## Solutions to Exercises for TATA55, batch 3, 2021

## December 10, 2021

1. (3p) Let R be a commutative, unitary ring. Let

$$Nil(R) = \{ r \in R | \exists n \ge 1, r^n = 0 \}.$$

- (a) Show that Nil(R) is an ideal of R.
- (b) Show that Nil(R) is not necessarily an ideal of a non-commutative ring R.
- (c) Show that if  $r \in Nil(R)$  then 1 r is invertible in R.

**Solution:** Let  $r, s \in Nil(R), t \in R$ . We can assume that  $r^N = s^N = 0$ . Then

$$(r+s)^{2N} = \sum_{k=0}^{2N} {2N \choose k} r^k s^{2N-k} = 0$$

We also have that  $(tr)^N = t^N r^N = 0$ .

If  $g \in R$  and R is non-commutative, and furthermore  $g^n = 0$ , it does not follow that for any  $t \in Rm$   $(tg)^n = 0$ , since

$$(tg)^n = tgtg...tg$$

Let R be finitely presented  $\mathbb{Q}$ -algebra with generators x, y and relation  $x^n=0$ . Then xyxy...xy does not reduce to zero.

Another example:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

in the ring of 2x2-matrices. Then A, B are nilpotent, but A + B is not.

Now R is commutative once again, and  $r \in R$  is nilpotent, with  $r^n = 0$ .

Then

$$(1-r)(1+r+\cdots+r^{n-1})=1-r^n=1.$$

Some of you expressed this as

$$(1-r)(1+r)(1+r^2)(1+r^4)\cdots = 1$$

which is actually equivalent.

- 2. (3p) Find the characteristic of the following commutative rings:
  - (a)  $\frac{\mathbb{Z}}{3\mathbb{Z}} \times \frac{\mathbb{Z}}{9\mathbb{Z}} \times \frac{\mathbb{Z}}{15\mathbb{Z}}$
  - (b)  $\mathbb{Z}[i]$ , where  $i \in \mathbb{C}$ ,  $i^2 = -1$
  - (c)  $\frac{\mathbb{Z}[j]}{(2-5j)}$  where j is a primitive 3rd root of unity,  $j^3=1$  but,  $j^2\neq 1$ , you can explicitly take  $j=\exp(\frac{2}{3}\pi i)\in\mathbb{C}$ .

**Solution:**  $1 = ([1]_3, [1]_9, [1]_{15})$ , so  $n[1] = 0 = ([0]_3, [0]_9, [0]_{10})$  iff n is a common multiple of 3, 9, 15, so the characteristic is 45.

In  $(\mathbb{Z}[i], +, 0)$ ,  $\langle 1 \rangle$  is infinite, so the characteristic of the ring is zero.

Call the last ring  $R = \mathbb{Z}[j]/I$ . In  $\mathbb{Z}[j]$  it holds that  $j^2 + j + 1 = 0$ , so

$$(2-5j)(2-5j^2) = 4-10(j+j^2)+25j^3 = 4+10+25=39,$$

hence this is zero in R. The characteristic c is hence a divisor of 39. We have expressed  $c * 1 \in \mathbb{Z}[j]$  as an element of the ideal (2-5j), so

$$c = (2-5j)(a+bj),$$
  $a, b \in \mathbb{Z}.$ 

We can embed  $\mathbb{Z}[j]$  inside  $\mathbb{C}$ , and use complex absolute values: then  $|c|^2=|2-5j|^2|\alpha+bj|^2$ . Since  $\bar{j}=j^2$  we have that  $|\alpha+bj|^2=(\alpha+bj)(\alpha+bj^2)=\alpha^2+b^2+\alpha b(j+j^2)=\alpha^2+b^2-\alpha b$  and  $|2-5j|^2=39$ , so we get that

$$c^2 = 39(a^2 + b^2 - ab).$$

So  $39 | c^2$ , and hence c = 39.

- 3. (2p) Provide explicit ring isomorphisms between
  - (a)  $\frac{\mathbb{Z}[x]}{(n,x)}$  and  $\frac{\mathbb{Z}}{n\mathbb{Z}}$ ,
  - (b)  $\frac{\mathbb{Z}[x]}{(n)}$  and  $(\frac{\mathbb{Z}}{n\mathbb{Z}})[x]$ .

