
Solutions for exercises for TATA55, batch 4, 2021

January 11, 2022

1. (3p) Let α =
√
2 + 3
√
5. Find the minimal polynomial of α over Q and the degree of the

extension [Q(α) : Q].

Solution: First, we note that α ∈ Q(
√
2,

3
√
5) and that

α0 = 1

α1 =
√
2+ 51/3

α2 = 2+ 2
√
2 ∗ 51/3 + 52/3

α3 = 2
√
2+ 6 ∗ 51/3 + 3

√
252/3 + 5

These powers are linearly independent over Q, so α is algebraic of degree 6, and Q(α) =
Q(
√
2,

3
√
5), and [Q(α) : Q] = 6.

We have that
(α−

√
2)3 = 5 = α3 − 3

√
2α2 + 6α− 2

√
2

so
α3 + 6α− 5 = 3

√
2α2 − 2

√
2

hence
(α3 + 6α− 5)2 = 2(3α2 − 2)2

The minimal polynomial is hence

(t3 + 6t− 5)2 − 2(3t2 − 2)2 = x6 − 6x4 − 10x3 + 12x2 − 60x+ 17,

we do not need to check that this is irreducible!

2. (4p) Let F be a field with q <∞ elements, and let K be an extension of F.

(a) Prove that aq = a for all a ∈ F.
(b) If b ∈ K is algebraic over F, show that b(qm) = b for somem > 0.

Solution: If a = 0 then aq = 0, if not, then aq−1 = 1 by Lagrange, hence aq = a.

Since b is algebraic, F(b) is a finite field with qm elements for somem. Apply the previous
result.
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3. (4p) Let α ∈ C. Then α is an algebraic integer iff it is the root of an equation of the form

αm + b1α
m−1 + · · ·+ bm = 0, b1, . . . , bm ∈ Z

(a) Show that an algebraic integer is algebraic over Q.

(b) Show that the converse does not hold.

(c) Show that any element of C which is algebraic over Q can be scaled by a positive
integer to become an algebraic integer.

(d) Show that
√
1/3 + 3

√
1/5 is not an algebraic integer; scale it with a positive integer

so that it becomes one.

Solution: The first part is obvious, and α = 1/2 is a counterexample: if

(1/2m) + b1(1/2
m−1) + · · ·+ bm = 0, b1, . . . , bm ∈ Z

then multiplying with 2m we get

1+ 2b1 + · · ·+ 2mbm = 0, b1, . . . , bm ∈ Z

yet the LHS is odd.

Suppose that α ∈ Q is algebraic, satisfying

αk + ak−1α
k−1 + . . . a1α+ a0 = 0, aj ∈ Q

Note that there is no restriction in assuming that the defining relation is monic, since
this is over Q. Suppose that aj = bj/cj, with bj, cj ∈ Z, gcd(bj, cj) = 1. Put N =
lcm(c1, . . . , ck−1). Then, multiplying with Nk we get

(Nα)k + ak−1N(Nα)k−1 + . . . a1N
k−1(Nα) +Nka0 = 0,

which shows that Nα is a zero of the polynomial

tk + ak−1Nt
k−1 + . . . a1N

k−1t+Nka0

Finally, we calculate that
√

1
2
+
(
1
5

) 1
3 is a zero of the irreducible monic polynomial

x6 − x4 −
2

5
x3 +

1

3
x2 −

2

5
x+

2

675

so 675a is an algebraic integer.

4. (4p) Recall that a field isomorphism is a ring isomorphism preserving the multiplicative
identity, and that a field automorphism is a field isomorphism from the field to itself.

(a) Prove that complex conjugation is a field automorphism.
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(b) What are the field automorphisms of Q?

(c) What are the field automorphisms of Q( 3
√
2)?

(d) What are the field automorphisms of a field with 27 elements?

Solution: : The first is straight-forward:

z+ u = z+ u

zu = zu

z = z

An automorphism φ of Q satisfies φ(1) = 1 and also φ(n) = n for n ∈ Z, so

φ(m/n) = φ(m)φ(n)−1 = mn−1 = m/n

and is thus the identity.

For the third part, first observe that an automorphism of Q(
√
2) must fix Q, and send a

zero of
t3 − 2 = (t−

3
√
2)(t2 + 2

3
√
2+

3
√
4)

to another zero. The last two zeroes are complex, hence φ( 3
√
2) = 3

√
2. Hence φ fixes not

only Q but the whole of Q(
√
2), so it is the identity.

For the fourth part, we note that any automorphism of GF(33) must fix the prime subfield
Z3. We know that the frobenius automorphism φ(x) = x3 is an automorphism of GF(33),
as is of course all powers of it; but

φ3(x) = x27 = x

so
φj = φk ⇐⇒ j ≡ k mod 3

We claim that any automorphism is in fact Id,φ, or φ2. To see this, let σ be any automor-
phism and let β be a primitive element of GF(27), with minimal polynomial

f(x) = x3 + a2x
2 + a1x+ a0 ∈ Z3[x].

Then

0 = σ(β3 + a2β
2 + a1β+ a0)

= σ(β)3 + a2σ(β)
2 + a1σ(β) + a0

so σ(β) is a zero of f(x). However, we claim that the zeroes of f(x) are β,β3, β9. Assum-
ing this, σ(β) is either β, β3, or β9, and since β is a generator of the cyclic multiplicative
group of GF(27), σ is either identity, cubing, or raising to ninth power.
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We pove prove that β3 is a zero of f(x), the case for β9 is similar. We have

f(β3) = β9 + a2β
6 + a1β

3 + a0

= β9 + a32β
6 + a31β

3 + a30

= (β3 + a2β
2 + a1β+ a0)

3

= f(β)3

= 0

5. (4p) Let α ∈ C, [Q(α) : Q] = 5. Put β = α3.

