reasons. You may enjoy writing a similar program as in the previous
exercise and testing the same numbers.

A number that p− 1, but not rho, will easily crack is 1053− 1. Find, and at
least Miller-Rabin-test, the factors. Then use that same program to explain
the success of the p− 1 method.

5. A natural continuation of the previous exercises would be to find Pratt
certificates for the large factors.

6. You may also like to try the Fermat number F8 = 228
+1 which was cracked

in 1980, by Brent and Pollard, using a somewhat special iteration function,
x210

+ 1, and initial value x0 = 3. You can find the explanation in Riesel’s
book or in the original article, “Factorization of the Eighth Fermat Number”,
Mathematics of Computation, Vol. 36, No. 154, (Apr., 1981), pp. 627-630.

Today, a standard rho routine will find two factors, P,Q (in about twice
the time). Surprisingly, even the larger factor Q (62 digits) can be Pratt-
certified in “reasonable” time, a couple of minutes. The smaller factor P
can (today) be certified by full trial division.

You may then be able to explain Brent and Pollard’s conclusion: “I am
now entirely persuaded to employ the method, a handy trick, on gigantic
composite numbers”.

Needless to say, perhaps, modern factorization routines and primality tests
crack F8 in just a second or two. You should not try this exercise on a slow
computer. If you wish to try F7 = 227

+ 1 you should definitely use the
special iteration function f(x) = x29

+ 1, intitial value x0 = 3, which runs
about six times as fast as a standard iteration.

Brent-Pollard’s general idea was to use the iteration function xm + 1 if the
required prime factors were known to be congruent to 1 modulo m.

7. Further suggestions for computing:

(a) Find primitive roots for some of the primes p you have encountered.
Their computation relies on fast exponentiation (Section L.V) and fac-
toring p− 1.
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(b) A possible extension then is computing Discrete Logarithms, using,
preferably, Pohlig-Hellman plus rho, as described in Section C.VII.
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L.X “Waiting For a Square”

We now look at the crudest algorithm using continued fractions. Expanding√
N , using the QCF (Section H.I), leads to the following relations:

p2
k −Nq2

k = (−1)k+1Qk+1,

where pk, qk are steadily increasing, and 0 < Qk+1 < 2
√
N .

For some even k + 1 it might occur that Qk+1 is a perfect square =R2, say.
It then holds that N |(pk −R)(pk +R). With bad luck one factor is divisible
by N , otherwise one of the gcd’s (pk − R,N) and (pk + R,N) produces a
genuine factor of N .

If we are unlucky we continue until we register success. Perhaps one should
have a ceiling for the number of iterations; some moderate multiple of N1/4

will usually do.

L.X.1 Example. We have tried trial division, Pollard p − 1, and Pollard
rho on the number 31 61907 57417 40159. The method just described cracks
that number in less than 0.1 seconds, after 7294 iterations, using not much
more than 20 lines of code.

The right member Qk+1 is 33 235 225 = 57652 = R2. The corresponding pk

(reduced modulo N of course) is 18 92398 34711 35378. And we get:

(pk +R,N) = 806 008 537,

(pk −R,N) = 39 229 207.

�

Note that only the pk, not the qk, need be computed. And one should perhaps
reduce them to their least absolute value remainders.

The reasonable range for this method seems to be up to about 25 digits.

L.X.2 Example. Unlike our previous examples, the following,

N = 203 80237 72101 12418 68065 58119

= 14060 51123 · 20292 56729 · 714 284 357

has three prime factors. The rho method finds the factors about 10 times as
fast as “wait for a square” (using a gcd-period of 100). The main gain is in
finding the first factor.
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The reason is that Pollard rho is more sensitive to the size of the smallest
prime factor. For a given iteration function, and initial value, the number of
steps producing a certain factor depends only on that factor. The time spent
on each step depends on the cofactor, however. �

For larger numbers one may have to write a routine for finding the floor of a
square root.

Morrison-Brillhart, who published the CFRAC method in 1975, suggest a
Newton method. Start with some a0 >

√
N , for instance,

a0 = 2bB(N)/2c+1,

where B(N) is the number of bits in N . Then iterate:

an+1 =
⌊
(an + bN

an

c)/2
⌋
.

As soon as a2
n < N , or as soon as an+1 >= an, we have found b

√
Nc = an.

Some of the drawbacks of this method should be evident. The pk are very
soon of the same order as N . It may be long before a square turns up
– maybe never! We are dependent on a fairly long period. For instance,
Fermat numbers are of the form n2 + 1 having the shortest possible period,
one!

A partial solution is multipliers, expanding
√
kN for several low values of k.

The method will rapidly detect a square, as that leads to division by zero:

0 = b
√
Nc =

√
N = α0

α1 =
1

α0 − a0

=
1

0
.

It will not factor the cube of a prime p ≥ 5. Suppose p2
k−p3q2

k = Qk+1 = R2.
If we achieve a factorization, then p must divide both pk −R and pk +R.

Hence p must divide their difference, 2R, i.e., p must divide R. But then, by
the standard inequality Qk < 2

√
D, 2

√
p3 > R2 ≥ p2, i.e., p < 4, impossible.
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L.X: Exercises

1. If you have already written a QCF routine, use “Wait for a Square” to factor
the numbers

(a) 36563 94819 17866 84703

(b) 5038 40507 49619 52087 41373

(c) 35419 05253 35205 94597 94529

(On the last number, Pollard rho will be much slower).

You should at least Miller-Rabin-test the factors. However, they are so small
that full trial division will expose their primality in reasonable time.
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L.XI CFRAC

The idea behind CFRAC, published in the early 70’s, is one does not wait
for squares, one creates them.

We start by creating a list of primes, by Eratosthenes. We have checked that
the number to be factored, N is composite, after extracting small factors,
using trial division and/or the Pollard methods. N is odd, of course.

Note that p2
k − Nq2

k = (−1)k+1Qk+1, (pk, qk) = 1; so if p is an odd prime
factor of Qk+1, we must have (N/p) = 1. We therefore throw out all the odd
primes for which N is not a quadratic residue. We augment the list by the
sign −1.

Then we run QCF. Each (−1)k+1Qk+1, k odd or even, is trialdivided against
the factor base. If (−1)k+1Qk+1 factors completely, the exponents (taken
modulo 2) are stored in one list each, for every successful Qk+1. The exponent
of −1 will be 1, if k is even, 0, if k is odd. At the same time the Qk+1 and
pk are listed.

By Gaussian elimination mod 2 (to be explained in Section L.XII) we find a
complete set of independent relations modulo 2 among the exponent vectors.
For each relation we multiply those (−1)k+1Qk+1 whose exponent vectors
enter the relation with coefficient 1. The product of these will be a square.
At the same time we multiply the corresponding pk.

We call the resulting products Q = R2, and p. Multiplying the relations

p2
k −Nq2

k = (−1)k+1Qk+1, p2
k ≡ (−1)k+1Qk+1

shows that
p2 ≡ R2 (mod N),

and one can only hope that (p+R,N) or (p−R,N) produces a non-trivial
factor of N (it suffices to study one of them).

This method was first used with success by Brillhart and Morrison, in 1970,
to factor F7 = 2128 +1, a 39-digit number. They used a multiplier, 257, after
some experimentation, to get a reasonably long period, and an optimal factor
base. The factorization took several hours. Note that, unlike Pollard rho,
the CFRAC method is insensitive to the size of the smallest prime factor.

The prime factorization of F7 is

59 64958 91274 97217 · 57 04689 20068 51290 54721.
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A modern algorithm, run on a modern computer, finds the factors in less
than a second.

There are a number of refinements.

One is “early abort”. The bigger the factor base, the more Qk’s factor over
it. However, expanding the factor base also means that many unsuccessful
factoring attempts last longer. The strategy then is to interrupt trial divisions
that seem to last too long. At one or two cuts of the factor base one checks
whether the unfactored portion of Qk exceeds a prescribed fraction of 2

√
N .

If so, the factoring process is interrupted and the next Qk is examined.

Another is “large prime variation” . If a number fails to factor completely
over the factor base, the remaining factor R is seen to be a prime number if
it is less than the square p2

max of the last prime of the factor base.

It is then saved. If Qk and Ql, l > k, have R as their largest prime divisor,
then QkQl/R

2 factors over the factor base. At the same time we have to
match this with pkpl ·R−1 (mod N).

(One will actually have to lower the limit quite a bit below p2
max, to increase

the frequency of repeats. A moderate multiple kpmax, say 100 ≤ k ≤ 200,
seems to work well).

If m > 1 different Qk contain the same large prime factor R, then m − 1
factorizations are created.

The inversion and division step in the next to last paragraph, although often
indicated in the literature, is not really needed.

Fix the first Qk having the large prime factor R. Consider each succeeding
Ql having that same large prime factor R. Q′

l = QkQl is then of the form
Q′′

lR
2 where Q′′

l factors over the factor base. Knowing the exponent vectors of
Qk, Ql (ignoring the large prime factor R) we add these to get the exponent
vector of Q′′

l

We then find the relations between the exponent vectors of the Q’s after
replacing each of the Ql by Q′′

l .

Finally , for each relation (modulo 2) between the exponent vectors, multiply
the Q’s entering the relation, with each of the Ql replaced by Q′

l, and extract
the square root of that product (which is a perfect square, by construction).
That can be done using an algorithm by Brillhart and Morrison to be pre-
sented later. In this procedure we can determining the exponents modulo 2
right away when trial dividing, at the cost of having to keep the Q’s.
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An alternative is to sum the corresponding nonreduced exponent vectors and
halve the sum, much as in the Example below.

The result is then matched against the product of the p’s with each pl replaced
by pkpl. This variant appears to be slower.

Including a large prime variation in a CFRAC program requires a great deal
of extra programming effort, including a sort. One stores triples consisting
of Qk, preceded by their factor lists (headed by the large prime or 1), and
the corresponding pk. The triples are sorted, and collisions of first elements
> 1 (the large prime) are handled as indicated above.

More details can be found in Riesel.

Finally, there are faster alternatives to the standard Gaussian algorithm for
determining the dependencies, requiring, however, a much greater program-
ming effort. These are of even greater importance in the more modern algo-
rithms, such as the Quadratic and Number Field Sieves.

Without any of these refinements the reasonable range for using CFRAC
(as a pastime) seems to be up to 35 digits. It has been supplanted by the
Quadratic Sieve.

L.XI.1 Example. We illustrate a simple variant of the method on N =
12007001 (cf. the discussion in Riesel’s book). Like most didactical examples
it is really too small to illustrate the advantages of CFRAC over, e.g., trial
division.

We use a factor base of nine elements, -1, and the eight smallest primes such
that (N/p) = 1. The base is

−1, 2, 5, 23, 31, 43, 53, 59, 61.

We run QCF and make lists of the 10 first k, pk, (−1)k+1Qk+1, such that
(−1)k+1Qk+1 factors completely over the factor base. The pk are reduced
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modulo N. We arrive at the following table:

k pk ±Qk+1

5 2 228 067 40
9 668 093 1475

17 20 400
20 10 806 646 −976
23 7 209 052 2360
26 11 477 859 −155
27 6 764 708 2048
29 10 273 669 4000
31 4 333 614 1891
32 7 018 490 −2440

The matrix of exponent vectors, written as a list of lists, is

[[0, 3, 1, 0, 0, 0, 0, 0, 0],

[0, 0, 2, 0, 0, 0, 0, 1, 0],

[0, 4, 2, 0, 0, 0, 0, 0, 0],

[1, 4, 0, 0, 0, 0, 0, 0, 1],

[0, 3, 1, 0, 0, 0, 0, 1, 0],

[1, 0, 1, 0, 1, 0, 0, 0, 0],

[0, 11, 0, 0, 0, 0, 0, 0, 0],

[0, 5, 3, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0, 1],

[1, 3, 1, 0, 0, 0, 0, 0, 1]]

For instance, −976 = (−1) ·24 ·61, accounting for the fourth row. The matrix
is typically sparse.

Gaussian elimination produces the following five (not just one!) linear rela-
tions (modulo 2) among the exponent vectors:

[[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],

[1, 1, 0, 0, 1, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 0, 0, 1, 0, 0],

[1, 0, 0, 1, 0, 1, 1, 0, 1, 0],

[1, 0, 0, 1, 0, 0, 0, 0, 0, 1]]
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The single 1 in the first relation reflects the fact that the corresponding
Q = 400 is a square.

