Solutions to Exercises for TATASS, batch 2, 2018

December 6, 2018

1. (3p) Suppose that G is a group, A, B are subgroups of G, and that g € G. Show that
gA N gBis aleft cosetin A N B.

Solution: Clearly, ’in’ should be *of . Apologies!

Then we claim that g(ANB) = gANgB. If h € ANB, then gh € LHS, butsince h € A,
we also have gh € gA, and similarly for gB. Conversely, if w € gA N gB, then w = gh
with h € A and h € B, hence h € A N B.

2. (3p) Determine subgroups K, H in D4 such that
{1}« K<aH< Dy

with all inclusions proper. Determine D4/K and (D4/K)/(H/K).

Solution: I had in mind that K should be normal in Dy, as well. If not, D4/K is not a
group, but rather the set of left cosets forms a Dy-set, i.e. D4 acts on it. What meaning, if
any, can be ascribed to (D4/K)/(H/K) in this scenario is not clear. I will choose K normal
in D4 below.

Recalling that T, 13 are conjugate in Dy, and that 2 lies in the center, we choose subgroups
which are unions of conjugacy classes, to make them normal in Dy: take K = {1, 12}, H =
{1, 7,12, 73}. Since these subgroups are all abelian, K<H. Since [D, : H] = 2, D4;/H ~ C,.
For the same reason, H/K ~ C,.

On the other hand, D4/K has 4 elements, but it is easy to see that no elemen has order
4 (the image of r has order 2). Thus, it is isomorphic to C, x C,. When modding out
by a subgroup of size two, the resulting group has two elements, and is thus isomorphic
to C,. This is confirmed by the third isomorphism theorem, which yields that D4/K ~

Da4/K)/(H/K).
3. (5p) Let G be a group.

(a) Suppose that S C G is a subset of G such that gsg~' € Sforall g € Gandall s € S.
Show that (S), the subgroup generated by S, is normal in G.

(b) Put K = ({xyx~'y~'|x,y € G }). Show that K < G.



(¢) Show that G/K is abelian.
(d) If N < G and G/N is abelian, show that K C N.
(e) If K€ H < G, show that H« G.

Solution:

Appearantly, some of this is covered in Svensson, so those of you that read the textbook
industriously were rewarded for your ardour.

(a) Note that there is a smallest superset S D S such that S~' C S; this is obtained by

simply adding all inverses of elements in S. Note furthermore that (S) = (S).
Thus, we can without loss of generality assume that S = S,
Then gs7'g™' = (g7'sg)™' € S7' = S. Let hsy'sy?---s;* € (S), where € €
{—1,1}. Then ghg™' = gs{'g'gs€2s™'--- gss~! € (S).
(b) The set K is closed under taking inverses, so the above result applies.

(c) Take x,y € G. Then xy = yx iff xyx 'y~' = 1. Modulo K, the latter identity
always hold, so the image of x and y commute in G/K.

(d) The above reasoning shows that x,y commute in G/N iff N contains xyx 'y~
Thus G/N is abelian iff N D K.

(e) Since G/K is abelian, and H/K < G/K, we have that H/K < G /K. We can thus form
(G/K)/(H/K). Consider the surjective group homomorphism

G/
H
(13(9):9?

Since ker ¢ = H, we get that H is normal in G.

4. (3p) Let G C Sg be given by all affine maps ¢pgp, a,b € R, a # 0, dqp(x) = ax + b.

(a) Show that G is a subgroup. Is it normal?
(b) Let N ={¢1|b € R}. Show that N <« G.
(¢c) Determine G/N.

Solution:
(a) We calculate
Gap(Pealx)) = baplex+d) = alex+d)+b = acx+ad+b = Pgcaarn(x) (1)

so the set of affine maps are closed under composition. Furthermore, we see that ¢ o
is the identity, and that d):b = (1/a,—b/a- Hence the affine maps form group.
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On the other hand, if f is a general bijection from R to R, then
f(dap(f))(x) = flaf ' (x) +b),

which is not in general an affine map; take for instance f(x) = x> with inverse
71(x) = sgn(x)|x|'/>.

(b) From (1) we get that a = ¢ = 1 gives
b1p 0 Pra = d1p1ay
and that cbiL = ¢1,p. Thus, N is a subgroup. We calculate
Pap(Pra(dr/a,-v/a(x))) = Pap(Pralx/a—b/a)) = dap(x/a—b/a+d)
= a(x/a — b/a + d) =x—b+ad= d)]’ad,b(x),

so N is normal in G.

