Exercises for TATA55, batch 1, 2021

September 10, 2021

Solutions to the exercises below should be handed in no later than October XXX, 2021.

1. (3p) Find all solutions to

$$13x + 17y = 999, \quad x, y \in \mathbb{Z}$$

Which solutions have both x and y positive?

2. (3p) Solve (by hand, though you may check your answer using machines)

$$x \equiv 112 \mod 95$$

 $x \equiv 115 \mod 97$

3. (3p) For any positive integer n, solve the linear Diophantine equation

$$x_1 + x_2 + \cdots + x_n = 1$$

- 4. (3p) Let m, n be positive integers. Find a square matrix A such that $A^m = A^{m+kn}$ for all $k \in \mathbb{N}$, and such that furthermore A^0, \ldots, A^{m-1} are all distinct.
- 5. (3p) For $2 \le n \le 20$, check whether $U_n = Z_n^{\times}$ is cyclic. Formulate a bold hypothesis.
- 6. (6p) Let $\mathcal{T} = \{z \in \mathbb{C} | |z| = 1\}$ be the group of complex numbers of unit modulus, under multiplication.
 - (a) For any positive integer n, show that there is a unique subgroup of \mathcal{T} of cardinality n, and that this subgroup is cyclic.
 - (b) Show that there are infinitely many different subgroups of $\mathcal T$ that are isomorphic to the infinite cyclic group C_∞ .
 - (c) Show that, for each positive integer r, there are infinitely many different subgroups of \mathcal{T} that are isomorphic to the direkt product C^r_{∞} .
 - (d) Show that, for each positive integers n, r, there are infinitely many different subgroups of \mathcal{T} that are isomorphic to the direkt product $C_n \times C_\infty^r$.
 - (e) Show that any "interval" in \mathcal{T} containing 1 generates \mathcal{T} .
 - (f) Must any generating set of \mathcal{T} contain such an interval?
- 7. (4p) Let G be the group generated by the permutations (1, 2), (2, 3), and (4, 5).
 - (a) List all elements in G
 - (b) Is G cyclic?
 - (c) Is G abelian?
 - (d) Which well-known group is G isomorphic to?