
Solutions to Exercises for TATA55, batch 2, 2018

December 6, 2018

1. (3p) Suppose that G is a group, A,B are subgroups of G, and that g ∈ G. Show that
gA ∩ gB is a left coset in A ∩ B.

Solution: Clearly, ’in’ should be ’of’. Apologies!

Then we claim that g(A∩B) = gA∩gB. If h ∈ A∩B, then gh ∈ LHS, but since h ∈ A,
we also have gh ∈ gA, and similarly for gB. Conversely, if w ∈ gA ∩ gB, then w = gh
with h ∈ A and h ∈ B, hence h ∈ A ∩ B.

2. (3p) Determine subgroups K,H in D4 such that

{1} / K /H /D4

with all inclusions proper. Determine D4/K and (D4/K)/(H/K).

Solution: I had in mind that K should be normal in D4, as well. If not, D4/K is not a
group, but rather the set of left cosets forms a D4-set, i.e. D4 acts on it. What meaning, if
any, can be ascribed to (D4/K)/(H/K) in this scenario is not clear. I will choose K normal
in D4 below.

Recalling that r, r3 are conjugate inD4, and that r2 lies in the center, we choose subgroups
which are unions of conjugacy classes, to make them normal in D4: take K = {1, r2},H =
{1, r, r2, r3}. Since these subgroups are all abelian, K/H. Since [D4 : H] = 2,D4/H ' C2.
For the same reason, H/K ' C2.
On the other hand, D4/K has 4 elements, but it is easy to see that no elemen has order
4 (the image of r has order 2). Thus, it is isomorphic to C2 × C2. When modding out
by a subgroup of size two, the resulting group has two elements, and is thus isomorphic
to C2. This is confirmed by the third isomorphism theorem, which yields that D4/K '
D4/K)/(H/K).

3. (5p) Let G be a group.

(a) Suppose that S ⊆ G is a subset of G such that gsg−1 ∈ S for all g ∈ G and all s ∈ S.
Show that 〈S〉, the subgroup generated by S, is normal in G.

(b) Put K = 〈
{
xyx−1y−1 x, y ∈ G

}
〉. Show that K /G.
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(c) Show that G/K is abelian.

(d) If N /G and G/N is abelian, show that K ⊆ N.

(e) If K ⊆ H ≤ G, show that H /G.

Solution:
Appearantly, some of this is covered in Svensson, so those of you that read the textbook
industriously were rewarded for your ardour.

(a) Note that there is a smallest superset S̃ ⊇ S such that S̃−1 ⊆ S̃; this is obtained by
simply adding all inverses of elements in S. Note furthermore that 〈S̃〉 = 〈S〉.
Thus, we can without loss of generality assume that S = S−1.
Then gs−1g−1 = (g−1sg)−1 ∈ S−1 = S. Let hsε11 s

ε2
2 · · · s

εk
k ∈ 〈S〉, where εj ∈

{−1, 1}. Then ghg−1 = gsε11 g
−1gsε2s−1 · · ·gsεks−1 ∈ 〈S〉.

(b) The set K is closed under taking inverses, so the above result applies.

(c) Take x, y ∈ G. Then xy = yx iff xyx−1y−1 = 1. Modulo K, the latter identity
always hold, so the image of x and y commute in G/K.

(d) The above reasoning shows that x, y commute in G/N iff N contains xyx−1y−1.
Thus G/N is abelian iff N ⊇ K.

(e) Since G/K is abelian, andH/K ≤ G/K, we have thatH/K /G/K. We can thus form
(G/K)/(H/K). Consider the surjective group homomorphism

φ : G→ G/K

H/K

φ(g) = g
H

K

Since kerφ = H, we get that H is normal in G.

4. (3p) Let G ⊆ SR be given by all affine maps φa,b, a, b ∈ R, a 6= 0, φa,b(x) = ax+ b.

(a) Show that G is a subgroup. Is it normal?