(a) What is [Q(β) : Q]?

(b) If α5 = α− 1, what is the minimal polynomial of β?

Solution: Clearly β ∈ Q(α), so Q(β) ⊆ Q(α). We also have that β 6∈ Q, so [Q(β) :
Q] 6= 1. Since this number divides [Q(α) : Q] = 5, it must be equal to 5, so Q(β) = Q(α).

Now assume that α has minimal polynomial x5 − x+ 1. Then

β0 = 1

β1 = α3

β2 = α6 = α2 − α

and so on; by linear algebra, we find the relation

β5 + 3β2 − β+ 1 = 0

6. (6p) Let F = GF(9), expressed as Z3[y]/(y2 + 2y+ 2) ' Z3(a).

(a) There are of course 9 irreducible monic linear polynomials in F[x]; how many irre-
ducible quadratic polynomials are there?

(b) The following sequence of elements in F is periodic; enough of it is given that you
will be able to deduce the period.

(cj)
∞
j=0 = (2 ∗ a+ 1, 1, 2, 2 ∗ a+ 2, 2, 2 ∗ a, 0, a+ 1, a+ 1, 2 ∗ a, 2, a, 2 ∗ a,

a+2, 2∗a, 2∗a+2, 0, 2∗a+1, 2∗a+1, 2∗a+2, 2∗a, a+1, 2∗a+2, 1, 2∗a+2, a+2,
0, 2, 2, a+ 2, 2 ∗ a+ 2, 2 ∗ a+ 1, a+ 2, a, a+ 2, 1, 0, 2 ∗ a, 2 ∗ a,

1, a+ 2, 2, 1, a+ 1, 1, a, 0, 2 ∗ a+ 2, 2 ∗ a+ 2, a, 1, 2 ∗ a, a, 2 ∗ a+ 1,

a, a+1, 0, a+2, a+2, a+1, a, 2∗a+2, a+1, 2, a+1, 2∗a+1, 0, 1, 1, 2∗a+1,
a+ 1, a+ 2, 2 ∗a+ 1, 2 ∗a, 2 ∗a+ 1, 2, 0, a, a, 2, 2 ∗a+ 1, 1, 2, 2 ∗a+ 2, 2, 2 ∗a,
0, a+1, a+1, 2∗a, 2, a, 2∗a, a+2, 2∗a, 2∗a+2, 0, 2∗a+1, 2∗a+1, 2∗a+2, 2∗a, a+1, 2∗a+2,
1, 2∗a+2, a+2, 0, 2, 2, a+2, 2∗a+2, 2∗a+1, a+2, a, a+2, 1, 0, 2∗a, 2∗a, 1, . . . )

Find this period (and preperiod, if applicable).
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(c) Find the recurrence relation over F that this sequence satisfies.

(d) Find the generating function of the sequence.

(e) Factor the denominator of the generating function (over some explicit extension of
F), then perform partial fraction decomposition of the generating function.

(f) Find an explicit formula for cj of the form

cj = uα
j + vβj

where u, v, α, β lies in some (explicit) extension of F.

Solution: The methods in the lecture notes work also for irreducible monic polynomials
in GF(9). The number of quadratic monic irreducible polynomials is

1

2

(
µ(2)91 + µ(1)92

)
= 36

and if we want all irreducible quadratic polynomials there are 8 ∗ 36 = 288 such.

Next, we deal with (b), (c), (d). The Maclaurin expansion of order 6 of the GF is

2a+ 1+ x+ 2x2 + (2a+ 2) x3 + 2x4 + 2ax5 +O(x6)

and the (2− 2) Padé approximant of that is computed by SAGEmath to be

f(x)

g(x)
=

x+ a+ 1

x2 + (2a+ 1) x+ a+ 2

We get the same rational function if we include the first 7, or 8, or 9, or 50, terms, so we
are reasonable sure that we have found the correct GF.

Since the denominator is of degree 2, we expect a period length of 92 − 1 = 80, and this
holds true for the given initial segmment, with pre-period length zero.

Now for the remaining questions. The splitting field of g(x) is

F[y]

y2 + (2a+ 1)y+ a+ 2
' GF(3)(b)

with b4 + 2b3 + 2 = 0. In the splitting field, we have that

a = 2b3 + 2b2 + 1

so we translate everything to this field:

f = x+ 2b3 + 2b2 + 2

g = x2 +
(
b3 + b2

)
x+ 2b3 + 2b2 = (x+ 2b2 + b+ 1) · (x+ b3 + 2b2 + 2b+ 2)

GF = b3 + b2 + x+ 2x2 +
(
b3 + b2 + 1

)
x3 + 2x4 +

(
b3 + b2 + 2

)
x5 +O(x6)
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We denote the zeroes of g by

σ = b2 + 2b+ 2, τ = 2b3 + b2 + b+ 1

The partial fraction decomposition then is

f(x)

g(x)
=
2b3 + 2b2 + 2b+ 2

x+ 2b2 + b+ 1
+

b3 + b2 + b+ 2

x+ b3 + 2b2 + 2b+ 2

=
A

x− σ
+

B

x− τ

=
A

−σ

1

1− x/σ
+
B

−τ

1

1− x/τ

=
−A

σ

∞∑
j=0

xj/σj +
−B

τ

∞∑
j=0

xj/τj

=

∞∑
j=0

(
−A

σj+1
+

−B

τj+1

)
xj

We check that

s2 =
−A

σ2+1
+

−B

τ2+1
= 2

s3 =
−A

σ3+1
+

−B

τ3+1
= b3 + b2 + 1 = 2a+ 2

s4 =
−A

σ4+1
+

−B

τ4+1
= 2
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