Let us have a closer look at the fourth relation. Numbering from 0 to 9,
it expresses that the product of number 0,3,5,6,8 of the ±Q above is a
perfect square. Indeed, the sum of the corresponding exponent vectors is
[2, 18, 2, 0, 2, 0, 0, 0, 2] with all exponents even. Halving them gives

[1, 9, 1, 0, 1, 0, 0, 1].

Ignoring the sign (the first component) we see that Q = R2 where R =
29 · 5 · 31 · 61 = 4840960.

The product of the corresponding pk is

p ≡ 2 228 067·10 806 646·11 477 859·6 764 708·4 333 614 ≡ 10 842 960 (mod N).

A little bit of Euclid then yields the (prime) factors

(p±R,N) = 3001, 4001,

and, indeed, N = 3001 · 4001.

The other four relations turn out to lead to only the trivial factors, on taking
the gcd’s.

We are still in the range where wait-for-a-square is faster (trial division is
faster yet). The first square Q2k is Q68 = 1024 = 322 and the corresponding
p67 is ≡ 11 238 777 (mod N), and (11 238 777− 32, N) = 3001, (11 238 777 +
32, N) = 4001.

The period of
√
N , should you wonder, is 870. �

L.XI.2 Example. We sketch here Brillhart-Morrison’s alternative method
for finding the (modular) square root of a product, known to be a square. It
is useful also in the context of the Quadratic Sieve.

Suppose the product is Q1Q2 · · ·Qn. Suppose, for k < n, we have achieved
the factorization Q1Q2 · · ·Qk = d1d2 · · · dke

2 where di|Qi, i = 1, 2, . . . k and
are relatively prime in pairs (initially, Q1 = Q1 · 1).

We store r = d1d2 · · · dk, the “reduced product”, and e, the “free factor”
(reduced modulo N). We find the gcd, g = (r,Qk+1).

g contributes the factor g2 to the total product, and is therefore multiplied
to the free factor. It has the form g = d′′1d

′′
2 · · · d′′k, where d′′i divides di;

di = d′id
′′
i , i = 1, 2, . . . k.
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The quotient dk+1 = Qk+1/g is relatively prime to r/g, which now has the
form d′1d

′
2 · · · d′k. We have achieved

Q1Q2 · · ·Qk+1 = (d′1d
′
2 · · · d′k · dk+1)(ge)

2

where the factor in the first pair of parentheses is our new reduced product,
and the product ge is our new free factor (to be reduced modulo N).

When k + 1 = n, the reduced product must itself be a a square, since the
whole product is, by assumption, The final step is to multiply its square root
to the free factor, modulo N .

In the Example above, the factors are 40, 976, 155, 2048, 1891. The first gcd
is (40, 976) = 8, giving our first reduced product = 5 · 122 = 610, and free
factor = 8.

Next, (610, 155) = 5, so our new reduced product is (610/5) ·(155/5) = 3782,
and the new free factor is 5 · 8 = 40.

We now look at the fourth factor, 2048. This time we get (3782, 2048) = 2,
new reduced product 1891 · 1024 = 1936384, and free factor 2 · 40 = 80.

The last factor is 1891, (1 936 384, 1 891) = 1 891, giving the reduced product
1 936 384/1891 = 1024 and free factor 1891 · 80 = 151280. 1024 = 322 so the
desired square root is 32 · 151 280 = 4 840 960.

�

L.XI.3 Example. The following example

N = 6589 68977 39494 03132 93285 74193 88201

has 34 digits. The factorization is

N = 474 64739 77078 59989 · 13 88333 69903 04709.

Using a very simple program, and a factor base of 300 primes, led to 21
relations, (the typical proportion seems to be 5-10% of the length of the
factor base).

Typically (for the case of two prime divisors), about half of them, 11 to be
exact, led to factorizations. For, e.g., three primes, a greater portion factors,
and generally, any factorization will occur.

The whole process took me 267 seconds, 0.12 of which were spent on row
reduction. In the example above, I also tried a smaller base, of 200 primes,
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looking for 200+a few extra factorizations (the extras are usually not neces-
sary, the system will be singular anyway).

That choice cut the running time by 50 seconds. A simple early abort stategy,
stopping at the 50th prime, if the unfactored portion exceeded 2

√
N/100, cut

the time by another 75 seconds.

I have also tried a crude large prime variant, with a factor base of 100 primes
bringing the running time down to 80 seconds.

A more sophisticated program combines the two tricks. With the same basis,
moving the cut down to 15th prime, and lowering the limit for the unfactored
portion to 2

√
N/500, I brought the running time down to 40 seconds (for

larger numbers, the divisor 1000 seems more appropriate). Introducing cuts
at the 10th and 30th primes, with divisors 500 and 105 brought the running
time down to 20 seconds. Clearly, early aborts produce great effects given
the scant extra programming effort.

My method of dealing with the large primes was to set a negative number
of extras, extra= −k · L, where k lies somewhere between 0.4 and 0.6. The
desirable number of factorizations was set to L+extra. The large prime
limit was set at 200 times the largest prime in the factor base, and should
possibly be set lower for a number this size. Each time a large prime was
detected the variable extra, hence also the target number of factorizations,
was augmented by one. The number of large primes in this case was around
1000, and there were about 75 repeats, yielding enough factorizations.

Denoting by FF the number of full factorizations over the factor base, and
FL the number of factorizations including a large prime, a more orthodox
procedure is to go on factoring until FF + k · FL exceeds the size of the
factor base. k is a constant < 1, something like 0.6− 0.7 will do.

The number 257 ·F7 = 257 · (2128 + 1) is a historically interesting example as
it was first cracked using CFRAC (the multiplier 257, found by experimen-
tation, was introduced in order to achieve a reasonably long period).

Using a base of 200 primes and large prime variation with −120 “extras”,
my program ran for about 15 minutes, a 50% improvement over the basic
algorithm.

An early abort at the 15th prime, with divisor 1000 took 5 minutes off that.
A second cut, at the 50th prime, with divisor 106, produced an even more
drastic reduction, to less than 4 minutes.
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Keeping the first divisor, raising the second one to 4 · 107, and moving the
cuts back to positions 10 and 30, reduced the running time even further, to
138 seconds. I have not made any further experiments on numbers of this
size.

S Wagstaff and C Pomerance experimented a lot with these parameters in
the 80’s, but with much larger numbers and on a base of 959 primes. They
recommended a second cut at the 95th prime, with divisor 4 · 107.

These running times are not very impressive in comparison with newer meth-
ods. There are more devices for speeding up a CFRAC program. However,
given the greater efficiency of the newer methods, it is doubtful whether
anyone would like to spend his energy on such efforts. Already a single-
polynomial Quadratic Sieve, without large prime variation, is as fast, or even
faster than CFRAC when we go beyond 35 digits.

A simple Elliptic Curves program of mine, comprising maybe 120 lines of
code, cracks F7 in a second. That method , like Pollard rho, is sensitive to
the size of the smallest prime factor, which in this case has 17 decimal digits.

CFRAC was developed and implemented by Brillhart and Morrison in 1970.
Their original article, “A Method of Factoring and the Factorization of F7”
was published in Mathematics of Computation, Vol. 29, No. 129, Jan., 1975,
pp. 183-205, and is yet today a very delightful and historically interesting
read.

�

L.XII Elimination Modulo 2

Here we exemplify a standard algorithm for Gaussian elimination modulo 2.

We want to determine the dependencies among the rows of the matrix

1 1 0
1 0 1
0 0 1
1 1 1

We want to eliminate from right to left. Therefore we augment the matrix
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by an identity matrix to the left :

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 0 1
0 0 0 1 1 1 1

From elementary Linear Algebra you will recall that the elimination process
creates zero rows to the right of the vertical line. The rows to the left of the
zero rows will then give a complete set of linear relations among the the rows
– they record the total row operation that produced the zero row.

“Complete” means every linear relation is a (unique) linear combination of
these rows.

Looking at the last column we already have a zero in the first position. In
the next position there is a one, and adding that row to the two rows below
it creates zeros in their places:

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 1 1 0 1 0 0
0 1 0 1 0 1 0

We now delete the row we used, and the last column:

1 0 0 0 1 1
0 1 1 0 1 0
0 1 0 1 0 1

Next we add the first row to the third:

1 0 0 0 1 1
0 1 1 0 1 0
1 1 0 1 1 0

Again we delete the row we used, and the last column:

0 1 1 0 1
1 1 0 1 1

Finally we add the first row to the second:

0 1 1 0 1
1 0 1 1 0
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Deleting the first row, and the last column now leaves us with the coefficients
of the relations between the four rows:

1 0 1 1

Each row in the matrix is a list (or whatever) of binary numbers that happen
to equal 0 or 1, with lots of zero bits. The procedure is made more efficient
by converting the list of binary numbers to one number, or one string of bits,
using the shift and “bitwise or” operators. In Python the construction might
look like this:

def pack(v):

n=0L

for k in v:

n=(n<<1)|k

return n

where v is the list representing a row in the matrix. The shift, <<, represents
multiplication by 2, and the “or” operator (the vertical) adds in the bit k to
the last place of n.

It pays to work in blocks by shifting n to the left (n << 32) repeatedly and
packing segments of 32 elements of the list v. An alternative is to pack into
several 32-bit words, and do the elimination in blocks.

The list of the four given rows will look like this on the screen, in decimal
notation:

[6, 5, 1, 7].

Augmenting to the left with an identity matrix will look like adding 64 =
26, 32 = 25, 16, 8 to these numbers. The 2-powers are represented by left
shifts of 1. The additions again are “bitwise or” operators.

The additions modulo 2 used in creating zeros are bitwise exclusive-or oper-
ators. Deletion of a zero column is division by two, represented by a shift
operator (the routine can be arranged so as to save these shifts for last).

The “unpacking” is executed by “bitwise and” and shifts. In Python it might
look like:

def unpack(n):

v=[]
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while n>0:

v=v.append(n&1)

n=n>>1

v.reverse()

return v

v is a list, and we start with an empty list. The “and” operation reduces n
modulo 2, i.e., it extracts the last bit from n, and the result is included in
the list. The shift represents the removal of that bit.

If the number is very large, as may happen in other contexts, the conversion
will have to be performed in blocks of, say, 32 bits. A “bitwise and” with
232−1 = 4294967295 isolates the last 32 bits, a 32-fold shift, n >> 32, throws
them away. (A really fast solution uses Python’s built-in function hex.)

In a simple CFRAC program, the elimination modulo 2 contributes perhaps
one half of the code and a tiny portion of the execution time!

L.XII: Exercises

1. (a) If you can muster the energy to write a full CFRAC program, you
might like to try (1037− 1)/9, although CFRAC is slower than Pollard
rho in this case (why?).
Another test example is

10 11220 07784 34797 33361 71115 62199.

The optimal size of the factor base seems to lie somewhere around 100.
Experiment! (Pollard rho will crack it, too, but more slowly).
Miller-Rabin-test the factors.

(b) If you Miller-Rabin-tested (p. 325) the number

6 85286 63395 04691 22442 23605 90273 83567 19751 08278 43866 81071,

and found a factor, CFRAC will crack the cofactor in reasonable time.
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L.XIII Quadratic Sieve

Orientation

The most important modern factoring algorithms are the Elliptic Curves
Method (ECM), the Multiple Polynomial Quadratic Sieve (MPQS), and the
Number Field Sieve (NFS). Of these the first and the third depend on exten-
sive theoretical preparations beyond the scope of this text. The Quadratic
Sieve is very elementary in comparison. The analysis of its performance is
less elementary, of course.

NFS is responsible for some recent spectacular factoring records, although
its practicality has been questioned. ECM is best suited for finding prime
factors of 20-30 digits, even in very large numbers. It is remarkable in its
minimal storage requirements and the modest programming effort that goes
into it.

As an introduction to the full Quadratic Sieve algorithm, as described in,
e.g., Crandall-Pomerance, I will first outline a simple version of the single
polynomial Quadratic Sieve. Even in this simple form, requiring a few pages
of code, the QS outdoes CFRAC (even with large prime variation and early
aborts) at least from 35 digits upwards. It is not nearly as fast as the MPQS
or ECM, but it will crack 40-digit numbers while you check your email and
45-digit numbers while you prepare a meal.

The number we wish to factor is denoted N . It is odd and has been proven
composite. By trivial division (up to, say, 5 · 105 ) and, e.g., a standard rho
routine (with, say, 106 turns of the loop) we have removed all smaller factors,
perhaps up to 10 digits. A more serious program would remove even larger
factors, using the ECM.