(b) Let N = {φ1,b b ∈ R }. Show that N /G.

(c) Determine G/N.

Solution:

(a) We calculate

φa,b(φc,d(x)) = φa,b(cx+d) = a(cx+d)+b = acx+ad+b = φac,ad+b(x) (1)

so the set of affine maps are closed under composition. Furthermore, we see that φ1,0
is the identity, and that φ−1

a,b = φ1/a,−b/a. Hence the affine maps form group.
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On the other hand, if f is a general bijection from R to R, then

f(φa,b(f
−1))(x) = f(af−1(x) + b),

which is not in general an affine map; take for instance f(x) = x3 with inverse
f−1(x) = sgn(x)|x|1/3.

(b) From (1) we get that a = c = 1 gives

φ1,b ◦ φ1,d = φ1,b+d,

and that φ−1
1,b = φ1,−b. Thus, N is a subgroup. We calculate

φa,b(φ1,d(φ1/a,−b/a(x))) = φa,b(φ1,d(x/a− b/a)) = φa,b(x/a− b/a+ d)

= a(x/a− b/a+ d) = x− b+ ad = φ1,ad−b(x),

so N is normal in G.

(c) Since N denotes the translations, let us look at K = {φa,0 a 6= 0 }, the set of pure
scalings. Then (1) shows that K is a subgroup. The map

G 3 φa,b 7→ φa,0 ∈ K

mapsφc,d toφc,0 andφa,b◦φc,d = φac,ad+b toφac,0 = φa,0◦φc,0, so it is a surjective
group homomorphism onto K. The kernel is obviously N, and thus G/N ' K.

5. (4p) Let [5] = {1, 2, 3, 4, 5}, and let X =
(
[5]
3

)
, the set of unordered triplets of [5].

(a) S5 acts naturally on [5]. Show that the induced actionφ.{a, b, c} = {φ(a), φ(b), φ(c)}
indeed determines an action of S5 on X.

(b) Determine the number of orbits of this action.

(c) Let H = 〈(1, 2, 3, 4, 5)〉 act on X as above. Determine the number of orbits.

(d) Same question for K = 〈(1, 2)〉.
(e) Partial credits if you solve the above questions for S4 acting on

(
[4]
2

)
instead.

Solution:

(a) The identity acts trivially, and

ξ.φ.{a, b, c} = ξ.{φ(a), φ(b), φ(c)} = {ξ(φ(a)), ξ(φ(b)), ξ(φ(c))} = ξ◦φ.{a, b, c}.

(b) Given A = {a, b, c} and B = {u, v,w} there are precisely two bijections φ with
φ(a) = u, φ(b) = v, φ(c) = w. Thus all triplets live in one big happy orbit.
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(c) In this case, all group elements except the identity have empty fixedpoint, so Burn-
side’s lemma gives that the number of orbits is

(
5
3

)
/5 = 10/5 = 2. To identify these

two orbits, we look at subsets as vectors (a1, a2, a3, a4, a5), where ai = 1 if i ∈ A,
and ai = 0 otherwise. Then the action permutes this vector cyclically, and the vectors
of weight 3 are divided into two orbits: one orbit, consisting of

(0, 0, 1, 1, 1), (1, 0, 0, 1, 1), (1, 1, 0, 0, 1), (1, 1, 1, 0, 0), (0, 1, 1, 1, 0)

where the zeroes are “cyclically adjacent”, and another orbit, consisting of

(0, 1, 0, 1, 1), (1, 0, 1, 0, 1), (1, 1, 0, 1, 0), (0, 1, 1, 0, 1), (1, 0, 1, 1, 0)

where they are not.

(d) In this case, the generator g = (12) has fixed points consisting of all triplets A such
that either 1, 2 ∈ A or {1, 2}∩A = ∅. There are 3 triplets of the first type, and one of
the second type, so the fixed point of g has size 3+ 1 = 4. Since the identity element
fixes all 10 elements in X, Burnside’s lemma tells us that the number of orbits is
1
2
(10+ 4) = 7.