(c) Since N denotes the translations, let us look at K = { ¢q0|a # 0}, the set of pure
scalings. Then (1) shows that K is a subgroup. The map

G> (ba,b*_)(ba,o ek

maps Pe,q 0 Geo and Gap 0 Pe,a = Pacyad+v 10 Paco = Pa,00Peyo, sOitis a surjective
group homomorphism onto K. The kernel is obviously N, and thus G/N ~ K.

5. (4p) Let [5] ={1,2,3,4,5}, and let X = ('), the set of unordered triplets of [5].

(a) Ssacts naturally on [5]. Show that the induced action ¢.{a, b,c} ={d(a), d(b), d(c)}
indeed determines an action of Ss on X.
(b) Determine the number of orbits of this action.
(c) Let H={((1,2,3,4,5)) act on X as above. Determine the number of orbits.
(d) Same question for K = ((1,2)).
(4]

(e) Partial credits if you solve the above questions for S; acting on ( 2) instead.

Solution:
(a) The identity acts trivially, and
£.¢{a,b,c} =&{d(a), d(b), d(c)} ={&(d(a)), E(D (b)), E(d(c))} = Eod.{a, b, c}.

(b) Given A = {a,b,c} and B = {u,v,w} there are precisely two bijections ¢ with
d(a) =u, ¢(b) =v, d(c) = w. Thus all triplets live in one big happy orbit.



(c) In this case, all group elements except the identity have empty fixedpoint, so Burn-
side’s lemma gives that the number of orbits is @) /5 = 10/5 = 2. To identify these
two orbits, we look at subsets as vectors (ay, az, as, a4, as), where a; = 1ifi € A,
and a; = 0 otherwise. Then the action permutes this vector cyclically, and the vectors
of weight 3 are divided into two orbits: one orbit, consisting of

(03031)131)’ (])O)O)])])? (1)1)0)0)1)) (1’1’15050)? (031?1?1?0)
where the zeroes are “cyclically adjacent”, and another orbit, consisting of
(0,1,0,1,1),(1,0,1,0,1),(1,1,0,1,0),(0,1,1,0,1),(1,0,71,1,0)

where they are not.

(d) In this case, the generator g = (12) has fixed points consisting of all triplets A such
that either 1,2 € A or {1,2} N A = (). There are 3 triplets of the first type, and one of
the second type, so the fixed point of g has size 3+ 1 = 4. Since the identity element
fixes all 10 elements in X, Burnside’s lemma tells us that the number of orbits is
H104+4)=7.

6. (5p) Show that the number of conjugacy classes in a finite group G is given by

1
— C C ={h e G|gh=hg}.
G 2 ICel9)l,  Colg) ={heGClgh=hg)
geG
Determine the number of conjugacy classes in Dg and Ds.

Solution: The stabilizer of g, when G atcs on itself via conjugation, is precisely C(g), so
the statement is precisely Burnside’s lemma.

In Dy, we have the relations ¥ = 1,s> = 1, st = s = r~'s. The identity obviously
commutes with everything, and a rotation ™ certainly commutes with any other rotation
. Furthermore, it does not commute with any reflection, since

4

*rls = 1™s, m=k+¢{ mod?9

but

Y

T STk — r121.71 1 {—k

st = =1t

and this is equal to the previous expression iff
{+k=0—k mod?9,

hence, if 2k = 0 mod 9, hence, if 1* = 1.
We conclude that |C(T%)| = 9.

The above calculation shows that a reflection h = r's does not commute with any rotation.
It certainly commutes with itself. If C(h) would contain any other reflection, then (since
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it is a subgroup) it would contain their product, which is a rotation. But C(h) contains no
rotations! Thus |C(h)| = 2.

Burnside’s lemma now gives that the number of conjugacy classes in Do is
1

S(1848+9+9+2) =6.

For Dyg, the rotation ™ commutes with everything, whereas the other rotations commute
with other rotations and the identity.

A reflection h = 1's now commutes with itself and 1, thus C(h) = {1, h,r* r*h}, and
Burnside’s lemma gives the number of orbits as
1

]6(16—1—16—1—6*84—8*4):7.

. (Ip+2p) Let u = (u;,uy)t and v = (vy,v2)! be two linearly independent vectors in R?,
and let B = [m v]} .PutL ={au+bv|a,b € Z}. This is called the lattice spanned by

u; v
uand v.

(a) Show that L < R?, and that R?/L ~ (R/Z) x (R/Z).

(b) Iff, g are two other linearly independent vectors in R?, with associated lattice M and
matrix C, show that L = M if and only if B = CU for some two-by-two matrix U
with integral entries, and determinant +1.

Solution: Clearly

(au+bv)+ (cu+dv) =(a+cju+ (b+d)v
—(au+bv) = (—a)u+ (—=b)(v),

so L is a subgroup.

