
Solutions to Exercises for TATA55, batch 3, 2021

December 10, 2021

1. (3p) Let R be a commutative, unitary ring. Let

Nil(R) = { r ∈ R ∃n ≥ 1, rn = 0 } .

(a) Show that Nil(R) is an ideal of R.

(b) Show that Nil(R) is not necessarily an ideal of a non-commutative ring R.

(c) Show that if r ∈ Nil(R) then 1− r is invertible in R.

Solution: Let r, s ∈ Nil(R), t ∈ R. We can assume that rN = sN = 0. Then

(r+ s)2N =

2N∑
k=0

(
2N

k

)
rks2N−k = 0

We also have that (tr)N = tNrN = 0.

If g ∈ R and R is non-commutative, and furthermore gn = 0, it does not follow that for
any t ∈ Rm (tg)n = 0, since

(tg)n = tgtg . . . tg

Let R be finitely presented Q-algebra with generators x, y and relation xn = 0. Then
xyxy . . . xy does not reduce to zero.

Another example:

A =

[
0 1

0 0

]
, B =

[
0 0

1 0

]
in the ring of 2x2-matrices. Then A,B are nilpotent, but A+ B is not.

Now R is commutative once again, and r ∈ R is nilpotent, with rn = 0.

Then
(1− r)(1+ r+ · · ·+ rn−1) = 1− rn = 1.

Some of you expressed this as

(1− r)(1+ r)(1+ r2)(1+ r4) · · · = 1,

which is actually equivalent.
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2. (3p) Find the characteristic of the following commutative rings:

(a) Z
3Z ×

Z
9Z ×

Z
15Z

(b) Z[i], where i ∈ C, i2 = −1

(c) Z[j]
(2−5j)

where j is a primitive 3rd root of unity, j3 = 1 but, j2 6= 1, you can explicitly
take j = exp( 2

3
πi) ∈ C.

Solution: 1 = ([1]3, [1]9, [1]15), so n[1] = 0 = ([0]3, [0]9, [0]10) iff n is a common multiple
of 3, 9, 15, so the characteristic is 45.

In (Z[i],+, 0), 〈1〉 is infinite, so the characteristic of the ring is zero.

Call the last ring R = Z[j]/I. In Z[j] it holds that j2 + j+ 1 = 0, so

(2− 5j)(2− 5j2) = 4− 10(j+ j2) + 25j3 = 4+ 10+ 25 = 39,

hence this is zero in R. The characteristic c is hence a divisor of 39. We have expressed
c ∗ 1 ∈ Z[j] as an element of the ideal (2− 5j), so

c = (2− 5j)(a+ bj), a, b ∈ Z.

We can embed Z[j] inside C, and use complex absolute values: then |c|2 = |2−5j|2|a+bj|2.
Since j = j2 we have that |a + bj|2 = (a + bj)(a + bj2) = a2 + b2 + ab(j + j2 ==
a2 + b2 − ab and |2− 5j|2 = 39, so we get that

c2 = 39(a2 + b2 − ab).

So 39
∣∣c2 , and hence c = 39.

3. (2p) Provide explicit ring isomorphisms between

(a) Z[x]
(n,x)

and Z
nZ ,

(b) Z[x]
(n)

and ( Z
nZ)[x].

Solution: The surjective ring homomorphism

Z[x] 3 f(x) 7→ [f(0)]n ∈ Zn

sends both (x) and (n) to zero, hence its kernelN contains (x, n) = (x)+(n). Conversely,
any f(x) can be written as

f(x) = xg(x) + c,

which gets sent to [c]n, which is zero iff c ∈ (n), so the kernel N is precisely (x, n). The
explicit isomorphism provided by the first isomorphism theorem is

(xg(x) + c) +N 7→ [c]n
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Next, define

φ : Z[x] → Zn[x]

φ

(
m∑
j=0

ajx
j

)
=

m∑
j=0

[aj]nx
j

This is again a surjective ring homomorphism, and has kernel (n). So the first isomorphism
theorem gives the isomorphism

φ̂ :
Z[x]
(n)

→ Zn[x]

φ̂

(
m∑
j=0

ajx
j + (n)

)
=

m∑
j=0

[aj]nx
j

4. (3p) Which of the following ideals in Z[x] are prime? Which are maximal?

