Exercises for TATA55, batch 3, 2021

November 30, 2021

Solutions to the exercises below should be handed in no later than December xxx, 2021.

1. (3p) Let R be a commutative, unitary ring. Let

$$Nil(R) = \{ r \in R | \exists n \ge 1, r^n = 0 \}.$$

- (a) Show that Nil(R) is an ideal of R.
- (b) Show that Nil(R) is not necessarily an ideal of a non-commutative ring R.
- (c) Show that if $r \in Nil(R)$ then 1 r is invertible in R.
- 2. (3p) Find the characteristic of the following commutative rings:
 - (a) $\frac{\mathbb{Z}}{3\mathbb{Z}} \times \frac{\mathbb{Z}}{9\mathbb{Z}} \times \frac{\mathbb{Z}}{15\mathbb{Z}}$
 - (b) $\mathbb{Z}[i]$, where $i \in \mathbb{C}$, $i^2 = -1$
 - (c) $\frac{\mathbb{Z}[j]}{(2-5j)}$ where j is a primitive 3rd root of unity, $j^3 = 1$ but, $j^2 \neq 1$, you can explicitly take $j = exp(\frac{2}{3}\pi i) \in \mathbb{C}$.
- 3. (2p) Provide explicit ring isomorphisms between
 - (a) $\frac{\mathbb{Z}[x]}{(n,x)}$ and $\frac{\mathbb{Z}}{n\mathbb{Z}}$, (b) $\frac{\mathbb{Z}[x]}{(n)}$ and $(\frac{\mathbb{Z}}{n\mathbb{Z}})[x]$.
- 4. (3p) Which of the following ideals in $\mathbb{Z}[x]$ are prime? Which are maximal?
 - (a) (x, x + 1),
 - (b) $(5, x^2 + 4)$,
 - (c) $(x^2 + 1, x + 2)$.

For the two remaining questions, some parts may require the use of a computer. For instance, SAGEmath will make light work of them! Feel free to ask me about SAGEmath!

You can of course use another computer algebra software, or write your own programs.

- 5. (4p) Let $g(x) = x^6 x^3 2 \in \mathbb{Q}[x]$. Put $R = \mathbb{Q}[x]/(g(x))$.
 - (a) Is R an integral domain?
 - (b) Find all proper, non-trivial ideals of R.
 - (c) Let a denote the coset $x + (g(x)) \in R$. Find, if possible, the inverse of a.
 - (d) Find a general expression for a^k , $k \ge 0$, as a linear combination of a^0 , a^1 , a^2 , a^3 , a^4 , a^5 .
- 6. (5p) Let $R = \mathbb{Q}[D_4]$, the group algebra on $D_4 = \langle r, s | r^4 = s^2 = rsrs = 1 \rangle$. In other words, R is the \mathbb{Q} -vector space with basis elements labeled with the elements of D_4 , and with multiplication the \mathbb{Q} -linear extension of the multiplication on basis elements given by the multiplication of D_4 .
 - (a) Put $t = 1 * r + 1 * s \in R$. Calculate t * t and t * t * t
 - (b) Put v = 1 * 1 + 1 * s. Find an explicit expression for v^k for any positive k.
 - (c) Show that the map

$$\begin{split} \mathsf{F} &: \mathbb{Q}[\mathsf{D}_4] \to \mathbb{Q} \\ &\sum_{g \in \mathsf{D}_4} \mathsf{c}(g)g \mapsto \sum_{g \in \mathsf{D}_4} \mathsf{c}(g) \end{split}$$

is Q-linear and calculate its kernel.

(d) Show that the *left annihilator*

Ann
$$(t) = \{ f \in R | f * t = 0 \}$$

is a left ideal of R, and calculate a basis of it as a Q-vector space.

(e) List the conjugacy classes in D₄. Calculate the *center* of R, i.e.,

Center(R) = {
$$f \in R | f * h = h * f \text{ for all } h \in R$$
 }

Compare.