Since u, v are linearly independent, they form an R-basis for R?. Given a vector w € R?,
we can uniquely write w = BY, with Y = (y1,y,)! € R2. The map

F:R?> = (R/Z) x (R/Z)
F(w) = (y1 +Z,y, + Z)

is a surjective group homomorphism with kernel L, so the first isomorphism theorem gives
the desired result.

For the second part, we first recall that a two-by-two integer matrix is invertible, with an
inverse that is also an integer matrix, if and only if it has determinant +1. This follows e.g.
from the formula for the inverse of a two-by-two matrix.



Now assume that B = CU. (In the first drafts there was a misprint, with B = UC,
apologies!) Then the columns of B are integer linear combinations of the columns of C,
so any integer linear combination of the columns of B are also integer linear combinations
of the columns of C. This proves that L C M. Since C = BU™, we get similarly that
M C L.

If on the other hand M = L, then in particular the columns of B are in L, hence are integer
linear combinations of the columns of C, so B = CU for some two-by-two integer matrix
U. Similarly, C = BV for some two-by-two integer matrix V. Combining, we have that

BI =B = CU = (BV)U = B(VU),
SO
B(I—UV) =0.

Since B’s columns are linearly independent, it is invertible (as a matrix over R) so we
conclude that
uv =1

hence that U, V are invertible, are each other’s inverses, and since thay have integer entries,

have determinant £1.

8. (4p) Denote by K the hypercube K = { (x1, X2, X3, %4) |0 < x1,%X2,X3,%4 < 1}, and let V =
{ (x1,%2, X3, X4) | X1, X2, X3, X4 € {0, 1}} be the set of its vertices. Let ¢; = (1,0,0,0), e; =
(O, ],0,0), €; = (O, O, 1,0), €4 = (O, O, O, 1) LetA = COI’IV(O, e, e +e,e +e+e;3 e+
e, +e3+ey).

Let 0 € Sy act on K by 0.(x1,X2,X3,X4) = (Xo(1), Xo(2), Xo(3) Xo(4))-

(a) What are the sizes of the orbits?

(b) Put Ay ={0.(x1,%2,%3,X4) | (X1, X2, X3, X4) € A}. Determine the volume of this sim-
plex, and show that
K= U0€S4Am

with A; N A a simplex of dimension < 4, hence of volume zero, for o # T.

(c) Partial credit if you solve the corresponding questions for n = 3, even more partial if
you look at n = 2.

Solution:

The simplex A is given by the inequalities
0<x <x <+ <xpy <1
For any partition S of [4] = {1, 2, 3,4} into parts which are intervals, we put

As ={(x1,%2,%3,X4) € Alx; = x;iff {i,j} C P € S}.



So, we have for instance that
(1/3,1/3,1/3,1/3) € Sqapy = { (x1, X2, X3,X4) € Alx1 = X2 = X3 = X4 }
(1/3,1/3,2/3,2/3) € Siiap3an =1 (X1,%2,X3,X4) € Alxg =% < X3 =x4}
We do not have any As which demands that x; = x3 and x; = x4, since the corresponding
intervals overlap.

We then have that Ag partition A. For a set partition S, there is a corresponding numerical
partition A which records the size of the parts. We let B, be the union of the corresponding
As, so that

By = Ay
Ba1 = Aqaamy U A,z
B2z = Ao
Borii = Aqaanan U Aqnzanan U Aqz,ea
Biiivim = Ay

Then A is also partitioned into the B,’s, and any orbit of an element in B, is contained in
B,.

e For (x,x,x,x) € By, the orbit have size 1.

e For (x,x,X,y) € Bs,1, the orbit have size 4.
)
)
)

e For (x,y,z,u) € By15141, the orbit have size 24.

€ B,.,, the orbit have size 6.

e For (x,x,y,z

(
(

e For (x,x,y,y
( € By,141, the orbit have size 12.
(

Since the symmetric group S, acts as a group of isometries, the induced maps are volume-
preserving, so 0.A have the same volume as A, which is

1
1

1
0
4100
0

CcC o — —
O =t ot )

1
1 24
1

We have that
Ay =1 (X1>X2>X3>X4)‘0 < X1 (1) € Xgo1(2) < Xo1(3) < Xgo1ay < 1}
It is evident that the A,’s cover the unit cube.
If (,j) is an inversion of o, i.e., 1 < j but o(i) > o(j), then
(X1,%2,X3,X4) EANA; = X =X

Since all As except Ay, have dimension < 4, and hence 4-dimensional volume zero, we
get that A N A, has volume zero. Similarly, A; N A; have volume zero if o # T.