(a) (x, x+ 1),

(b) (5, x2 + 4),

(c) (x2 + 1, x+ 2).

Solution:

(a) 1 = −1 ∗ x+ 1 ∗ (x+ 1) so the ideal is the whole ring.

(b) Z[x]
(5,x2+4)

' Z5[x]
(x2+4)

. Since x2+ 4 ≡ x2− 1 ≡ (x+ 1)(x− 1) the quotient has zero-divisors, and
the original ideal is not prime.

(c) From x ≡ −2, x2 ≡ −1 we conclude that 5 ≡ 0 and x ≡ 3, so the quotient is Z/(5Z), a
field, hence the ideal is maximal.

5. (4p) Let g(x) = x6 − x3 − 2 ∈ Q[x]. Put R = Q[x]/(g(x)).

(a) Is R an integral domain?

(b) Find all proper, non-trivial ideals of R.

(c) Let a denote the coset x+ (g(x)) ∈ R. Find, if possible, the inverse of a.

(d) Find a general expression for ak, k ≥ 0, as a linear combination of a0, a1, a2, a3, a4, a5.

Solution:

(a) First, we factor g(x) into irreducible factors:

g(x) = (x3 − 2) ∗ (x2 − x+ 1) ∗ (x+ 1).
In the quotient, the factors become zero-divisors, so R is no domain.
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(b) By the correspondence theorem, proper and non-trivial ideals in the quotient corre-
spond to proper ideals in the polynomial ring which properly contains (g(x)), hence,
since Q[x] is a PID, to the ideals (x+ 1), (x2− x+ 1), (x3− 2), ((x2− x+ 1)(x+ 1)),
((x3 − 2)(x+ 1)), ((x3 − 2)(x+ 1)).

(c) Since a6 − a3 − 2 = 0, we have that a6 = a3 + 2, and we see that

a(a5 − a2) = a6 − a3 = a3 + 2− a3 = 2,

so a−1 = 1
2
a5 − 1

2
a2.

(d) We tabulate the first 24 powers of a:

(0, 1)

(1, a)

(2, a2)

(3, a3)

(4, a4)

(5, a5)

(6, a3 + 2)

(7, a4 + 2 ∗ a)
(8, a5 + 2 ∗ a2)
(9, 3 ∗ a3 + 2)

(10, 3 ∗ a4 + 2 ∗ a)
(11, 3 ∗ a5 + 2 ∗ a2)

(12, 5 ∗ a3 + 6)
(13, 5 ∗ a4 + 6 ∗ a)
(14, 5 ∗ a5 + 6 ∗ a2)
(15, 11 ∗ a3 + 10)

(16, 11 ∗ a4 + 10 ∗ a)
(17, 11 ∗ a5 + 10 ∗ a2)

(18, 21 ∗ a3 + 22)
(19, 21 ∗ a4 + 22 ∗ a)
(20, 21 ∗ a5 + 22 ∗ a2)

(21, 43 ∗ a3 + 42)
(22, 43 ∗ a4 + 42 ∗ a)
(23, 43 ∗ a5 + 42 ∗ a2)
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Then, we ask the Online Encyclopedia of Integer Sequences about

1, 3, 5, 11, 21, 43

and get the answer: A001045 Jacobsthal sequence (or Jacobsthal numbers):

a(n) = a(n− 1) + 2 ∗ a(n− 2), with a(0) = 0, a(1) = 1;

We are already using a, so let us call them J(n) instead. Then, a reasonable hypothesis
is that

a6n+k =



J(2n)a3 + J(2n) + 1 k = 0

J(2n)a4 + (J(2n) + 1)a k = 1

J(2n)a5 + (J(2n) + 1)a2 k = 2

J(2n)a3 + J(2n) − 1 k = 3

J(2n)a4 + (J(2n) − 1)a k = 4

J(2n)a5 + (J(2n) − 1)a2 k = 5

This is straightforward, if tedious, to prove by induction, using the relation

J(m) = J(m− 1) + 2J(m− 2).

