Exercises for TATA55, batch 1, 2019

September 19, 2019

Solutions to the exercises below should be handed in no later than October XXX, 2019.

- 1. (3p) Assuming Bezout (the gcd is a integral linear combination of its arguments) show that a prime dividing a product divides one of the factors.
- 2. (3p) Find all solutions to

$$3x + 5y = 999, \qquad x, y \in \mathbb{Z}$$

with y positive and x even.

3. (3p) Solve (by hand, though you may check your answer using machines)

$$x \equiv 57 \mod 96$$
$$x \equiv 95 \mod 98$$

- 4. (1p+2p) Let X be a finite set, and let ~ be an equivalence relation on X. Let $T = \{x_1, \ldots, x_n\}$ be a transversal, i.e., a choice of exactly one element from each equivalence class.
 - (a) Define a map $N : X \to X$ such that
 - i. $N \circ N = N$, and ii. $x \sim y$ iff N(x) = N(y), and iii. N(X) = T.
 - $\Pi, \Pi(X) = 1.$
 - (b) If $N: X \to X$ satisfies the first two of the above conditions, need N(X) be a transversal?
- 5. (1p+3p) Let $X = \{a, b\}$, and let X^* denote the monoid of all "words" in the letters in X, including the empty word; the operation is concatenation.

Suppose that u, v are non-empty words in X^* .

Show that

$$uv = vu$$

if and only if u, v are both powers of some common word, i.e. if there exists a non-empty word z, and positive integers k, ℓ , such that

$$\mathfrak{u}=z^k, \quad \mathfrak{v}=z^\ell$$

As an example, u = abaaba and v = abaabaaba commute.

6. (3p) Let M be a monoid, and let $x \in M$. Suppose that there exists positive integers 0 < n < m such that $x^n = x^m$. Show that there are positive integers N, s such that, for all non-negative integers a, b, it holds that

$$x^{N+a} = x^{N+b} \iff a \equiv b \mod s$$

((2p) If you can't solve this one, give an example of a monoid M and an element x such that $x^7 = x^{11}$ is the earliest coincidence, and show that for non-negative a, b, $x^{7+a} = x^{7+b}$ if and only if $a \equiv b \mod 4$.)