We let m denote the floor of
√
N . We will use a sieving polynomial f(X) =

(X+m)2−N . We are looking for X-values in a symmetric interval |X| ≤M ,
M much smaller than m (the sieving interval), for which f(X) factors over a
factor base. Such a base consists of the sign −1 and prime numbers p below
a prescribed smoothness bound B. Of these we need only keep the prime 2
(if N ≡ 1 (mod 8)) and those odd p for which (N/p) = 1, of course.

The factorizations determine exponent vectors modulo 2. By Gaussian elim-
ination we can find combinations of vectors that sum to zero modulo 2.
Multiplying the corresponding polynomial values f(X) on the one hand, and
the corresponding (X +m)2 on the other hand, we arrive at congruences of
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the form a2 ≡ b2 (mod N). Hopefully one or both of the gcd’s (a± b,N) will
then reveal a proper factor of N .

The product a of the X +m modulo N is easy to determine if we store the
(X + m)-values in a list as we go along. Storing the corresponding f(X)-
values, and using Brillhart–Morrison’s algorithm, we find the value for b.

We cannot afford to trial-divide all the values of f(X) over the factor base.
We must have some crude method of selection of the X to try.

The basic idea, soon to be modified, is the following. For each prime p there
are two square-roots of N modulo p. Let us call them ±r. For each number
of the form X = k · p± r in the sieving interval the prime number p divides
f(X). If we start with a list of ones we could multiply in those factors p in
their respective locations. Doing this for all p, we would find which f(X)
factor completely.

There is however one error and several flaws in this procedure. We are
forgetting multiple factors – small primes frequently are. For instance, if
N ≡ 1 (mod 8), half of the values are divisible by 8. Sieving over small
primes is also very time-consuming. It is furthermore too time-consuming
to compute all the polynomial values. The modified idea is to first find out
which polynomial values are reasonably close to factoring, and only then
perform the trial division.

In dealing with approximations we also replace multiplication by the faster
operation addition, i.e., we work with (approximate) logarithms, e.g., the
integers closest to the various 2-logarithms. I found it expedient to exclude
several small primes, when sieving.

Also we do not check whether the logarithms, in the location corresponding
toX, sum approximately to log(|f(X)|). Instead we choose a constant target,
the log of the average of |f(X)|. As m2 approximates N , and X2 is small
compared to N , |(X + m)2 − N | ≈ |2mX|, the average of which is mM .
Our target is therefore taken as an approximation of log(m) + log(M) ≈
log(N)/2 + log(M).

We will have to subtract a small error term d to compensate for the fact that
we leave out small primes and ignore prime powers. In case we introduce the
large prime variation, described in the context of CFRAC, a common choice
is to subtract d = 2 · pmax where pmax] is the largest prime of the factor base.

Those X that produce a sum of logarithms exceeding log(N)/2+ log(M)−d
are those for which we trialdivide f(X) over the factor base. That saves a lot
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of work. Only perhaps a few hundred values in a million are tested – or even
computed! – and a substantial portion of these yield full factorizations. This
portion will depend on details of the program, such as the choice of error
term and the number of primes (or prime powers!) excluded from sieving.

With limited storage we are forced to work in blocks, i.e., we process intervals
of a given length L, from the center outwards: [0, L) [−L, 0), [L, 2L) . . . . On
my machine the ideal seems to be L = 106.

The number of blocks need not be specified in the single polynomial version;
we could check the accumulated number of exponent vectors after each block
and quit sieving as soon as it exceeds the size F of the factor base (in all my
runs 0.97 ∗ F sufficed).

With large prime variation it is not quite that easy. We must attach some
weight to the number of large prime factorizations as we did with the CFRAC,
and go on sieving until the weighted sum exceeds the length of the factor
base (or slightly less). A suggestion of Silverman’s is to stop when FF +(1−
R)FL > R· the length of the factor base, where R is slightly less than 1, say
R = 0.96. FF again denotes the number of fully factored polynomial values,
FL the number of those values including one large prime outside the factor
base.

For 39 digits the expected number of blocks is maybe 100, for 49 digits
several thousand –working with multiple polynomials reduces the sieving
interval drastically. The smoothness bound could be 45 000-50 000 for 39-
40 digits, maybe 110 000-120 000 for 45-46 digits. These bounds are again
smaller in the full multiple polynomial algorithm, and smaller yet with large
prime variation - which in this case requires more storage than in CFRAC.
The elimination stage is also more of an issue in QS as the factor bases for
numbers of a given size are much larger.

If the quantities a + b, a − b, hence also a, b, have an odd prime factor in
common it must belong to the factor base. As we have already weeded out
small factors this means that QS will never crack a prime power. If you get
100 relations in the elimination step and none of them leads to a factorization
you will know why. Should you enter a square (prime or not), your factor
base would be about twice the expected size. It would probably make some
of your parameter choices far from optimal.

But a serious factoring program should check this pathology at the beginning.
The Newton procedure we have explained earlier for finding the floor of a
square root, is easily modified to find exact square roots, cubic roots, etc.
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Multiple Polynomials

Anyone who has written a basic QS program will have noticed how the num-
ber of fully factored reports diminish as we travel away from the origin.
Peter Montgomery’s ingenious idea was to introduce several sieving polyno-
mials of the form (aX + b)2 −N , and sieve each over a shorter interval. By
choosing a, b so that a | (b2 −N), the polynomial can be written in the form
a(aX2 + 2bX + c) = ag(X), i.e., all its values are divisible by a.

By a skillful choice of a we can achieve that the values of g(X) are on the
average of the same magnitude as those of (X + m)2 − N , or even slightly
smaller. We assume 0 < b < a/2. Then the minimum of ag(X) is close
to X = 0, so we sieve over a symmetric interval, |X| ≤ M . The minimum
value is −N . The greatest values are assumed at the endpoints, and are
approximately a2M2−N . It is reasonable to make these two equal in absolute
value, i.e., a2M2 ≈ 2N, a ≈

√
2N/M . The approximate maximum of |g(X)|

is N/a ≈M
√
N/
√

2.

Classical MPQS now chooses a to be the square of a prime number q. b is then
to be taken as a square root of N modulo q2, available by, e.g. Berlekamp
(+Hensel), or the Lucas sequences to be introduced in the next Section. The
square rooting routine can be avoided by choosing q ≡ 3 (mod 4). In that
case the solution to x2 ≡ b (mod q) is, as we have noted before, x ≡ ±b(q+1)/4

(mod q).

There are two roots between 0 and a and we can choose the one closest to
0. q can be generated by the methods introduced earlier. Note that we need
not determine c = (b2 −N)/a.

The sieving proceeds much as in the single polynomial case, only we have to
the factor a into account when trial dividing. Also, the average of |g(X)| is
more like

√
2NM/3. Note that the factor base is the same as in the single

polynomial case – we are looking for primes p that divide (aX + b)2 − N ,
hence we still require that (N/p) = 1.

The most time-consuming step when initializing a new polynomial is to invert
a modulo each prime p in the factor base (or at least those used in sieving)
so as to determine the roots of ag(X) modulo p. The square roots of N
modulo p are computed at the beginning of the program and reused when
determining the roots of a new sieving polynomial.

The extra effort in expanding a single polynomial routine to one using mul-
tiple polynomials is surprisingly small, especially in comparison with large
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prime variation. One should attempt the former first, as it brings down the
length of the lists involved.

The‘self-intializing” QS, known as SIQS, chooses a to be the product of
several prime numbers in the factor base. If a is composed of 5 prime factors,
say, there are 32 square roots b of N modulo a, but as ±b yield the same
polynomial values we keep only half of them. Nonetheless, that means that
we need only one inversion step to produce the roots of 16 polynomials, which
is a considerable saving when factoring large numbers.

For very clear accounts of the details I refer to Bressoud and Crandall-
Pomerance (the Quadratic Sieve is Pomerance’s invention). The latter book
also explains SIQS.

A very full, practical, account of SIQS is Scott Contini’s MSc thesis, down-
loadable from his website, http://www.crypto-world.com/Contini.html.

The QS originated with Pomerance. Multiple polynomials is Peter Mont-
gomery’s idea. The classical reference is Robert D Silverman: “The Multi-
ple Polynomial Quadratic Sieve”, Mathematics of Computation, 48, No 177
(1987), 329-339.

A reader with experience in the C programming language might enjoy study-
ing the code in http://www.friedspace.com/QS/ (by William Hart, 28
pages) or http://www.boo.net/∼jasonp/qs.html (by Jason Papadoupolos,
99 pages).

L.XIV Lucas Sequences and Primality

Some earlier methods have relied on factoring N − 1 easily. Maybe we do
not get enough factors that way. Then perhaps N + 1 might prove more
successful. The tool is Lucas sequences. For more details on these, see the
books by Riesel and Bressoud-Wagon.

We study the linear recurrence

Sn+2 − PSn+1 +QSn = 0; n ≥ 0; S0, S1 given.

P,Q are integers. A popular choice is P = Q = 5 or P = 1, Q = ±2,±3, . . .
– the theoretical reason for this is explained in Bressoud-Wagon.

The sequence S0, S1, S2, . . . then also consists of integers, uniquely deter-
mined by the conditions. We will consider the same sequence taken modulo
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the odd number N , the primality of which we wish to investigate. It has
already been subjected to a Miller-Rabin test, of course.

We let p denote an arbitrary prime factor of N . We hope to prove that
p = N .

The recurrence may be written in matrix form:(
Sn+2

Sn+1

)
=

(
P −Q
1 0

) (
Sn+1

Sn

)
= M

(
Sn+1

Sn

)
whence: (

Sn+1

Sn

)
= Mn

(
S1

S0

)
.

For n fixed we easily find Sn modulo a given positive integer, using binary
exponentiation of the matrix M . Another, more efficient, scheme will be
presented in the last Section.

Now assume that the discriminant D = P 2 − 4Q satisfies (D/N) = −1.
Then also (D/p) = −1 for some prime factor p|N . Of course, D is then not
a perfect square in itself. We further assume that (N,Q) = 1, so that Q is
invertible modulo N , and also, a fortiori, modulo every prime factor of N .

The roots of the quadratic equation

X2 − PX +Q = 0

are then the irrational numbers

a =
P +

√
D

2
, b = a′ =

P −
√
D

2

(note that 2 is invertible modulo N).

The sequences Sn = an, bn, satisfy the recurrence, e.g.,

an+2 − Pan+1 +Qan = an(a2 − Pa+Q) = 0,

and so do all linear combinations of the two sequences.

We will concentrate on two special solution sequences,

Un =
an − bn

a− b
, Vn = an + bn.

Their initial values are U0 = 0, U1 = 1 and V0 = 1 + 1 = 2, V1 = a+ b = P .
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From the identity

2(an+1 − bn+1) = (a+ b)(an − bn) + (a− b)(an + bn)

we conclude (dividing by a− b) that

2Un+1 = PUn + Vn.

Another useful formula is the doubling formula:

U2n = UnVn,

which follows directly from the conjugate rule

a2n − b2n = (an − bn)(an + bn),

again by division.

Now suppose Un ≡ 0, Un+1 ≡ m (mod N), where m is some integer. That
is m times the initial values U0 ≡ 0, U1 ≡ 1 (mod N). This means that
the sequence will repeat from n on, but multiplied by m. Hence also U2n =
U3n = · · · = 0.

There is a shortest period k > 0 satisfying U0 = Uk = U2k = · · · = 0. We
now prove that every other period is a multiple of k.

L.XIV.1 Lemma. Let M > 0 be a positive modulus, satisfying
(Q,M) = 1. Let further k be the smallest positive index for which
Uk ≡ 0 (mod M), and n > 0 an arbitrary index satisfying Un ≡ 0
(mod M). Then k divides n.

Proof. We first note that if two irrationalities of the form r+ s
√
D, r, s ∈

Z, are (componentwise) divisible by M , then so is their product.

We next recall that ab = Q, so the invertibility of Q entails that of a and b
modulo M .

We then have the following equivalence:

Un ≡ 0 (mod M) ⇐⇒ an ≡ bn (mod M)

⇐⇒ a2n ≡ (ab)n = Qn (mod M),
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where we get from the rightmost member to the middle member on multipli-
cation by the the inverse to an modulo M . And from the first to the second
on multiplication by a− b =

√
D.

