Solutions to Exercises for TATASS, batch 3, 2021

December 10, 2021

1. (3p) Let R be a commutative, unitary ring. Let
Nil(R) ={reR|In> 1, =0}.
(a) Show that Nil(R) is an ideal of R.

(b) Show that Nil(R) is not necessarily an ideal of a non-commutative ring R.
(c) Show that if r € Nil(R) then 1 — r is invertible in R.

Solution: Let 1, s € Nil(R), t € R. We can assume that ™™ = s™ = 0. Then

2N
(r+s)™=>" (Zs)rksmk =0

k=0
We also have that (tr)N = tNrN = 0.

If g € R and R is non-commutative, and furthermore g™ = 0, it does not follow that for
any t € Rm (tg)™ = 0, since

(tg)" =tgtg...tg
Let R be finitely presented (Q-algebra with generators x,y and relation x™ = 0. Then
xyxy ...xy does not reduce to zero.

A=l =l

in the ring of 2x2-matrices. Then A, B are nilpotent, but A + B is not.

Another example:

Now R is commutative once again, and r € R is nilpotent, with r™ = 0.

Then
- +r+-F+")=1—1"=1.

Some of you expressed this as
A=)+ +)A+ - =1,

which is actually equivalent.



2. (3p) Find the characteristic of the following commutative rings:

7 7 YA
(@) 37 X 97 X 157

(b) Z[i], where i € C, i* = —1

7[5
© =

take j = exp($mi) € C.

where j is a primitive 3rd root of unity, j> = 1 but, j2> # 1, you can explicitly

Solution: 1 = ([1]3, [1]s, [1]15), so n[1] = 0 = ([0]3, [0]s, [0]10) iff n is a common multiple
of 3,9, 15, so the characteristic is 45.

In (ZI[il,+,0), (1) is infinite, so the characteristic of the ring is zero.
Call the last ring R = Z[j]/1. In Z[j] it holds that j> +j + 1 = 0, so

(2-5j)(2—5]") =4—10(+j%) + 25> =4+ 10+ 25 = 39,

hence this is zero in R. The characteristic c is hence a divisor of 39. We have expressed
c * 1 € Z[j] as an element of the ideal (2 — 5j), so

¢ =(2—5j)(a+ bj), a,b e Z.

We can embed Z[j] inside C, and use complex absolute values: then |c|* = |2—5j|*|a+bj|*.
Since j = j* we have that |a + bj]* = (a + bj)(a + bj?) = a? + b* + ab(j +j* ==
a’+ b2 — ab and |2 — 5j|* = 39, so we get that

¢t =39(a® + b* — ab).
So 39 }cz, and hence ¢ = 39.

3. (2p) Provide explicit ring isomorphisms between

Z[x] Z
(a) ) and =,

(b) T and ().
Solution: The surjective ring homomorphism
ZIx] 3 f(x) — [f(0)]. € Zy

sends both (x) and (n) to zero, hence its kernel N contains (x,n) = (x)+(n). Conversely,
any f(x) can be written as
f(x) =xg(x) +c,

which gets sent to [c],,, which is zero iff ¢ € (n), so the kernel N is precisely (x,n). The
explicit isomorphism provided by the first isomorphism theorem is

(xg(x) +¢) + N = [cl,
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Next, define
¢ : Zx] — Zn[x]

(Z apd) = i aJ]nxj
j=0

This is again a surjective ring homomorphism, and has kernel (n). So the first isomorphism
theorem gives the isomorphism

dAD:% — Zin[X]

m m
b . j
¢ E a;x + E [ajlnx
j=0 =0

4. (3p) Which of the following ideals in Z[x] are prime? Which are maximal?
@ (x,x+1),
(b) (5,x* +4),
() (x*+1,x+2).

Solution:

(@ T=—1xx+1x%(x+ 1) so the ideal is the whole ring.

(b) x2+4 ~ x2+4 Since x> +4 = x> —1 = (x+ 1)(x — 1) the quotient has zero-divisors, and
the or1g1nal 1dea1 is not prime.

(c) From x = —2, x> = —1 we conclude that 5 = 0 and x = 3, so the quotient is Z/(5Z), a
field, hence the ideal is maximal.

5. (4p) Let g(x) = x®* — x> — 2 € Q[x]. Put R = Q[x]/(g(x)).

(a) Is R an integral domain?
(b) Find all proper, non-trivial ideals of R.

(c) Let a denote the coset x + (g(x)) € R. Find, if possible, the inverse of a.

1 .2 43 o4 45
,a%,a’,a’, a’.

(d) Find a general expression for a®, k > 0, as a linear combination of ao, a
Solution:
(a) First, we factor g(x) into irreducible factors:
gx) = =2) % (x* =x+ 1) % (x+1).

In the quotient, the factors become zero-divisors, so R is no domain.
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(b) By the correspondence theorem, proper and non-trivial ideals in the quotient corre-
spond to proper ideals in the polynomial ring which properly contains (g(x)), hence,
since Q[x] is a PID, to the ideals (x + 1), (x> —x+1), (x> —=2), ((x* =x+ 1) (x + 1)),
(¢ =2)(x + 1)), (6 = 2)(x + 1))

(c) Since a® — a® — 2 = 0, we have that a® = a® + 2, and we see that

ala®>—ad)=a*—-ad*=a’+2—-a*=2,

1 _ 1,5 1.2
soa” =5a’—5a°.