**Solution:** The surjective ring homomorphism

$$\mathbb{Z}[x] \ni f(x) \mapsto [f(0)]_n \in \mathbb{Z}_n$$

sends both (x) and (n) to zero, hence its kernel N contains (x,n) = (x) + (n). Conversely, any f(x) can be written as

$$f(x) = xg(x) + c$$

which gets sent to  $[c]_n$ , which is zero iff  $c \in (n)$ , so the kernel N is precisely (x, n). The explicit isomorphism provided by the first isomorphism theorem is

$$(xg(x) + c) + N \mapsto [c]_n$$

Next, define

$$\begin{split} \varphi: \mathbb{Z}[x] &\to \mathbb{Z}_n[x] \\ \varphi\left(\sum_{j=0}^m \alpha_j x^j\right) &= \sum_{j=0}^m [\alpha_j]_n x^j \end{split}$$

This is again a surjective ring homomorphism, and has kernel (n). So the first isomorphism theorem gives the isomorphism

$$\begin{split} \widehat{\varphi} : & \frac{\mathbb{Z}[x]}{(n)} \to \mathbb{Z}_n[x] \\ \widehat{\varphi} \left( \sum_{j=0}^m \alpha_j x^j + (n) \right) &= \sum_{j=0}^m [\alpha_j]_n x^j \end{split}$$

- 4. (3p) Which of the following ideals in  $\mathbb{Z}[x]$  are prime? Which are maximal?
  - (a) (x, x + 1),
  - (b)  $(5, x^2 + 4)$ ,
  - (c)  $(x^2 + 1, x + 2)$ .

## **Solution:**

- (a) 1 = -1 \* x + 1 \* (x + 1) so the ideal is the whole ring.
- (b)  $\frac{\mathbb{Z}[x]}{(5,x^2+4)} \simeq \frac{\mathbb{Z}_5[x]}{(x^2+4)}$ . Since  $x^2+4 \equiv x^2-1 \equiv (x+1)(x-1)$  the quotient has zero-divisors, and the original ideal is not prime.
- (c) From  $x \equiv -2$ ,  $x^2 \equiv -1$  we conclude that  $5 \equiv 0$  and  $x \equiv 3$ , so the quotient is  $\mathbb{Z}/(5\mathbb{Z})$ , a field, hence the ideal is maximal.
  - 5. (4p) Let  $g(x) = x^6 x^3 2 \in \mathbb{Q}[x]$ . Put  $R = \mathbb{Q}[x]/(g(x))$ .
    - (a) Is R an integral domain?
    - (b) Find all proper, non-trivial ideals of R.
    - (c) Let a denote the coset  $x + (q(x)) \in R$ . Find, if possible, the inverse of a.
    - (d) Find a general expression for  $a^k$ ,  $k \ge 0$ , as a linear combination of  $a^0$ ,  $a^1$ ,  $a^2$ ,  $a^3$ ,  $a^4$ ,  $a^5$ .

## **Solution:**

(a) First, we factor g(x) into irreducible factors:

$$g(x) = (x^3 - 2) * (x^2 - x + 1) * (x + 1).$$

In the quotient, the factors become zero-divisors, so R is no domain.

- (b) By the correspondence theorem, proper and non-trivial ideals in the quotient correspond to proper ideals in the polynomial ring which properly contains (g(x)), hence, since  $\mathbb{Q}[x]$  is a PID, to the ideals (x+1),  $(x^2-x+1)$ ,  $(x^3-2)$ ,  $((x^2-x+1)(x+1))$ ,  $((x^3-2)(x+1))$ ,  $((x^3-2)(x+1))$ .
- (c) Since  $a^6 a^3 2 = 0$ , we have that  $a^6 = a^3 + 2$ , and we see that

$$\alpha(\alpha^5 - \alpha^2) = \alpha^6 - \alpha^3 = \alpha^3 + 2 - \alpha^3 = 2$$

so 
$$a^{-1} = \frac{1}{2}a^5 - \frac{1}{2}a^2$$
.

(d) We tabulate the first 24 powers of a:

$$(0,1)$$

$$(1, a)$$

$$(2, a^2)$$

$$(3, a^3)$$

$$(4, a^4)$$

$$(5, a^5)$$

$$(6, a^3 + 2)$$

$$(7, a^4 + 2 * a)$$

$$(8, a^5 + 2 * a^2)$$

$$(9, 3 * a^3 + 2)$$

$$(10, 3 * a^4 + 2 * a)$$

$$(11, 3 * a^5 + 2 * a^2)$$

$$(12, 5 * a^3 + 6)$$

$$(13, 5 * a^4 + 6 * a)$$

$$(14, 5 * a^5 + 6 * a^2)$$

$$(15, 11 * a^3 + 10)$$

$$(16, 11 * a^4 + 10 * a)$$

$$(17, 11 * a^5 + 10 * a^2)$$

$$(18, 21 * a^3 + 22)$$

$$(18, 21 * a^3 + 22)$$

$$(19, 21 * a^4 + 22 * a)$$

$$(20, 21 * a^5 + 22 * a^2)$$

$$(21, 43 * a^3 + 42)$$

$$(22, 43 * a^4 + 42 * a)$$

$$(23, 43 * a^5 + 42 * a^2)$$

Then, we ask the Online Encyclopedia of Integer Sequences about

and get the answer: A001045 Jacobsthal sequence (or Jacobsthal numbers):

$$a(n) = a(n-1) + 2 * a(n-2)$$
, with  $a(0) = 0$ ,  $a(1) = 1$ ;