Letting QR ≡ 1 (mod M), and multiplying the last congruence by Rn, we
get

Un ≡ 0 (mod M) ⇐⇒ (a2R)n ≡ 1 (mod M).

k is by assumption the least n > 0 having that property. Hence it is the order
of a2R modulo M , and the Lemma follows by the general theory of orders of
invertible classes, (A.V.5), readily generalizable to this case (exercise!). �

The number k is not the period of the sequence Un, properly speaking, only
of the zeros appearing in it. Bressoud calls it the “rank” of the U -sequence.

Now consider the sequence taken modulo p, where p is a prime number such
that (D/p) = −1. We will need to generalize Little Fermat. First we state
yet another version of “Freshman’s Dream”.

We let x and y denote integers or quadratic irrationalities of the form

c+ d
√
D,

where c = r/s, d = t/u are rational numbers, with r, u relatively prime to
p, hence invertible modulo p. Hence it is meaningful to speak of r/s, t/u
modulo p. Then:

L.XIV.2 Lemma (Freshman’s Dream).

(x+ y)p ≡ xp + yp (mod p).

�

We are still assuming that D is not a quadratic residue modulo p, hence
not a perfect square. We will use the first part of the following Corollary to
Freshman’s Dream. Applied to the situation above, and the two roots a, b,
it implies ap ≡ b, bp ≡ a (mod p).

L.XIV.3 Corollary.(D
p

)
= −1 ⇒ (c+ d

√
D)p ≡ c− d

√
D (mod p),
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(D
p

)
= 1 ⇒ (c+ d

√
D)p ≡ c+ d

√
D (mod p).

Proof.

(c+ d
√
D)p ≡ cp + dpD(p−1)/2

√
D ≡ cp + dp

(D
p

)√
D ≡ c+ d

(D
p

)√
D

Here we used Euler’s Criterion and Little Fermat. �

With our previous notation, and the chosen p, it then holds that

Up ≡
ap − bp

a− b
≡ b− a

a− b
≡ −1 (mod p),

and

Up+1 ≡
ap+1 − bp+1

a− b

≡ a · b− b · a
a− b

≡ 0 (mod p).

This shows that Uk ≡ 0 (mod p) occurs with period p+1 or a factor of p+1,
if (D/p) = −1, and with period p− 1, or a factor of p− 1, otherwise.

So at least we have a pseudoprime test:

L.XIV.4 Theorem. Assumptions and notation as above. If

UN+1 6≡ 0 (mod N),

then N is composite.

L.XIV.5 Example. N = 450 74455 37641. With P = 1, Q = 3, D = −11,
(D/N) = −1) one obtains UN+1 ≡ 72 44374 53394 6≡ 0 (mod N), and N is
composite. It is a Carmichael number (cf. p. 90), N = pqr = 9091 · 18181 ·
27271, with p− 1, q− 1, r− 1 dividing N − 1, resisting a simple Fermat test.
(Note that the factors are of the form t+ 1, 2t+ 1, 3t+ 1.) �
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One can prove the following sufficient condition for primality, in analogy
with the Primitive Root test (L.VII.1):

L.XIV.6 Theorem. Assumptions as above. Suppose UN+1 ≡ 0
(mod N), but U(N+1)/q 6≡ 0 (mod N) for each prime factor q|(N + 1).
Then N is prime.

�

The proof depends on an investigation into the relevant analogue of
Carmichael’s λ function (C.V.3), the maximal order function ω(N). One
can prove ω(N) ≤ 0.8N < N + 1 if N has at least two different prime
factors.

In the case of of a prime power N = pt one proves that ω(N) divides pt±pt−1

(generally), and equals pt±1 (from the assumption). However, pt±1 - pt±pt−1

except when t = 1.

The details are given in Bressoud-Wagon and Riesel.

The following is the Lucas analogue of Pocklington’s Theorem. It was first
discovered by Swedish mathematician and computer scientist Hans Riesel
(1929-), later rediscovered and published by Michael Morrison.

L.XIV.7 Theorem (Riesel-Morrison). Assumptions as above. Sup-
pose UN+1 ≡ 0 (mod N), but (U(N+1)/q, N) = 1 for some of the prime
factors q|N . Let F be the product of the corresponding prime powers qk

dividing N. Then every prime factor p|N is congruent to + or −1 modulo
F .

Proof. Let p be a prime factor of N , and let d be the order of the U -
sequence modulo p.

The assumptions say that d divides N +1, but none of the (N +1)/q. In the
same manner as in the proof of Pocklington (see L.VII.3) we infer that F |d.

Further, by the general theory, d divides p + 1 or p− 1, so F divides one of
these numbers. �
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L.XIV.8 Example. Let us have a look at

N = 59 64958 91274 97217,

a factor of the Fermat number F7. The prime factorization of
N + 1 is 2 · 3 · 733 · 1356 28897 51591.

Looking for a recurrence

Un+2 − PUn+1 +QUn = 0,

with (D/N) = (P 2−4Q/N) = −1, we fix P = 1, and step upQ = ±2, ±3 . . . .
The choice Q = 3, giving D = −11, is the first that works. A computer run
produced the following:

P, Q, D = 1 2 -7 , (D/N) = 1

P, Q, D = 1 -2 9 , (D/N) = 1

P, Q, D = 1 3 -11 , (D/N) = -1

prime factors of 59649589127497218 :

[13562889751591L, 733, 3, 2]

testing the factor q= 13562889751591

U((N-J)/q): 11132979547214806

gcd with N: 1

testing the factor q= 733

U((N-J)/q): 7106250345218906

gcd with N: 1

testing the factor q= 3

U((N-J)/q): 57414734989485274

gcd with N: 1

testing the factor q= 2

U((N-J)/q): 9394399751895754

gcd with N: 1

proving the primality of Q without the slightest doubt. (The J stands for
the Jacobi symbol (D/N) = −1.) �

L.XIV.9 Example. Next we look at R = 407477800048937789623. Is it
prime? R + 1 = 23 times a product of simple factors. The same procedure
gives

P, Q, D = 1 2 -7 , (D/N) = 1

P, Q, D = 1 -2 9 , (D/N) = 1
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P, Q, D = 1 3 -11 , (D/N) = 1

P, Q, D = 1 -3 13 , (D/N) = 1

P, Q, D = 1 4 -15 , (D/N) = -1

prime factors of 407477800048937789624 :

[12040620145783L, 71699, 59, 2]

testing the factor q= 12040620145783

U((N-J)/q): 193977511718274844669

gcd with N: 1

testing the factor q= 71699

U((N-J)/q): 373867674101395430255

gcd with N: 1

testing the factor q= 59

U((N-J)/q): 198619893718259475088

gcd with N: 1

testing the factor q= 2

U((N-J)/q): 0

gcd with N: 407477800048937789623

So, according to Riesel-Morrison, every prime factor of R is congruent to +
or −1 modulo F = 59 · 71 699 · 1 204 06201 45783 = (R+ 1)/8, hence there is
room for only one, i.e., R is prime.

Remark : The reader wishing to program this test should of course stop when
the accumulated product of prime factors exceeds the square root, as we did
in the case of Pocklington.

If we try the other factor of F7, M = 57 04689 20068 51290 54721, it turns out
that M+1 = 2·7·R, which makes the Lucas method a bit awkward compared
to, e.g., Pocklington, or the Primitive Root Test. The largest prime factor of
M −1 has 12 digits, so M −1 cracks easily, and M then yields to a Primitive
Root test, base, e.g., =21, the smallest positive primitive root. Pocklington,
base 3, also works.

The success of either algorithm depends on the efficiency of your factoring
algorithm, and on the size of the factors found. A combination of the two
methods may be optimal. See the books already cited. �

The U -sequence test should really be accompanied by a computation of the
corresponding V -value – see the exercises at the end of the Chapter.

An intriguing application of Lucas sequences (with polynomial parameters) is
given in Section 49 of Nagell’s book, where he proves that there are infinitely
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many primes ≡ −1 modulo any given integer n ≥ 2 (cf. F.VIII.9). The
periods of U -sequences plays a decisive role. Beware that his V are our U ,
and his U are half our V .

L.XIV: Exercises

1. Explain why the choices P = ±1 and Q = 1 make for a very poor pseudo-
primetest.

2. Express Vm+n in terms of Vm, Vn, and Vm−n, m ≥ n. Then do the same for
the U -sequence.

3. Let a, b be the roots of X2 − PX + Q = 0 (possibly modulo some positive
integer). What is the equation satisified by a2, b2? Express the sequence
V2m, m = 0, 1, 2, 3, . . . belonging to the parameters P,Q, as a Vm-sequence
belonging to other parameters.

Then generalize to k in place of 2.

4. Let q be a prime number. Suppose U2m ≡ 0 (mod q). Show that either
Um ≡ 0 or Vm ≡ 0 (mod q). Use this observation to devise the Lucas analog
of the Miller-Rabin test, starting with the factorization n− (D/n) = 2t · u.
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L.XV Mersenne Numbers

We now give a criterion for the primality of the Mersenne number N = Mp =
2p − 1, where p is a prime number ≥ 3. It is due to E. Lucas, and American
mathematician Derrick Lehmer (1905-1991).

We study the special recurrence

Sn+2 − 4Sn+1 + Sn = 0; n ≥ 0.

The roots of the equation x2 − 4x+ 1 = 0 are a = 2 +
√

3, b = 2−
√

3. The
discriminant of the equation is D = 42 − 4 · 1 · 1 = 12 = 22 · 3.

AsN ≡ −1 (mod 8), the Jacobi symbol (2/N) = 1. FurtherN ≡ 3 (mod 4),
N ≡ 1 (mod 3), so (3/N) = −(N/3) = −1. This means that the correspond-
ing relation holds for at least one prime factor of N .

We have already shown that the sequences

Un =
an − bn

a− b
, n ≥ 0,

and

Vn = an + bn,

with initial values U0 = 0, U1 = 1 and V0 = 2, V1 = 4 satisfy the recurrence.

We also have

U2n = UnVn and V2n = V 2
n − 2(anbn) = V 2

n − 2.

Setting

Tk = V2k−1

we have

Tk+1 = T 2
k − 2, T1 = V1 = 4.

As D = (a− b)2 we also have the following identity:

V 2
n −DU2

n = (an + bn)2 − (an − bn)2 = 4anbn = 4Qn. (∗)

We prove the sufficiency part of the Lucas(-Lehmer) criterion first.
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L.XV.1 Theorem. If

Tp−1 = V(N+1)/4 ≡ 0 (mod N),

then N is a prime.

Proof. Let q be a prime factor of N . Obviously then

U(N+1)/2 = U(N+1)/4V(N+1)/4 ≡ 0 (mod q).

As V(N+1)/4 ≡ 0 (mod q), and Q = 1, the identity (*) shows that
(U(N+1)/4, q) = 1.

This means that the exact order of the U -sequence, modulo q, equals
(N+1)/2. It is also a factor of q±1. So (N+1)/2 ≤ q±1, q|N ≤ 2q+1 < 3q.
That leaves room for only one prime factor, hence N = q. �

L.XV.2 Example. Here are the numbers (modulo N), produced by the
algorithm, proving 217 − 1 to be a prime number:

T1 = 4, T2 = 14 T3 = 194 T4 = 37634,
T5 = 95799, T6 = 119121, T7 = 66179, T8 = 53645,
T9 = 122218, T10 = 126220, T11 = 70490, T12 = 69559,
T13 = 99585, T14 = 78221, T15 = 130559,
T16 = 0.

The last prime record verified by hand was 2127 − 1. The Lucas-Lehmer test
verifies this on my 1.83 GHz computer in about 0.001 seconds.

Riesel’s record from 1957-1961, 23217 − 1, a 969 digit number, takes about 2
seconds.

The first record of the 1970’s, 2p − 1, p = 19937, a 6002 digit number,
originally took 35 minutes to verify.

A straightforward application of the Lucas criterion on my computer would
take something like 7 minutes! Simply too much time is spent on squaring
numbers and reducing them modulo a large number only afterwards.

The books of Riesel and Crandall-Pomerance describe some strategies for
fast squaring and algorithms for computing modulo large numbers of special
construction. �
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We now turn to the necessity part.

L.XV.3 Theorem. If q = 2p − 1 is a prime, then Tp−1 ≡ 0 (mod q).

Proof. As
Tp = T 2

p−1 − 2,

it suffices to prove that

Tp = V2p−1 ≡ −2 (mod q).

Recall the facts (2/q) = 1, (3/q) = −1 derived above. We will use the
Corollary to Freshman’s Dream (L.XIV.3) above. Also (1+

√
3)2 = 4+2

√
3 =

2a.

First we recall the definition:

Tp = a(q+1)/2 + b(q+1)/2,

as q + 1 = 2p.