(d) We tabulate the first 24 powers of a:

0,1)
)

o~
—

-
o)

"
a®)

(6,a°+2
(7 a*+2xa

(2,a
(3,a%)
(4, a
(5,

(9 3xa’+

(10,3 % a* + 2 %
(11,3 % a® 4+ 2 * a?
(12,5 a’® +
(13,5% a* + 6 %
(14,5% a® + 6« a®
(15,11 % a®> + 10
(16,11 % a* + 10 «
(17,11 %« a®> + 10 % a?
(18,21 a® + 22
(19,21 % a* +22 % a
(20,21 % a® + 22 % a?
(21,43 x a® +42
(22,43 a* +42xa

)
)
)
2)
a)
)
6)
a)
)
)
a)
)
)
)
)
)
)
(23,43 % a® +42 % a?)



Then, we ask the Online Encyclopedia of Integer Sequences about
1,3,5,11,21,43
and get the answer: A001045 Jacobsthal sequence (or Jacobsthal numbers):
am)=an—-1)4+2*xa(n—2), witha(0) =0,a(1) =1,

We are already using a, so let us call them J(n) instead. Then, a reasonable hypothesis

is that
(J(2n)a® +](2n) +1 k=0
J2n)at+ (J2n) +1a k=1
Qe — J2n)a® + (J(2n) +1)a? k=2
J(2n)a®+J(2n) —1 k=3
J2n)a*+ (J(2n) —Na k=4
J2n)a® + (J(2n) —1)a? k=5

This is straightforward, if tedious, to prove by induction, using the relation
Jim) =J(m—1) 4+ 2J(m —2).

One could also use the CRT and look at the image of x* in

Qlx] QIx] QIx]
C—2) F—x+1) (x+ 1

to see the patterns there, then lift back to R.

6. (5p) Let R = Q[Dy], the group algebra on Dy = (1,s|r* = s> = rsrs = 1). In other
words, R is the Q-vector space with basis elements labeled with the elements of Dy, and
with multiplication the Q-linear extension of the multiplication on basis elements given by
the multiplication of Dy.

(@) Putt=1%xr+1xs e R Calculatetxtandt*tx*t
(b) Putv =1%1+ 1 xs. Find an explicit expression for v* for any positive k.
(c¢) Show that the map

F: QD4 — Q

D clglg— ) clg)

9€Ds g€Ds
is Q-linear and calculate its kernel.
(d) Show that the left annihilator

Ann(t) ={f e R|fxt =0}

is a left ideal of R, and calculate a basis of it as a (Q-vector space.
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(e) List the conjugacy classes in D4. Calculate the center of R, i.e.,
Center(R) ={f € R|f xh =hxfforallh € R}

Compare.

Solution: : We represent D, as a permutation subgroup of S, by mapping v to (1,2, 3,4)
and s to (2,4).

(a) We label the vertices of the square counterclockwise; then r = (1,2,3,4) and s =
(2,4),sot=1((1,2,3,4) + (2,4), and

=0+ (1,2)(3,4) + (1,3)(2,4) + (1,4)(2,3)
2 =2%(2,4)+2%(1,2,3,4) + 2% (1,3) +2%(1,4,3,2)

(b) Next, we putv = () + (2,4) and calculate

0+ (2,4)

2% () +2%(2,4)
S=4x()+4%(2,4)
Y =8x()+8x(2,4)

1
2

v
v
v
v

It seems reasonable to assume that V™! = 2" x v, so let us prove this by induction.
The base case is clear, so consider

VT =y eyt

= (04 (2,4) (2" "% () + 27" % (2,4))
=2V )+ 2" T () + 2V T () + 2V T () =27 () + 205 (2,4).

(c) The map is the linear map that sends each basis vector to 1, so its matrix with respect
to this basis is

1,1,1,1,1,1,1,1]

which has nullity 7, with a basis given by —e; + ¢; for 2 < j < 8. Translated back to
our vector space we have the basis

{1xg=1x0lg#0}.

(d) We first show that Ann(t) is a left ideal for any t. Suppose that f,g € Ann(t), u,v €
R. Then (f4 g)t = ft+ gt = 0, and (vf)t = v(ft) = v* 0 = 0, hence the annihilator
is a left ideal.

Now lett = 1x%(1,2,3,4)+1x(2,4), and let SAGEmath calculate the left annihilator
(or solve the linear system of equations in another way). We get a basis



_(2»4)+(1>4>3>2)) (1)2)3»4)_(1>3))

so the annihilator is a four-dimensional subspace of the eight-dimensional group alge-
bra.
(e) According to SAGEmath, the center has a basis (as a vector subspace) consisting of

0,(2,4)+(1,3),(1,2)(3,4) + (1,4)(2,3),(1,2,3,4) + (1,4,3,2), (1, 3)(2,4)

Each basis element is the sum of all elements in a conjugacy class of Dy.