We are already using a, so let us call them J(n) instead. Then, a reasonable hypothesis is that

$$\alpha^{6n+k} = \begin{cases} J(2n)\alpha^3 + J(2n) + 1 & k = 0 \\ J(2n)\alpha^4 + (J(2n) + 1)\alpha & k = 1 \\ J(2n)\alpha^5 + (J(2n) + 1)\alpha^2 & k = 2 \\ J(2n)\alpha^3 + J(2n) - 1 & k = 3 \\ J(2n)\alpha^4 + (J(2n) - 1)\alpha & k = 4 \\ J(2n)\alpha^5 + (J(2n) - 1)\alpha^2 & k = 5 \end{cases}$$

This is straightforward, if tedious, to prove by induction, using the relation

$$J(m) = J(m-1) + 2J(m-2).$$

One could also use the CRT and look at the image of  $x^k$  in

$$\frac{\mathbb{Q}[x]}{(x^3-2)}, \frac{\mathbb{Q}[x]}{(x^2-x+1)}, \frac{\mathbb{Q}[x]}{(x+1)},$$

to see the patterns there, then lift back to R.

- 6. (5p) Let  $R = \mathbb{Q}[D_4]$ , the group algebra on  $D_4 = \langle r, s | r^4 = s^2 = rsrs = 1 \rangle$ . In other words, R is the  $\mathbb{Q}$ -vector space with basis elements labeled with the elements of  $D_4$ , and with multiplication the  $\mathbb{Q}$ -linear extension of the multiplication on basis elements given by the multiplication of  $D_4$ .
  - (a) Put  $t = 1 * r + 1 * s \in R$ . Calculate t \* t and t \* t \* t
  - (b) Put v = 1 \* 1 + 1 \* s. Find an explicit expression for  $v^k$  for any positive k.
  - (c) Show that the map

$$F: \mathbb{Q}[D_4] \to \mathbb{Q}$$

$$\sum_{g \in D_5} c(g)g \mapsto \sum_{g \in D_5} c(g)$$

is Q-linear and calculate its kernel.

(d) Show that the *left annihilator* 

$$Ann(t) = \{ f \in R | f * t = 0 \}$$

is a left ideal of R, and calculate a basis of it as a Q-vector space.

(e) List the conjugacy classes in D<sub>4</sub>. Calculate the *center* of R, i.e.,

Center(R) = { 
$$f \in R | f * h = h * f \text{ for all } h \in R$$
 }

Compare.

**Solution:** : We represent  $D_4$  as a permutation subgroup of  $S_4$  by mapping r to (1,2,3,4) and s to (2,4).

(a) We label the vertices of the square counterclockwise; then r = (1, 2, 3, 4) and s = (2, 4), so t = ((1, 2, 3, 4) + (2, 4), and

$$t^{2} = () + (1,2)(3,4) + (1,3)(2,4) + (1,4)(2,3)$$
  

$$t^{3} = 2 * (2,4) + 2 * (1,2,3,4) + 2 * (1,3) + 2 * (1,4,3,2)$$

(b) Next, we put v = () + (2,4) and calculate

$$v^{1} = () + (2,4)$$

$$v^{2} = 2 * () + 2 * (2,4)$$

$$v^{3} = 4 * () + 4 * (2,4)$$

$$v^{4} = 8 * () + 8 * (2,4)$$

It seems reasonable to assume that  $v^{n+1} = 2^n * v$ , so let us prove this by induction. The base case is clear, so consider

$$\begin{split} \nu^{n+1} &= \nu * \nu^n \\ &= (() + (2,4)) * (2^{n-1} * () + 2^{n-1} * (2,4)) \\ &= 2^{n-1} * () + 2^{n-1} * (2,4) + 2^{n-1} * (2,4) + 2^{n-1} * () = 2^n * () + 2^n * (2,4). \end{split}$$

(c) The map is the linear map that sends each basis vector to 1, so its matrix with respect to this basis is

which has nullity 7, with a basis given by  $-\mathbf{e_1} + \mathbf{e_j}$  for  $2 \le j \le 8$ . Translated back to our vector space we have the basis

$$\{1*q-1*()|q\neq()\}.$$

(d) We first show that Ann(t) is a left ideal for any t. Suppose that  $f, g \in Ann(t)$ ,  $u, v \in R$ . Then (f+g)t = ft + gt = 0, and (vf)t = v(ft) = v \* 0 = 0, hence the annihilator is a left ideal.

Now let t = 1 \* (1, 2, 3, 4) + 1 \* (2, 4), and let SAGEmath calculate the left annihilator (or solve the linear system of equations in another way). We get a basis

$$(()-(1,4)(2,3), -(1,2)(3,4)+(1,3)(2,4), -(2,4)+(1,4,3,2), (1,2,3,4)-(1,3))$$

so the annihilator is a four-dimensional subspace of the eight-dimensional group algebra.

(e) According to SAGEmath, the center has a basis (as a vector subspace) consisting of

$$(), (2,4) + (1,3), (1,2)(3,4) + (1,4)(2,3), (1,2,3,4) + (1,4,3,2), (1,3)(2,4) \\$$

Each basis element is the sum of all elements in a conjugacy class of  $D_4$ .