We are finished if we can prove that both terms are ≡ −1 (mod q).

Now

2(q+1)/2a(q+1)/2 = (1 +
√

3)q+1 = (1 +
√

3) · (1 +
√

3)q ≡
≡ (1 +

√
3) · (1 +

√
3)q ≡ (1 +

√
3) · (1−

√
3) ≡ −2 (mod q).

We applied the Corollary just mentioned to m+ n
√

3 = 1 +
√

3.

At the same time

2(q+1)/2 = 2 · 2(q−1)/2 ≡ 2 ·
(2

q

)
≡ 2 (mod q)

by Euler’s Criterion. We plug this into the congruence above, and then
multiply by the inverse to 2 modulo q, yielding

a(q+1)/2 ≡ −1 (mod q),

and, by conjugation,
b(q+1)/2 ≡ −1 (mod q),

whence the desired result, by addition. �
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L.XVI Lucas and Modular Square Roots

Modular square roots, i.e., solutions to quadratic congruences of the type

x2 ≡ Q (mod p), p prime,

are essential to performing, e.g., Cornacchia’s Algorithm. They also appear
in the context of certain factoring algorithms, such as the Quadratic Sieve.
We have already given an algorithm due to Berlekamp (see Section E.IV).
Here we give another one, using Lucas sequences.

As we have already seen, the case p ≡ 3 (mod 4) is particularly simple,
just take x ≡ ±Q(p+1)/4 (mod p). So we now assume that p ≡ 1 (mod 4).
Just like the previous algorithm this one depends on knowing a quadratic
non-residue modulo p.

We again study recurrences with characteristic polynomial X2 − PX + Q,
having the zeros a, b. We assume P chosen so that

D = (a− b)2 = P 2 − 4Q

is a quadratic non-residue modulo p.

The letters U, V keep their old meaning.

Let m = (p+ 1)/2. Then

Vm = am + bm; V 2
m = ap+1 + bp+1 + 2(ab)m = ap+1 + bp+1 + 2Qm.

By Euler’s Criterion, Q(p−1)/2 ≡ 1 (mod p), as (Q/p) = 1. Hence Q(p+1)/2 ≡
Q (mod p).

We also know, by L.XIV.3, that ap ≡ b, bp ≡ a (mod p), hence ap+1 + bp+1 ≡
2ab ≡ 2Q (mod p).

Putting these observations together we arrive at:

V 2
m ≡ 4Q (mod p).

Using m · 2 ≡ 1 (mod p), and multiplying by m2, we obtain the following:

L.XVI.1 Theorem. Notation and assumptions as above. The solution
to the congruence x2 ≡ Q (mod p) is x ≡ ±mVm (mod p), where m =
(p+ 1)/2.
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�

Remark: An alternative is: if Vm is even, then divide by two; if Vm is odd,
add p, then divide.

Before we give an Example we express the result in terms of the U -sequence
as well.

L.XVI.2 Theorem. Notation and assumptions as above. The solution
to the congruence x2 ≡ Q (mod p) is x ≡ ±Um+1 (mod p), where m =
(p+ 1)/2.

Proof. As UmVm = U2m = Up+1 ≡ 0 (mod p), by the general theory, and
Vm 6≡ 0 (mod p), Um ≡ 0 (mod p), am ≡ bm (mod p).

Further, we proved in the beginning that 2Um+1−PUm = Vm, so, multiplying
by m = (p + 1)/2 we see that Um+1 ≡ mVm (mod p), thereby finishing the
proof. �

L.XVI.3 Example. For our example we take the prime number
p = 479255977 and Q = 2. Certainly (Q/p) = 1 as p ≡ 977 ≡ 1 (mod 8).

By trial and error we find a small P such that P 2 − 4Q is a quadratic non-
residue modulo p. A simple Jacobi routine leads (e.g., by stepping up P ) to
the choice P = 7.

We compute Um+1, modulo p, m = (p + 1)/2 using, e.g., binary exponen-
tiation of the matrix M introduced in the beginning. (The most efficient
method is to use the scalar recursive formula for the Un given in the last
Section of this Chapter.)

We get x ≡ ±103 530 344 (mod p). �

Remark:

As Um ≡ 0 (mod p), that is, am ≡ bm (mod p), we also get bm+1 ≡ bam

(mod p) whence

Um+1 =
am+1 − bm+1

a− b
≡ aam − bam

a− b
≡ a(p+1)/2 (mod p).
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Quite reasonable, as

(a(p+1)/2)2 ≡ ap+1 ≡ ab ≡ Q (mod p).

With a little bit of Algebra we could prove more directly that a(p+1)/2 is
indeed congruent to an ordinary integer modulo p. Those who know some
“Abstract” Algebra will realize that the classes m + n

√
D modulo p form

a finite field, i.e., all non-zero classes are invertible. (This is because the
polynomial X2−D is irreducible modulo p, D being a quadratic non-residue.)

The really important issue is the lack of zero-divisors. For, suppose
(m + n

√
D)(r + s

√
D) ≡ 0 (mod p), with the first factor incongruent to 0

modulo p. Multiplying by the conjugate of the first factor gives
(m2 − Dn2)(r + s

√
D) ≡ 0 (mod p), where the first factor is a rational

integer incongruent to zero, as (D/p) = −1, and p - m,n. This forces the
second factor to be congruent to zero modulo p.

Lagrange’s Theorem on polynomial congruences easily generalizes to this
case. Hence the congruence x2 ≡ Q (mod p) can have only two solutions,
those known to exist, as (Q/p) = 1, with irrational part n = 0

By this token the Lucas sequence solution connects with the so-called Cipolla
Algorithm, given in, e.g., Crandall-Pomerance, and Bach-Shallit.

L.XVI: Exercises

1. Write a simple routine checking the primality of some Mersenne numbers,
e.g., those mentioned in the texts, further 2107 − 1, 2277 − 1, 2719 − 1.

2. Using the scalar fomulas in the next Section, and the U -sequence algorithm,
compute some modular square roots, e.g., solve x2 ≡ y (mod p) for

(a) y = −1, 17, 29, 41; p = 45122 73113

(b) y = 17, p = 2127 − 1

or the examples in Section E.IV.
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L.XVII Scalar Formulas

I have chosen the matrix approach above for ease of presentation. In practice
it is much more efficient to deal with the Un and Vn directly. According to
the fast exponentiation scheme (Section L.V) ) we need formulas for passing
from n to 2n, and from n to n+ 1.

One scheme is to work with the pair Un, Vn. Recall that a + b = P, ab =
Q, a− b =

√
D.

Doubling is easy. We have already seen that

U2n = UnVn.

And V2n is almost as easy:

V2n = a2n + b2n = (an + bn)2 − 2anbn = V 2
n − 2Qn.

(of course, Qn is not computed each time, but updated according to the
binary exponentiation scheme).

As for passing from n to n+ 1, we have the following two identities, the first
of which we have already derived.

Un+1 =
1

2
(VnU1 + UnV1) =

1

2
(PUn + Vn),

Vn+1 =
1

2
(VnV1 +DUnU1) =

1

2
(DUn + PVn).

(Working modulo the odd number N , the 1/2 is to be interpreted as (N +
1)/2.)

One quick way to establish these formulas is to check that both members
satisfy the second order recurrence Sn+1 − PSn+1 + QSn = 0 and have the
same initial values S0, S1.

In matrix form, the identities read:(
Un+1

Vn+1

)
=

1

2

(
P 1
D P

) (
Un

Vn

)
.

Another scheme is to work with the pair Un+1, Un. We then need identities
enabling the step to U2n+2, U2n+1 (doubling and one-step) or to U2n+1, U2n

(doubling).
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For instance, starting with the matrix

M =

(
P −Q
1 0

)
,

an easy induction proves that

Mn =

(
Un+1 −QUn

Un −QUn−1

)
=

(
Un+1 −QUn

Un Un+1 − PUn

)
,

Mn+1 =

(
Un+2 −QUn+1

Un+1 −QUn

)
=

(
PUn+1 −QUn −QUn+1

Un+1 −QUn

)
.

The matrix powers in both members also satisfy the recurrence, so really all
that is necessary is to check the two initial values, n = 0, 1.

Taking the first column of Mn ·Mn then gives the column (U2n+1 U2n)t, which
is the first column of M2n. And the first column of Mn+1 ·Mn similarly gives
the column (U2n+2 U2n+1)

t. We arrive at the following doubling rules, where
always the first two or the last two are to be taken together:

U2n+2 = PU2
n+1 − 2QUn+1Un,

U2n+1 = U2
n+1 −QU2

n,

U2n = 2Un+1Un − PU2
n.

This approach is faster than the U, V method above. Any Vn can then easily
be found from the U -recurrence, as Vn = 2Un+1 − PUn.

L.XVII.1 Example. The following is a computer run of the example N =
127, P = 3, Q = 1, n = 91, n + 1 = 92, i.e., we are finding U92, U91 from
the recurrence Uj+2− 3Uj+2 +Uj ≡ 0 (mod N), with initial conditions U1 =
1, U0 = 0. The binary representation of 91 given below has the highest bit
to the left. A zero bit means that the lower index of the pair is doubled. A
non-zero bit means that the lower index is doubled, and then augmented by
one unit. Or, equivalently, that the higher index is doubled.

Please check the first few values.

U1, U0= 1 , 0

binary repr. of 91 : [1, 0, 1, 1, 0, 1, 1]

next bit = 1 : j= 2 , 1 ; U= 3 , 1

next bit = 0 : j= 3 , 2 ; U= 8 , 3

next bit = 1 : j= 6 , 5 ; U= 17 , 55
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next bit = 1 : j= 12 , 11 ; U= 13 , 58

next bit = 0 : j= 23 , 22 ; U= 107 , 52

next bit = 1 : j= 46 , 45 ; U= 105 , 109

next bit = 1 : j= 92 , 91 ; U= 25 , 33

�

An alternative route to these, and many other, identities is to note that
a− b =

√
D, Un

√
D = an − bn, so that:

2an = (an + bn) + (an − bn) = Vn + Un

√
D,

an =
1

2
(Vn + Un

√
D).

For instance:

an+1 =
1

2
(Vn+1 + Un+1

√
D) = an · a =

Vn + Un

√
D

2
· V1 + U1

√
D

2
.

As the Un and Vn are rational integers, we may identify the rational and
irrational parts, and we find again

Un+1 =
1

2
(VnU1 + UnV1) =

1

2
(Vn + PUn),

Vn+1 =
1

2
(VnV1 + UnU1) =

1

2
(PVn + Un).

Details and more identities can also be found in the books of Riesel and
Bressoud-Wagon. Crandall-Pomerance also give an account, but they use
more Algebra.

L.XVII: Exercises

1. Check the derivation of the update formulas for the (Un+1, Un)-pairs above
from the matrix products.

2. Derive as many identities as you possibly can from the relation

an =
1
2
(Vn + Un

√
D).
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3. (a) Denote the V -sequence belonging to the parameters P, Q by Vn(P,Q).
Prove the identity:

Vn(Vk(P, 1), 1) = Vnk(P, 1)

(b) Can you generalize to the case where the first and third 1 are replaced
by Q?

(c) Assuming that ((P 2 − 4)/N) = −1, so that ((P 2 − 4)/p) = −1 for at
least one prime factor p of N , that k is a product of prime powers,
and n a prime, do you see how the ideas of Pollard’s p − 1 factoring
algorithm (L.VIII) translate to this situation?

(d) A more direct approach to the factoring problem would be to raise one
root a of the equation X2 − PX + 1 = 0 to high powers modulo N ,
again assuming ((P 2 − 4)/N) = −1, Discuss the connection. You may
derive inspiration from the ideas of Berlekamp’s algorithm, E.IV.

4. Suggestions for computing Write a program that computes Uq (mod p)
for given parameters P,Q.

Show that n = 323 = 17 ·19 is a Lucas pseudoprime for the parameters P =
1, Q = −1, i.e., n is composite, and UN ≡ 0 (mod n) for N = n + (D/n).

5. Let q be a prime number. Determine Vq−(D/n), where D is the discriminant
P 2 − 4Q. How does this apply to the previous problem?

Compare these results to the case N = 5777 = 53 · 109.

6. Suppose that (D/n) = −1, but also (Q/n) = +1. Further suppose that
Un+1 ≡ 0 (mod n), and Vn+1 ≡ 2Q (mod n). Let m = (n + 1)/2. Show
that the irrational part of am (the term involving

√
D) is congruent to zero

modulo n if and only if Um ≡ 0.