6. (5p) Show that the number of conjugacy classes in a finite group G is given by

1

|G|
∑
g∈G

|CG(g)|, CG(g) = {h ∈ G gh = hg } .

Determine the number of conjugacy classes in D8 and D9.

Solution: The stabilizer of g, when G atcs on itself via conjugation, is precisely C(g), so
the statement is precisely Burnside’s lemma.

In D9, we have the relations r9 = 1,s2 = 1, sr = r8s = r−1s. The identity obviously
commutes with everything, and a rotation rk certainly commutes with any other rotation
r`. Furthermore, it does not commute with any reflection, since

rkr`s = rms, m ≡ k+ ` mod 9

but
r`srk = r`r−1srk−1 = · · · = r`−ks

and this is equal to the previous expression iff

`+ k ≡ `− k mod 9,

hence, if 2k ≡ 0 mod 9, hence, if rk = 1.

We conclude that |C(rk)| = 9.
The above calculation shows that a reflection h = r`s does not commute with any rotation.
It certainly commutes with itself. If C(h) would contain any other reflection, then (since
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it is a subgroup) it would contain their product, which is a rotation. But C(h) contains no
rotations! Thus |C(h)| = 2.
Burnside’s lemma now gives that the number of conjugacy classes in D9 is

1

18
(18+ 8 ∗ 9+ 9 ∗ 2) = 6.

For D8, the rotation r4 commutes with everything, whereas the other rotations commute
with other rotations and the identity.

A reflection h = r`s now commutes with itself and r4, thus C(h) = {1, h, r4, r4h}, and
Burnside’s lemma gives the number of orbits as

1

16
(16+ 16+ 6 ∗ 8+ 8 ∗ 4) = 7.

7. (1p+2p) Let u = (u1, u2)
t and v = (v1, v2)

t be two linearly independent vectors in R2,

and let B =

[
u1 v1
u2 v2

]
. Put L = {au + bv a, b ∈ Z }. This is called the lattice spanned by

u and v.

(a) Show that L ≤ R2, and that R2/L ' (R/Z)× (R/Z).
(b) If f, g are two other linearly independent vectors in R2, with associated latticeM and

matrix C, show that L = M if and only if B = CU for some two-by-two matrix U
with integral entries, and determinant ±1.

Solution: Clearly

(au + bv) + (cu + dv) = (a+ c)u + (b+ d)v
−(au + bv) = (−a)u + (−b)(v),

so L is a subgroup.

Since u, v are linearly independent, they form an R-basis for R2. Given a vector w ∈ R2,
we can uniquely write w = BY, with Y = (y1, y2)

t ∈ R2. The map

F : R2 → (R/Z)× (R/Z)
F(w) = (y1 + Z, y2 + Z)

is a surjective group homomorphism with kernel L, so the first isomorphism theorem gives
the desired result.

For the second part, we first recall that a two-by-two integer matrix is invertible, with an
inverse that is also an integer matrix, if and only if it has determinant±1. This follows e.g.
from the formula for the inverse of a two-by-two matrix.
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Now assume that B = CU. (In the first drafts there was a misprint, with B = UC,
apologies!) Then the columns of B are integer linear combinations of the columns of C,
so any integer linear combination of the columns of B are also integer linear combinations
of the columns of C. This proves that L ⊆ M. Since C = BU−1, we get similarly that
M ⊆ L.

If on the other handM = L, then in particular the columns of B are in L, hence are integer
linear combinations of the columns of C, so B = CU for some two-by-two integer matrix
U. Similarly, C = BV for some two-by-two integer matrix V . Combining, we have that

BI = B = CU = (BV)U = B(VU),

so
B(I−UV) = 0.

Since B’s columns are linearly independent, it is invertible (as a matrix over R) so we
conclude that

UV = I

hence thatU, V are invertible, are each other’s inverses, and since thay have integer entries,
have determinant ±1.