One could also use the CRT and look at the image of xk in

Q[x]

(x3 − 2)
,

Q[x]

(x2 − x+ 1)
,

Q[x]

(x+ 1
,

to see the patterns there, then lift back to R.

6. (5p) Let R = Q[D4], the group algebra on D4 = 〈r, s|r4 = s2 = rsrs = 1〉. In other
words, R is the Q-vector space with basis elements labeled with the elements of D4, and
with multiplication the Q-linear extension of the multiplication on basis elements given by
the multiplication of D4.

(a) Put t = 1 ∗ r+ 1 ∗ s ∈ R. Calculate t ∗ t and t ∗ t ∗ t
(b) Put v = 1 ∗ 1+ 1 ∗ s. Find an explicit expression for vk for any positive k.

(c) Show that the map

F : Q[D4] → Q∑
g∈D5

c(g)g 7→ ∑
g∈D5

c(g)

is Q-linear and calculate its kernel.

(d) Show that the left annihilator

Ann(t) = { f ∈ R f ∗ t = 0 }

is a left ideal of R, and calculate a basis of it as a Q-vector space.
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(e) List the conjugacy classes in D4. Calculate the center of R, i.e.,

Center(R) = { f ∈ R f ∗ h = h ∗ f for all h ∈ R }

Compare.

Solution: : We represent D4 as a permutation subgroup of S4 by mapping r to (1, 2, 3, 4)
and s to (2, 4).

(a) We label the vertices of the square counterclockwise; then r = (1, 2, 3, 4) and s =
(2, 4), so t = ((1, 2, 3, 4) + (2, 4), and

t2 = () + (1, 2)(3, 4) + (1, 3)(2, 4) + (1, 4)(2, 3)

t3 = 2 ∗ (2, 4) + 2 ∗ (1, 2, 3, 4) + 2 ∗ (1, 3) + 2 ∗ (1, 4, 3, 2)

(b) Next, we put v = () + (2, 4) and calculate

v1 = () + (2, 4)

v2 = 2 ∗ () + 2 ∗ (2, 4)
v3 = 4 ∗ () + 4 ∗ (2, 4)
v4 = 8 ∗ () + 8 ∗ (2, 4)

It seems reasonable to assume that vn+1 = 2n ∗ v, so let us prove this by induction.
The base case is clear, so consider

vn+1 = v ∗ vn

= (() + (2, 4)) ∗ (2n−1 ∗ () + 2n−1 ∗ (2, 4))
= 2n−1 ∗ () + 2n−1 ∗ (2, 4) + 2n−1 ∗ (2, 4) + 2n−1 ∗ () = 2n ∗ () + 2n ∗ (2, 4).

(c) The map is the linear map that sends each basis vector to 1, so its matrix with respect
to this basis is

[1, 1, 1, 1, 1, 1, 1, 1]

which has nullity 7, with a basis given by −e1 + ej for 2 ≤ j ≤ 8. Translated back to
our vector space we have the basis

{ 1 ∗ g− 1 ∗ () g 6= () } .

(d) We first show that Ann(t) is a left ideal for any t. Suppose that f, g ∈ Ann(t), u, v ∈
R. Then (f+ g)t = ft+ gt = 0, and (vf)t = v(ft) = v ∗ 0 = 0, hence the annihilator
is a left ideal.
Now let t = 1∗ (1, 2, 3, 4)+1∗ (2, 4), and let SAGEmath calculate the left annihilator
(or solve the linear system of equations in another way). We get a basis
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(() − (1, 4)(2, 3), −(1, 2)(3, 4) + (1, 3)(2, 4),

− (2, 4) + (1, 4, 3, 2), (1, 2, 3, 4) − (1, 3))

so the annihilator is a four-dimensional subspace of the eight-dimensional group alge-
bra.

(e) According to SAGEmath, the center has a basis (as a vector subspace) consisting of

(), (2, 4) + (1, 3), (1, 2)(3, 4) + (1, 4)(2, 3), (1, 2, 3, 4) + (1, 4, 3, 2), (1, 3)(2, 4)

Each basis element is the sum of all elements in a conjugacy class of D4.
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