How can this observation be included in a Lucas primality test?

You may want to express both the assumptions and the conclusion in terms
of the power sequence an. Cf. the paper by Jon Grantham, “A Probable
Prime Test with High Confidence”, Journal of Number Theory, 72, 32-47
(1998), http://www.rni.net/∼pseudoprime/jgpapers.html

7. Under the assumptions of the previous problem, show that U2
m+1 ≡ Q

(mod n), even if n is composite.
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Tables

x2 −Dy2 = ±1

Lists D : (x, y,±1, period)

2 : (1, 1,−1, 1) 3 : (2, 1, 1, 2) 5 : (2, 1,−1, 1)
6 : (5, 2, 1, 2) 7 : (8, 3, 1, 4) 8 : (3, 1, 1, 2)
10 : (3, 1,−1, 1) 11 : (10, 3, 1, 2) 12 : (7, 2, 1, 2)
13 : (18, 5,−1, 5) 14 : (15, 4, 1, 4) 15 : (4, 1, 1, 2)
17 : (4, 1,−1, 1) 18 : (17, 4, 1, 2) 19 : (170, 39, 1, 6)
20 : (9, 2, 1, 2) 21 : (55, 12, 1, 6) 22 : (197, 42, 1, 6)
23 : (24, 5, 1, 4) 24 : (5, 1, 1, 2) 26 : (5, 1,−1, 1)
27 : (26, 5, 1, 2) 28 : (127, 24, 1, 4) 29 : (70, 13,−1, 5)
30 : (11, 2, 1, 2) 31 : (1520, 273, 1, 8) 32 : (17, 3, 1, 4)
33 : (23, 4, 1, 4) 34 : (35, 6, 1, 4) 35 : (6, 1, 1, 2)
37 : (6, 1,−1, 1) 38 : (37, 6, 1, 2) 39 : (25, 4, 1, 2)
40 : (19, 3, 1, 2) 41 : (32, 5,−1, 3) 42 : (13, 2, 1, 2)
43 : (3482, 531, 1, 10) 44 : (199, 30, 1, 8) 45 : (161, 24, 1, 6)
46 : (24335, 3588, 1, 12) 47 : (48, 7, 1, 4) 48 : (7, 1, 1, 2)
50 : (7, 1,−1, 1) 51 : (50, 7, 1, 2) 52 : (649, 90, 1, 6)
53 : (182, 25,−1, 5) 54 : (485, 66, 1, 6) 55 : (89, 12, 1, 4)
56 : (15, 2, 1, 2) 57 : (151, 20, 1, 6 58 : (99, 13,−1, 7)
59 : (530, 69, 1, 6) 60 : (31, 4, 1, 4) 61 : (29718, 3805,−1, 11)
62 : (63, 8, 1, 4) 63 : (8, 1, 1, 2) 65 : (8, 1,−1, 1)
66 : (65, 8, 1, 2) 67 : (48842, 5967, 1, 10) 68 : (33, 4, 1, 2)
69 : (7775, 936, 1, 8) 70 : (251, 30, 1, 6) 71 : (3480, 413, 1, 8)
72 : (17, 2, 1, 2) 73 : (1068, 125,−1, 7) 74 : (43, 5,−1, 5)
75 : (26, 3, 1, 4) 76 : (57799, 6630, 1, 12) 77 : (351, 40, 1, 6)
78 : (53, 6, 1, 4) 79 : (80, 9, 1, 4) 80 : (9, 1, 1, 2)
82 : (9, 1,−1, 1) 83 : (82, 9, 1, 2) 84 : (55, 6, 1, 2)
85 : (378, 41,−1, 5) 86 : (10405, 1122, 1, 10) 87 : (28, 3, 1, 2)
88 : (197, 21, 1, 6) 89 : (500, 53,−1, 5) 90 : (19, 2, 1, 2)
91 : (1574, 165, 1, 8) 92 : (1151, 120, 1, 8) 93 : (12151, 1260, 1, 10)
94 : (2143295, 221064, 1, 16) 95 : (39, 4, 1, 4) 96 : (49, 5, 1, 4)
97 : (5604, 569,−1, 11) 98 : (99, 10, 1, 4) 99 : (10, 1, 1, 2)
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101 : (10, 1,−1, 1) 102 : (101, 10, 1, 2) 103 : (227528, 22419, 1, 12)
104 : (51, 5, 1, 2) 105 : (41, 4, 1, 2) 106 : (4005, 389,−1, 9)
107 : (962, 93, 1, 6) 108 : (1351, 130, 1, 8) 109 : (8890182, 851525,−1, 15)
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A Table Of Primitive Roots

For every odd prime≤ 5009 the least positive primitive root is listed. Format:
[prime, leastprimitiveroot]. 1-1019

[3, 2], [5, 2], [7, 3], [11, 2], [13, 2],
[17, 3], [19, 2], [23, 5], [29, 2], [31, 3],
[37, 2], [41, 6], [43, 3], [47, 5], [53, 2],
[59, 2], [61, 2], [67, 2], [71, 7], [73, 5],
[79, 3], [83, 2], [89, 3], [97, 5], [101, 2],
[103, 5], [107, 2], [109, 6], [113, 3], [127, 3],
[131, 2], [137, 3], [139, 2], [149, 2], [151, 6],
[157, 5], [163, 2], [167, 5], [173, 2], [179, 2],
[181, 2], [191, 19], [193, 5], [197, 2], [199, 3],
[211, 2], [223, 3], [227, 2], [229, 6], [233, 3],
[239, 7], [241, 7], [251, 6], [257, 3], [263, 5],
[269, 2], [271, 6], [277, 5], [281, 3], [283, 3],
[293, 2], [307, 5], [311, 17], [313, 10], [317, 2],
[331, 3], [337, 10], [347, 2], [349, 2], [353, 3],
[359, 7], [367, 6], [373, 2], [379, 2], [383, 5],
[389, 2], [397, 5], [401, 3], [409, 21], [419, 2],
[421, 2], [431, 7], [433, 5], [439, 15], [443, 2],
[449, 3], [457, 13], [461, 2], [463, 3], [467, 2],
[479, 13], [487, 3], [491, 2], [499, 7], [503, 5],
[509, 2], [521, 3], [523, 2], [541, 2], [547, 2],
[557, 2], [563, 2], [569, 3], [571, 3], [577, 5],
[587, 2], [593, 3], [599, 7], [601, 7], [607, 3],
[613, 2], [617, 3], [619, 2], [631, 3], [641, 3],
[643, 11], [647, 5], [653, 2], [659, 2], [661, 2],
[673, 5], [677, 2], [683, 5], [691, 3], [701, 2],
[709, 2], [719, 11], [727, 5], [733, 6], [739, 3],
[743, 5], [751, 3], [757, 2], [761, 6], [769, 11],
[773, 2], [787, 2], [797, 2], [809, 3], [811, 3],
[821, 2], [823, 3], [827, 2], [829, 2], [839, 11],
[853, 2], [857, 3], [859, 2], [863, 5], [877, 2],
[881, 3], [883, 2], [887, 5], [907, 2], [911, 17],
[919, 7], [929, 3], [937, 5], [941, 2], [947, 2],
[953, 3], [967, 5], [971, 6], [977, 3], [983, 5],
[991, 6], [997, 7], [1009, 11], [1013, 3], [1019, 2]
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1021-2579

[1021, 10], [1031, 14], [1033, 5], [1039, 3], [1049, 3],
[1051, 7], [1061, 2], [1063, 3], [1069, 6], [1087, 3],
[1091, 2], [1093, 5], [1097, 3], [1103, 5], [1109, 2],
[1117, 2], [1123, 2], [1129, 11], [1151, 17], [1153, 5],
[1163, 5], [1171, 2], [1181, 7], [1187, 2], [1193, 3],
[1201, 11], [1213, 2], [1217, 3], [1223, 5], 1229, 2],
[1231, 3], [1237, 2], [1249, 7], [1259, 2], [1277, 2],
[1279, 3], [1283, 2], [1289, 6], [1291, 2], [1297, 10],
[1301, 2], 1303, 6], [1307, 2], [1319, 13], [1321, 13],
[1327, 3], [1361, 3], [1367, 5], [1373, 2], [1381, 2],
[1399, 13], [1409, 3], [1423, 3], [1427, 2], [1429, 6],
[1433, 3], [1439, 7], [1447, 3], [1451, 2], [1453, 2],
[1459, 3], [1471, 6], [1481, 3], [1483, 2], [1487, 5],
[1489, 14], [1493, 2], [1499, 2], [1511, 11], [1523, 2],
[1531, 2], [1543, 5], [1549, 2], [1553, 3], [1559, 19],
[1567, 3], [1571, 2], [1579, 3], [1583, 5], [1597, 11],
[1601, 3], [1607, 5], [1609, 7], [1613, 3], [1619, 2],
[1621, 2], [1627, 3], [1637, 2], [1657, 11], [1663, 3],
[1667, 2], [1669, 2], [1693, 2], [1697, 3], [1699, 3],
[1709, 3], [1721, 3], [1723, 3], [1733, 2], [1741, 2],
[1747, 2], [1753, 7], [1759, 6], [1777, 5], [1783, 10],
[1787, 2], [1789, 6], [1801, 11], [1811, 6], [1823, 5],
[1831, 3], [1847, 5], [1861, 2], [1867, 2], [1871, 14],
[1873, 10], [1877, 2], [1879, 6], [1889, 3], [1901, 2],
[1907, 2], [1913, 3], [1931, 2], [1933, 5], [1949, 2],
[1951, 3], [1973, 2], [1979, 2], [1987, 2], [1993, 5]
[1997, 2], [1999, 3], [2003, 5], [2011, 3], [2017, 5],
[2027, 2], [2029, 2], [2039, 7], [2053, 2], [2063, 5],
[2069, 2], [2081, 3], [2083, 2], [2087, 5], [2089, 7],
[2099, 2], [2111, 7], [2113, 5], [2129, 3], [2131, 2],
[2137, 10], [2141, 2], [2143, 3], [2153, 3], [2161, 23],
[2179, 7], [2203, 5], [2207, 5], [2213, 2], [2221, 2],
[2237, 2], [2239, 3], [2243, 2], [2251, 7], [2267, 2],
[2269, 2], [2273, 3], [2281, 7], [2287, 19], [2293, 2],
[2297, 5], [2309, 2], [2311, 3], [2333, 2], [2339, 2],
[2341, 7], [2347, 3], [2351, 13], [2357, 2], [2371, 2],
[2377, 5], [2381, 3], [2383, 5], [2389, 2], [2393, 3],
[2399, 11], [2411, 6], [2417, 3], [2423, 5], [2437, 2],
[2441, 6], [2447, 5], 2459, 2], [2467, 2], [2473, 5],
[2477, 2], [2503, 3], [2521, 17], [2531, 2], [2539, 2],
[2543, 5], [2549, 2], [2551, 6], [2557, 2], [2579, 2],
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2591-4001