8. (4p) Denote by K the hypercube K = { (x1, x2, x3, x4) 0 ≤ x1, x2, x3, x4 ≤ 1 }, and let V =
{ (x1, x2, x3, x4) x1, x2, x3, x4 ∈ {0, 1} } be the set of its vertices. Let e1 = (1, 0, 0, 0), e2 =
(0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1). Let ∆ = conv(0, e1, e1+ e2, e1+ e2+ e3, e1+
e2 + e3 + e4).
Let σ ∈ S4 act on K by σ.(x1, x2, x3, x4) = (xσ(1), xσ(2), xσ(3), xσ(4)).

(a) What are the sizes of the orbits?

(b) Put ∆σ = {σ.(x1, x2, x3, x4) (x1, x2, x3, x4) ∈ ∆ }. Determine the volume of this sim-
plex, and show that

K = ∪σ∈S4∆σ,

with ∆σ ∩ ∆τ a simplex of dimension < 4, hence of volume zero, for σ 6= τ.

(c) Partial credit if you solve the corresponding questions for n = 3, even more partial if
you look at n = 2.

Solution:
The simplex ∆ is given by the inequalities

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1

For any partition S of [4] = {1, 2, 3, 4} into parts which are intervals, we put

AS = { (x1, x2, x3, x4) ∈ ∆ xi = xj iff {i, j} ⊂ P ∈ S } .
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So, we have for instance that

(1/3, 1/3, 1/3, 1/3) ∈ S{[4]} = { (x1, x2, x3, x4) ∈ ∆ x1 = x2 = x3 = x4 }
(1/3, 1/3, 2/3, 2/3) ∈ S{{1,2},{3,4}} = { (x1, x2, x3, x4) ∈ ∆ x1 = x2 < x3 = x4 }

We do not have any AS which demands that x1 = x3 and x2 = x4, since the corresponding
intervals overlap.

We then have that AS partition ∆. For a set partition S, there is a corresponding numerical
partition λ which records the size of the parts. We let Bλ be the union of the corresponding
AS, so that

B4 = A{[4]}

B3+1 = A{{1,2,3},{4}} ∪A{{{1},{2,3,4}}}

B2+2 = A{{1,2},{3,4}}

B2+1+1 = A{{1,2},{3},{4}} ∪A{{1},{2,3},{4}} ∪A{{1},{2},{3,4}}

B1+1+1+1 = A{{1},{2},{3},{4}}

Then ∆ is also partitioned into the Bλ’s, and any orbit of an element in Bλ is contained in
Bλ.

• For (x, x, x, x) ∈ B4, the orbit have size 1.
• For (x, x, x, y) ∈ B3+1, the orbit have size 4.
• For (x, x, y, y) ∈ B2+2, the orbit have size 6.
• For (x, x, y, z) ∈ B2+1+1, the orbit have size 12.
• For (x, y, z, u) ∈ B1+1+1+1, the orbit have size 24.

Since the symmetric group S4 acts as a group of isometries, the induced maps are volume-
preserving, so σ.∆ have the same volume as ∆, which is

1

4!

∣∣∣∣∣∣∣∣
1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

∣∣∣∣∣∣∣∣ =
1

24
.

We have that

∆σ =
{
(x1, x2, x3, x4) 0 ≤ xσ−1(1) ≤ xσ−1(2) ≤ xσ−1(3) ≤ xσ−1(4) ≤ 1

}
It is evident that the ∆σ’s cover the unit cube.

If (i, j) is an inversion of σ, i.e., i < j but σ(i) > σ(j), then

(x1, x2, x3, x4) ∈ ∆ ∩ ∆σ =⇒ xi = xj

Since all AS except A{[4]} have dimension < 4, and hence 4-dimensional volume zero, we
get that ∆ ∩ ∆σ has volume zero. Similarly, ∆σ ∩ ∆τ have volume zero if σ 6= τ.
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