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Solutions

1) Use the Chinese Remainder Theorem to find all solutions to

x2 ≡ 15 mod 77.

Solution: Since 77 = 7 ∗ 11, we solve the congruence mod 7 and mod 11, then combine these
solutions using the CRT.

x2 ≡ 15 ≡ 1 mod 7

has the solutions x ≡ ±1 mod 7, and

x2 ≡ 15 ≡ 4 mod 11

has the solutions x ≡ ±2 mod 11.

The Euclidean algorithm gives that

1 = gcd(7, 11) = (−3) ∗ 7 + 2 ∗ 11

so

x ≡ 1 mod 7

x ≡ 2 mod 11

gives
x = 7n+ 1 = 11m+ 2 =⇒ 7n− 11m = 1

which have the solutions

n = −3 + 11s

m = −2 + 7s

hence x = −20 + 77s, so x ≡ −20 ≡ 57 mod 77. The other combinations of solutions mod 7
and mod 11 lift to x ≡ 13 mod 77, x ≡ 20 mod 77, and x ≡ 64 mod 77.

2) For which positive n does the congruence

x5 + x+ 1 ≡ 0 mod 5n

have a unique solution? Find all solutions for n = 1, 2.

Solution: Let f(x) = x5 + x+ 1. Then, by inspection, the congruence

f(x) ≡ 0 mod 5

has the unique solution x = 2. Since f ′(x) = 5x4 + 1, we have that f ′(x) ≡ 1 mod 5, hence
the zero mod 5 lifts uniquely to a zero mod 5n for all n, by Hensel’s lemma. For n = 2 we put



s = 2 + 5t and calculate that

0 ≡ f(s) = f(2 + 5t) mod 25

≡ (2 + 5t)5 + 5t+ 3 mod 25

≡ (25 +

(
5

1

)
24(5t) +

(
5

2

)
23(5t)2 +

(
5

3

)
22(5t)3 +

(
5

4

)
21(5t)4 + (5t)5) + 5t+ 3 mod 25

≡ 32 + 5t+ 3 mod 25

≡ 10 + 5t mod 25

so t ≡ −2 mod 25 and the unique zero is s = 2 + 5 ∗ (−2) = −8 ≡ 17 mod 25.

3) Let x = [13; 1, 7]. Compute the value of x.

Solution: We have

x = [13; 1, 7] = 13 +
1

1 + 1
7+ 1

1+···

,

thus we put

y = [1; 7] = 1 +
1

7 + 1
1+ 1

7+···

.

Then x = 13 + 1/y, and furthermore

y = 1 +
1

7 + 1
y

= 1 +
y

7y + 1

so
(y − 1)(7y + 1) = y,

which has the solutions y = 1
2 ±

√
77
14 . Picking the positive solution we have that y = 1

2 +
√
77
14 ,

and that

x = 13 +
1

y
= 13 +

1
1
2 +

√
77
14

=
105 + 13

√
77

7 +
√

77
.

(There is no need to perform the last simplification.)

4) The function f satisfies

f(1) = 1

f(1) + f(2) = a

f(1) + f(3) = b

f(1) + f(2) + f(4) = c

f(1) + f(2) + f(3) + f(6) = ab

f(1) + f(2) + f(3) + f(4) + f(6) + f(12) = bc

Calculate f(12). For which a, b, c can f be extended to a multiplicative function on the positive
integers?



Solution: We can write this as

F (1) =
∑
d|1

f(d) = 1

F (2) =
∑
d|2

f(d) = a

F (3) =
∑
d|3

f(d) = b

F (4) =
∑
d|4

f(d) = c

F (6) =
∑
d|6

f(d) = ab

F (12) =
∑
d|12

f(d) = bc

By Möbius inversion, we get that

f(12) =
∑
d|12

F (d)µ(12/d) = 1 ∗ 0 + a ∗ 1 + b ∗ 0 + c ∗ (−1) + ab ∗ (−1) + bc ∗ 1 = a− c− ab+ bc.

Since F (6) = ab = F (2) ∗ F (3) and F (12) = bc = F (3) ∗ F (4), and since 2, 3, 4 are primes or
prime powers, F can be extended to a multiplicative function F̃ on all positive integers (by
arbitrarily assigning values on the other prime powers). Then the function f̃ = µ ∗ F̃ is also
multiplicative, and extends f to all positive integers. This holds for all values of a, b, c.

5) Show that 10 is a primitive root modulo 17. List all quadratic residues mod 17.

Solution: By tedious calculations, we see that the order of 3 mod 17 is 16, hence 3 is a
primitive root mod 17. Since

33 = 27 ≡ 10 mod 17

and gcd(3, 16) = 1, we have that 10 is another primitive root mod 17.

We have that an integer is a quadratic residue mod 17 iff it has even index w.r.t. the primitive
root 10, which occurs iff it has even index w.r.t. the primitive root 3. We calculate (mod 17)

30 ≡ 316 ≡ 1, 32 ≡ 9, 34 ≡ 13, 36 ≡ 15, 38 ≡ 16, 310 ≡ 8, 312 ≡ 4, 314 ≡ 2

so the quadratic residues mod 17 are

1, 2, 4, 8, 9, 13, 15, 16.

6) The number 41 is a prime. Show that −1 is a quadratic residue module 41, then find a solution
to the congruence

x2 ≡ −1 mod 41

Among the solutions (m,n) to
mx+ n ≡ 0 mod 41

find a pair with 0 < |m|, |n| ≤ 6. Show that 41 = m2 + n2.

Solution:

If we can find such m,n, x, then

n2 = (−n)2 ≡ m2x2 ≡ −m2 mod 41,



so m2 + n2 ≡ 0 mod 41, hence 41|(m2 + n2). However, we have that 0 < m2 + n2 < 2 ∗ 41, so
m2 + n2 = 41.

Since 41 ≡ 1 mod 4, we have that
(−1
41

)
= (−1)

41−1
2 = 1, so −1 is a quadratic residue mod

41. Listing the squares mod 41, we se that 72 ≡ 8 mod 41, 82 ≡ 23 mod 41, but 92 ≡ −1
mod 41, so the solutions to x2 ≡ −1 mod 41 are x = ±9. We pick x = 9.

The congruence
9m+ n ≡ 0 mod 41

is equivalent to the Diophantine equation

41k + 9m+ n = 0

which has the solutions

(k,m, n) = (t, s,−41t− 9s), t, s ∈ Z.

Picking t = −1, s = 4 gives m = 4,n = 5, satisfying 0 < |m|, |n| ≤ 6. We check that
42 + 52 = 15 + 25 = 41.