[2591, 7], [2593, 7], [2609, 3], [2617, 5], [2621, 2],
[2633, 3], [2647, 3], [2657, 3], [2659, 2], [2663, 5],
[2671, 7], [2677, 2], [2683, 2], [2687, 5], [2689, 19],
[2693, 2], [2699, 2], [2707, 2], [2711, 7], [2713, 5],
[2719, 3], [2729, 3], [2731, 3], [2741, 2], [2749, 6],
[2753, 3], [2767, 3], [2777, 3], [2789, 2], [2791, 6],
[2797, 2], [2801, 3], [2803, 2], [2819, 2], [2833, 5],
[2837, 2], [2843, 2], [2851, 2], [2857, 11], [2861, 2],
[2879, 7], [2887, 5], 2897, 3], [2903, 5], [2909, 2],
[2917, 5], [2927, 5], [2939, 2], [2953, 13], [2957, 2],
[2963, 2], [2969, 3], [2971, 10], [2999, 17], [3001, 14]
[3011, 2], [3019, 2], [3023, 5], [3037, 2], [3041, 3],
[3049, 11], [3061, 6], [3067, 2], [3079, 6], [3083, 2],
[3089, 3], [3109, 6], [3119, 7], [3121, 7], [3137, 3],
[3163, 3], [3167, 5], [3169, 7], [3181, 7], [3187, 2],
[3191, 11], [3203, 2], [3209, 3], [3217, 5], [3221, 10],
[3229, 6], [3251, 6], [3253, 2], [3257, 3], [3259, 3],
[3271, 3], [3299, 2], [3301, 6], [3307, 2], [3313, 10],
[3319, 6], [3323, 2], [3329, 3], [3331, 3], [3343, 5],
[3347, 2], [3359, 11], [3361, 22], [3371, 2], [3373, 5],
[3389, 3], [3391, 3], [3407, 5], [3413, 2], [3433, 5],
[3449, 3], [3457, 7], [3461, 2], [3463, 3], [3467, 2],
[3469, 2], [3491, 2], [3499, 2], [3511, 7], [3517, 2],
[3527, 5], [3529, 17], [3533, 2], [3539, 2], [3541, 7],
[3547, 2], [3557, 2], [3559, 3], [3571, 2], [3581, 2],
[3583, 3], [3593, 3], [3607, 5], [3613, 2], [3617, 3],
[3623, 5], [3631, 15], [3637, 2], [3643, 2], [3659, 2],
[3671, 13], 3673, 5], [3677, 2], [3691, 2], [3697, 5],
[3701, 2], [3709, 2], [3719, 7], [3727, 3], [3733, 2],
[3739, 7], [3761, 3], [3767, 5], [3769, 7], [3779, 2],
[3793, 5], [3797, 2], [3803, 2], [3821, 3], [3823, 3],
[3833, 3], [3847, 5], [3851, 2], [3853, 2], [3863, 5],
[3877, 2], [3881, 13], [3889, 11], [3907, 2], [3911, 13],
[3917, 2], [3919, 3], [3923, 2], [3929, 3], [3931, 2],
[3943, 3], [3947, 2], [3967, 6], [3989, 2], [4001, 3],
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4003-5009

[4003, 2], [4007, 5], [4013, 2], [4019, 2], [4021, 2],
[4027, 3], [4049, 3], [4051, 10], [4057, 5], [4073, 3],
[4079, 11], [4091, 2], [4093, 2], [4099, 2], [4111, 12],
[4127, 5], [4129, 13], [4133, 2], [4139, 2], [4153, 5],
[4157, 2], [4159, 3], [4177, 5], [4201, 11], [4211, 6],
[4217, 3], [4219, 2], [4229, 2], [4231, 3], [4241, 3],
[4243, 2], [4253, 2], [4259, 2], [4261, 2], [4271, 7],
[4273, 5], [4283, 2], [4289, 3], [4297, 5], [4327, 3],
[4337, 3], [4339, 10], [4349, 2], [4357, 2], [4363, 2],
[4373, 2], [4391, 14], [4397, 2], [4409, 3], [4421, 3],
[4423, 3], [4441, 21], [4447, 3], [4451, 2], [4457, 3],
[4463, 5], [4481, 3], [4483, 2], [4493, 2], [4507, 2],
[4513, 7], [4517, 2], [4519, 3], [4523, 5], [4547, 2],
[4549, 6], [4561, 11], [4567, 3], [4583, 5], [4591, 11],
[4597, 5], [4603, 2], [4621, 2], [4637, 2], [4639, 3],
[4643, 5], [4649, 3], [4651, 3], [4657, 15], [4663, 3],
[4673, 3], [4679, 11], [4691, 2], [4703, 5], [4721, 6],
[4723, 2], [4729, 17], [4733, 5], [4751, 19], [4759, 3],
[4783, 6], [4787, 2], [4789, 2], [4793, 3], [4799, 7],
[4801, 7], [4813, 2], [4817, 3], [4831, 3], [4861, 11],
[4871, 11], [4877, 2], [4889, 3], [4903, 3], [4909, 6],
[4919, 13], [4931, 6], [4933, 2], [4937, 3], [4943, 7],
[4951, 6], [4957, 2], [4967, 5], [4969, 11], [4973, 2],
[4987, 2], [4993, 5], [4999, 3], [5003, 2], [5009, 3].

A Table of Discrete Logarithms

Primitive root =2, unless otherwise noted.

prime=3

[1, 2], [2, 1]

prime=5

[1, 4], [2, 1], [3, 3], [4, 2]

prime=7, primitive root = 3

[1, 6], [2, 2], [3, 1], [4, 4], [5, 5], [6, 3]
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prime=11, primitive root =2

[1, 10], [2, 1], [3, 8], [4, 2], [5, 4], [6, 9], [7, 7], [8, 3],

[9,6], [10, 5]

prime=13

[1, 12], [2, 1], [3, 4], [4, 2], [5, 9], [6, 5], [7, 11], [8, 3], [9,

8], [10, 10], [11, 7], [12, 6]

prime=17, primitive root =3

[1, 16], [2, 14], [3, 1], [4, 12], [5, 5], [6, 15], [7, 11], [8, 10],

[9, 2], [10, 3], [11, 7], [12, 13], [13, 4], [14, 9], [15, 6], [16,

8]

prime=19

[1, 18], [2, 1], [3, 13], [4, 2], [5, 16], [6, 14], [7, 6], [8, 3],

[9, 8], [10, 17], [11, 12], [12, 15], [13, 5], [14, 7], [15, 11],

[16,4], [17, 10], [18, 9]

prime=23, primitive root = 5

[1, 22], [2, 2], [3, 16], [4, 4], [5, 1], [6, 18], [7, 19], [8, 6],

[9, 10], [10, 3], [11, 9], [12, 20], [13, 14], [14, 21], [15, 17],

[16, 8], [17, 7], [18, 12], [19, 15], [20, 5], [21, 13], [22, 11]

prime=29

[1, 28], [2, 1], [3, 5], [4, 2], [5, 22], [6, 6], [7, 12], [8, 3],

[9, 10], [10, 23], [11, 25], [12, 7], [13, 18], [14, 13], [15, 27],

[16, 4], [17, 21], [18, 11], [19, 9], [20, 24], [21, 17], [22, 26],

[23, 20], [24, 8], [25, 16], [26, 19], [27, 15], [28, 14]

prime=31, primitive root =3

[1, 30], [2, 24], [3, 1], [4, 18], [5, 20], [6, 25], [7, 28],

[8,12], [9, 2], [10, 14], [11, 23], [12, 19], [13, 11], [14, 22],

[15,21], [16, 6], [17, 7], [18, 26], [19, 4], [20, 8], [21, 29], [22, 17],

[23, 27], [24, 13], [25, 10], [26, 5], [27, 3], [28, 16], [29, 9],

[30, 15]

prime=37

[1, 36], [2, 1], [3, 26], [4, 2], [5, 23], [6, 27], [7, 32], [8, 3],

[9, 16], [10, 24], [11, 30], [12, 28], [13, 11], [14, 33], [15, 13],
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[16, 4], [17, 7], [18, 17], [19, 35], [20, 25], [21, 22], [22, 31],

[23, 15], [24, 29], [25, 10], [26, 12], [27, 6], [28, 34], [29, 21],

[30, 14], [31, 9], [32, 5], [33, 20], [34, 8], [35, 19], [36, 18]

prime=41, primitive root =6

[1, 40], [2, 26], [3, 15], [4, 12], [5, 22], [6, 1], [7, 39],

[8,38], [9, 30], [10, 8], [11, 3], [12, 27], [13, 31], [14, 25],

[15,37], [16, 24], [17, 33], [18, 16], [19, 9], [20, 34], [21, 14],

[22,29], [23, 36], [24, 13], [25, 4], [26, 17], [27, 5], [28, 11],

[29,7], [30, 23], [31, 28], [32, 10], [33, 18], [34, 19], [35, 21],

[36,2], [37, 32], [38, 35], [39, 6], [40, 20]

prime=43, primitive root =3

[1, 42], [2, 27], [3, 1], [4, 12], [5, 25], [6, 28], [7, 35],

[8,39], [9, 2], [10, 10], [11, 30], [12, 13], [13, 32], [14, 20],

[15,26], [16, 24], [17, 38], [18, 29], [19, 19], [20, 37], [21, 36],

[22,15], [23, 16], [24, 40], [25, 8], [26, 17], [27, 3], [28, 5],

[29,41], [30, 11], [31, 34], [32, 9], [33, 31], [34, 23], [35, 18],

[36,14], [37, 7], [38, 4], [39, 33], [40, 22], [41, 6], [42, 21]

prime=47, primitive root =5

[1, 46], [2, 18], [3, 20], [4, 36], [5, 1], [6, 38], [7, 32], [8, 8],

[9, 40], [10, 19], [11, 7], [12, 10], [13, 11], [14, 4], [15, 21],

[16, 26], [17, 16], [18, 12], [19, 45], [20, 37], [21, 6], [22, 25],

[23, 5], [24, 28], [25, 2], [26, 29], [27, 14], [28, 22], [29, 35],

[30, 39], [31, 3], [32, 44], [33, 27], [34, 34], [35, 33], [36, 30],

[37, 42], [38, 17], [39, 31], [40, 9], [41, 15], [42, 24], [43, 13],

[44, 43], [45, 41], [46, 23]

prime=53

[1, 52], [2, 1], [3, 17], [4, 2], [5, 47], [6, 18], [7, 14], [8, 3],

[9, 34], [10, 48], [11, 6], [12, 19], [13, 24], [14, 15], [15, 12],

[16, 4], [17, 10], [18, 35], [19, 37], [20, 49], [21, 31], [22, 7],

[23, 39], [24, 20], [25, 42], [26, 25], [27, 51], [28, 16], [29, 46],

[30, 13], [31, 33], [32, 5], [33, 23], [34, 11], [35, 9], [36, 36],

[37, 30], [38, 38], [39, 41], [40, 50], [41, 45], [42, 32], [43, 22],

[44, 8], [45, 29], [46, 40], [47, 44], [48, 21], [49, 28], [50, 43],

[51, 27], [52, 26]
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prime=59

[1, 58], [2, 1], [3, 50], [4, 2], [5, 6], [6, 51], [7, 18], [8, 3],

[9, 42], [10, 7], [11, 25], [12, 52], [13, 45], [14, 19], [15, 56],

[16, 4], [17, 40], [18, 43], [19, 38], [20, 8], [21, 10], [22, 26],

[23, 15], [24, 53], [25, 12], [26, 46], [27, 34], [28, 20], [29, 28],

[30, 57], [31, 49], [32, 5], [33, 17], [34, 41], [35, 24], [36, 44],

[37, 55], [38, 39], [39, 37], [40, 9], [41, 14], [42, 11], [43, 33],

[44, 27], [45, 48], [46, 16], [47, 23], [48, 54], [49, 36], [50, 13],

[51, 32], [52, 47], [53, 22], [54, 35], [55, 31], [56, 21], [57, 30],

[58, 29]

prime=61

[1, 60], [2, 1], [3, 6], [4, 2], [5, 22], [6, 7], [7, 49], [8, 3],

[9, 12], [10, 23], [11, 15], [12, 8], [13, 40], [14, 50], [15, 28],

[16, 4], [17, 47], [18, 13], [19, 26], [20, 24], [21, 55], [22, 16],

[23, 57], [24, 9], [25, 44], [26, 41], [27, 18], [28, 51], [29, 35],

[30, 29], [31, 59], [32, 5], [33, 21], [34, 48], [35, 11], [36, 14],

[37, 39], [38, 27], [39, 46], [40, 25], [41, 54], [42, 56], [43, 43],

[44, 17], [45, 34], [46, 58], [47, 20], [48, 10], [49, 38], [50, 45],

[51, 53], [52, 42], [53, 33], [54, 19], [55, 37], [56, 52], [57, 32],

[58, 36], [59, 31], [60, 30]

prime=67

[1, 66], [2, 1], [3, 39], [4, 2], [5, 15], [6, 40], [7, 23], [8, 3],

[9, 12], [10, 16], [11, 59], [12, 41], [13, 19], [14, 24], [15, 54],

[16, 4], [17, 64], [18, 13], [19, 10], [20, 17], [21, 62], [22, 60],

[23, 28], [24, 42], [25, 30], [26, 20], [27, 51], [28, 25], [29, 44],

[30, 55], [31, 47], [32, 5], [33, 32], [34, 65], [35, 38], [36, 14],

[37, 22], [38, 11], [39, 58], [40, 18], [41, 53], [42, 63], [43, 9],

[44, 61], [45, 27], [46, 29], [47, 50], [48, 43], [49, 46], [50, 31],

[51, 37], [52, 21], [53, 57], [54, 52], [55, 8], [56, 26], [57, 49],

[58, 45], [59, 36], [60, 56], [61, 7], [62, 48], [63, 35], [64, 6],

[65, 34], [66, 33]

prime=71, primitive root =7

[1, 70], [2, 6], [3, 26], [4, 12], [5, 28], [6, 32], [7, 1], [8, 18],

[9, 52], [10, 34], [11, 31], [12, 38], [13, 39], [14, 7], [15, 54],

[16, 24], [17, 49], [18, 58], [19, 16], [20, 40], [21, 27], [22, 37],

[23, 15], [24, 44], [25, 56], [26, 45], [27, 8], [28, 13], [29, 68],

[30, 60], [31, 11], [32, 30], [33, 57], [34, 55], [35, 29], [36, 64],
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[37, 20], [38, 22], [39, 65], [40, 46], [41, 25], [42, 33], [43, 48],

[44, 43], [45, 10], [46, 21], [47, 9], [48, 50], [49, 2], [50, 62],

[51, 5], [52, 51], [53, 23], [54, 14], [55, 59], [56, 19], [57, 42],

[58, 4], [59, 3], [60, 66], [61, 69], [62, 17], [63, 53], [64, 36],

[65, 67], [66, 63], [67, 47], [68, 61], [69, 41], [70, 35]

prime=73, primitive root = 5

[1, 72], [2, 8], [3, 6], [4, 16], [5, 1], [6, 14], [7, 33], [8, 24],

[9, 12], [10, 9], [11, 55], [12, 22], [13, 59], [14, 41], [15, 7],

[16, 32], [17, 21], [18, 20], [19, 62], [20, 17], [21, 39], [22, 63],

[23, 46], [24, 30], [25, 2], [26, 67], [27, 18], [28, 49], [29, 35],

[30, 15], [31, 11], [32, 40], [33, 61], [34, 29], [35, 34], [36, 28],

[37, 64], [38, 70], [39, 65], [40, 25], [41, 4], [42, 47], [43, 51],

[44, 71], [45, 13], [46, 54], [47, 31], [48, 38], [49, 66], [50, 10],

[51, 27], [52, 3], [53, 53], [54, 26], [55, 56], [56, 57], [57, 68],

[58, 43], [59, 5], [60, 23], [61, 58], [62, 19], [63, 45], [64, 48],

[65, 60], [66, 69], [67, 50], [68, 37], [69, 52], [70, 42], [71, 44],

[72, 36]

prime=79, primitive root =3

[1, 78], [2, 4], [3, 1], [4, 8], [5, 62], [6, 5], [7, 53], [8, 12],

[9, 2], [10, 66], [11, 68], [12, 9], [13, 34], [14, 57], [15, 63],

[16, 16], [17, 21], [18, 6], [19, 32], [20, 70], [21, 54], [22, 72],

[23, 26], [24, 13], [25, 46], [26, 38], [27, 3], [28, 61], [29, 11],

[30, 67], [31, 56], [32, 20], [33, 69], [34, 25], [35, 37], [36, 10],

[37, 19], [38, 36], [39, 35], [40, 74], [41, 75], [42, 58], [43, 49],

[44, 76], [45, 64], [46, 30], [47, 59], [48, 17], [49, 28], [50, 50],

[51, 22], [52, 42], [53, 77], [54, 7], [55, 52], [56, 65], [57, 33],

[58, 15], [59, 31], [60, 71], [61, 45], [62, 60], [63, 55], [64, 24],

[65, 18], [66, 73], [67, 48], [68, 29], [69, 27], [70, 41], [71, 51],

[72, 14], [73, 44], [74, 23], [75, 47], [76, 40], [77, 43], [78, 39]

prime=83

[1, 82], [2, 1], [3, 72], [4, 2], [5, 27], [6, 73], [7, 8], [8, 3],

[9, 62], [10, 28], [11, 24], [12, 74], [13, 77], [14, 9], [15, 17],

[16, 4], [17, 56], [18, 63], [19, 47], [20, 29], [21, 80], [22, 25],

[23, 60], [24, 75], [25, 54], [26, 78], [27, 52], [28, 10], [29, 12],

[30, 18], [31, 38], [32, 5], [33, 14], [34, 57], [35, 35], [36, 64],

[37, 20], [38, 48], [39, 67], [40, 30], [41, 40], [42, 81], [43, 71],

[44, 26], [45, 7], [46, 61], [47, 23], [48, 76], [49, 16], [50, 55],

[51, 46], [52, 79], [53, 59], [54, 53], [55, 51], [56, 11], [57, 37],
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[58, 13], [59, 34], [60, 19], [61, 66], [62, 39], [63, 70], [64, 6],

[65, 22], [66, 15], [67, 45], [68, 58], [69, 50], [70, 36], [71, 33],

[72, 65], [73, 69], [74, 21], [75, 44], [76, 49], [77, 32], [78, 68],

[79, 43], [80, 31], [81, 42], [82, 41]

prime=89, primitive root = 3

[1, 88], [2, 16], [3, 1], [4, 32], [5, 70], [6, 17], [7, 81],

[8,48], [9, 2], [10, 86], [11, 84], [12, 33], [13, 23], [14, 9],

[15,71], [16, 64], [17, 6], [18, 18], [19, 35], [20, 14], [21, 82],

[22,12], [23, 57], [24, 49], [25, 52], [26, 39], [27, 3], [28, 25],

[29,59], [30, 87], [31, 31], [32, 80], [33, 85], [34, 22], [35, 63],

[36,34], [37, 11], [38, 51], [39, 24], [40, 30], [41, 21], [42, 10],

[43,29], [44, 28], [45, 72], [46, 73], [47, 54], [48, 65], [49, 74],

[50,68], [51, 7], [52, 55], [53, 78], [54, 19], [55, 66], [56, 41],

[57,36], [58, 75], [59, 43], [60, 15], [61, 69], [62, 47], [63, 83],

[64,8], [65, 5], [66, 13], [67, 56], [68, 38], [69, 58], [70, 79],

[71,62], [72, 50], [73, 20], [74, 27], [75, 53], [76, 67], [77, 77],

[78,40], [79, 42], [80, 46], [81, 4], [82, 37], [83, 61], [84, 26],

[85,76], [86, 45], [87, 60], [88, 44]

prime=97, primitive root =5

[1, 96], [2, 34], [3, 70], [4, 68], [5, 1], [6, 8], [7, 31], [8, 6],

[9, 44], [10, 35], [11, 86], [12, 42], [13, 25], [14, 65], [15, 71],

[16, 40], [17, 89], [18, 78], [19, 81], [20, 69], [21, 5], [22, 24],

[23, 77], [24, 76], [25, 2], [26, 59], [27, 18], [28, 3], [29, 13],

[30, 9], [31, 46], [32, 74], [33, 60], [34, 27], [35, 32], [36, 16],

[37, 91], [38, 19], [39, 95], [40, 7], [41, 85], [42, 39], [43, 4],

[44, 58], [45, 45], [46, 15], [47, 84], [48, 14], [49, 62], [50, 36],

[51, 63], [52, 93], [53, 10], [54, 52], [55, 87], [56, 37], [57, 55],

[58, 47], [59, 67], [60, 43], [61, 64], [62, 80], [63, 75], [64, 12],

[65, 26], [66, 94], [67, 57], [68, 61], [69, 51], [70, 66], [71, 11],

[72, 50], [73, 28], [74, 29], [75, 72], [76, 53], [77, 21], [78, 33],

[79, 30], [80, 41], [81, 88], [82, 23], [83, 17], [84, 73], [85, 90],

[86, 38], [87, 83], [88, 92], [89, 54], [90, 79], [91, 56], [92, 49],

[93, 20], [94, 22], [95, 82], [96, 48]
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algebraic congruence, 53, 56, 60
algebraic integer, 292
Alice, 34, 95, 123, 165, 166
arithmetic function, 167
associate, 295, 297

Bézout identity, 3
baby steps, giant steps, 98
BBS bit generator, 165
belong(ing) to, 217, 240
Berlekamp, 161
best rational approximation, 206, 230
binomial congruence, 76
bitwise logic, 6, 112, 166, 322, 356
Bob, 34, 95, 123, 165, 166
Burnside’s counting theorem, 182

cancellation, 17
Carmichael function, 88
Carmichael number, 321
CFRAC, 347
Chinese remainder theorem, 38, 48,

50, 64, 89, 165
Chinese remaindering, 96
coloring, 181
column operation, 199, 200
computation of π, 301
congruent, 13
conjugate, 227, 293
continued fraction, 195, 210, 344, 347
convergent, 198, 211, 233
Cornacchia’s Algorithm, 216
cyclotomic polynomial, 187, 188

decimal fraction, 26, 27, 74, 215

Diophantine equation, 143, 154, 156,
216, 220, 235, 243, 277, 280,
281, 283, 294, 381

Dirichlet inverse, 169, 175, 187
Dirichlet product, 169
Dirichlet’s theorem, 192
discrete logarithm, 94

computation, 95
discriminant, 247, 251
divisibility theorem

first, 7, 9, 29, 145, 298
second, 7, 29, 298

division in number ring, 296, 308

early abort, 348
Eisenstein, 129
electronic coin flipping, 165
ElGamal, 95
equivalent quadratic irrationalities, 257,

258
Ergänzungssatz, 110
Euclidean algorithm, 3, 157
Euler phi function, 21, 44, 168, 174
Euler’s criterion, 76, 108, 121, 332,

366
Euler’s theorem, 25, 183
Eve, 123
extended Euclid, 5, 15, 213

factor base, 100
fast exponentiation, 81, 163, 320, 342,

377
Fermat number, 314, 331
Fermat’s last theorem, 159
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field, 291
finite, 376

finite continued fraction, 213
floor, 196, 226
freshman’s dream, 23, 110, 365

Gauß’ lemma, 123, 127
Gaussian elimination, 347, 354
Gerstenhaber, 129
Gray code, 164
greatest common divisor, 2, 297

Hensel’s lemma, 62

idempotent, 41
inclusion-exclusion principle, 46
index, 94
index calculus algorithm, 100
inverse, 14
invertible class, 14
irreducible, 293

Jacobi symbol, 118, 333

Lagrange’s product formula, 273, 274
Lagrange’s theorem, 56, 72, 376
large prime variation, 331, 348
least common multiple, 37
Legendre symbol, 108
linear congruence, 54
linear congruential generator, 92
linear Diophantine equation, 2, 7, 38
little Fermat, 24, 183, 321, 365
Lucas sequence, 362

Möbius function, 172, 187
Möbius inversion, 172, 182
matrix notation, 255
Mersenne

number, 185, 314, 330, 371
prime, 185, 314, 371

modular square root, 57, 84, 160, 374
moving forward one period, 271

multiplicative function, 167
multiplicity, 48, 82

Newton method, 345
norm, 293, 294, 311

order, 22
of a product, 29
of a power, 28

partial quotient, 197
Pell’s equation, 208, 228
Pell-type equation, 277, 283
perfect number, 185
periodic continued fraction, 212, 231,

247
Pohlig-Hellman, 96, 104
Pollard p− 1, 335
Pollard rho

discrete log, 102
factoring, 336

Pratt certificate, 339
preperiod of continued fraction, 288
primality test

Fermat, 321
Lucas-Lehmer, 371
Miller, 121
Miller-Rabin, 321
Pépin, 331
Pocklington, 328, 340
Proth, 332
Solovay-Strassen, 121

primitive root, 69, 179
modulo prime, 72
modulo prime power, 81

primitive root criterion, 327
proper representation, 151, 217, 308
pseudoprime, 31
pseudorandom, 92, 166, 215
purely periodic, 254
Pythagorean triples, 11
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QCF, 228, 270, 278, 344
quadratic irrationality, 211, 223, 247

reduced, 248, 254, 259
quadratic number

field, 293
quadratic reciprocity

proof, 127, 129, 280
stated, 112

quadratic residue, 107, 347
quadratic sieve, 358

reciprocal expansions, 266
self-, 268, 275

reciprocal polynomial, 191
relatively prime, 3, 37
repunit, 315
residue class, 12
Riesel-Morrison, 367
ring, 291
root of unity, 187
RSA, 33
running a period backwards, 275

shift, 6, 322, 356
sieve of Eratosthenes, 317
strong pseudoprime, 323
sum of divisors, 184
sum of squares, 143, 270
summatory function, 169
supplementary theorem

first, 110
second, 110, 125

Taylor’s theorem, 61
Thue’s lemma, 143, 156, 158
tournament, 17
trial division, 317

ultimately periodic, 251
unique factorization, 10, 291, 299, 309
unit, 293, 294

vertical distance, 195

wait for a square, 344
Wilson’s theorem, 57, 58, 79

zero-divisor, 14


