
Solutions to Exercises for TATA55, batch 2, 2022

November 19, 2022

1 Part one: computer assistance is helpful

In particular, the laboration that we did in class (and which is available on the course homepage)
should be easy to modify to perform the necessary calculations.

1. (6p)

(a) Let f(n, k) denote the number of elements of order k in Cn. Tabulate f(n, k) for 1 ≤
k, n ≤ 12.

(b) Guess a formula for f(n, k).

(c) Prove the formula!

Solution:

var(’n,k’)
from collections import Counter
def f(n,k):

return [a.order() for a in Integers(n)].count(k)

A = matrix(QQ,12,12,lambda n,k:f(n+1,k+1))

gives

A =



1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0

1 0 2 0 0 0 0 0 0 0 0 0

1 1 0 2 0 0 0 0 0 0 0 0

1 0 0 0 4 0 0 0 0 0 0 0

1 1 2 0 0 2 0 0 0 0 0 0

1 0 0 0 0 0 6 0 0 0 0 0

1 1 0 2 0 0 0 4 0 0 0 0

1 0 2 0 0 0 0 0 6 0 0 0

1 1 0 0 4 0 0 0 0 4 0 0

1 0 0 0 0 0 0 0 0 0 10 0

1 1 2 2 0 2 0 0 0 0 0 4


From the textbook we know that if G = ⟨g⟩ is cyclic of order n, then o(ga) = n

gcd(a,n) . Hence
f(n, k) = 0 when k ̸ |n, and when k |n we want to count the number of 1 ≤ a ≤ n such that
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k = n
gcd(a,n) i.e the number of 1 ≤ a ≤ n such that gcd(a, n) = n

k . This is equivalent to finding
1 ≤ r ≤ k with gcd(r, k) = 1 and putting a = rnk . The number of such r is given by ϕ(k), so
f(n, k) = ϕ(k) when k |n .

2. (6p) Same question for the dihedral group (but with 1 ≤ k, n ≤ 6).

Solution:

var(’n,k’)
from collections import Counter
def g(n,k):

G = DihedralGroup(n)
return [a.order() for a in G].count(k)

B = matrix(QQ,6,6,lambda n,k:g(n+1,k+1))

gives

B =



1 1 0 0 0 0

1 3 0 0 0 0

1 3 2 0 0 0

1 5 0 2 0 0

1 5 0 0 4 0

1 7 2 0 0 2


Since Dn consists of n rotations, which form a cyclic subgroup, and of n reflections, which all
have order two, we get that g(n, k) = f(n, k) for k ̸= 2 and that

g(n, 2) = f(n, 2) + n =

{
n+ 1 n even
n n odd

3. (6p) Same question for the symmetric group (but with 1 ≤ k, n ≤ 4).

Solution:

var(’n,k’)
from collections import Counter
def h(n,k):

G = SymmetricGroup(n)
return [a.order() for a in G].count(k)

C = matrix(QQ,4,4,lambda n,k:h(n+1,k+1))

gives

C =


1 0 0 0

1 1 0 0

1 3 2 0

1 9 8 6


We know
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• The number of permutations in Sn with cycle type λm1

1 λm2

2 · · · λmℓ

ℓ is given by

n!

λm1

1 λm2

2 · · · λmℓ

ℓ m1! · · ·mℓ!

• The order of a permutation with cycle type λm1

1 λm2

2 · · · λmℓ

ℓ is gcd(λ1, . . . , λℓ).

So the number of permutations in Sn of order k is∑
λ
m1
1 ···λmℓ

ℓ ∈T

n!

λm1

1 λm2

2 · · · λmℓ

ℓ m1! · · ·mℓ!

where

T =

 λm1

1 · · · λmℓ

ℓ

∑
j

mjλj = n, gcd(λ1, . . . , λℓ) = k


For the special cases k = 2 we should sum

∑
m1+2m2=n,m2>0

n!

1m12m2m1!m2!
=

⌊n/2⌋∑
m2=1

n!

2m2(n− 2m2)!m2!

As an example, for n = 4 we get

4!

12212!
+

4!

222!
= 6+ 3 = 9

We can turn the general half-explicit formula into an explicit one using some combinatorial
machinery such as inclusion-exclusion and generating functions, but this is a bit beyond the
scope of this course.

One can also use the cycle-index polynomial of Sn, for which an easy recursion is known,
namely

Z(Sn) =
1

n

n∑
ℓ=1

alZ(Sn−1)

to get the number of elements of order k. As an example, the cycle index of S4 is, in SAGE-
MATHS idiosyncratic notation,

1

24
p1,1,1,1 +

1

4
p2,1,1 +

1

8
p2,2 +

1

3
p3,1 +

1

4
p4

so we se that the number of elements of order 2 is 4!(1/4 + 1/8) = 9 since the monomials
p2,1,1 and p2,2 enumerate cycle types 12 ∗ 21 and 22, that is to say, transpositions and products
of disjoint transpositions, which are the only permutatins of order 2 in S4.

4. (4p) Let g(n, k) denote the number of permutations in Sn with k inversions. Plot g(8, k). Make
an educated guess about the g(n, k).

Solution:
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from collections import Counter
def j(n,k):

Group = SymmetricGroup(n)
numinvlist = [Permutation(g).number_of_inversions() for g in Group]
return numinvlist.count(k)

max_k = 28
values = [j(8, x) for x in srange(0, max_k, 1)]

gives the follwing plot:
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This looks normally distributed!

We try some data fitting:

data=[[x+1,values[x]] for x in srange(0, max_k-1, 1)]
var(’sigma mu max x’)
model(x) = max*(1/sqrt(2*pi*sigma**2))*exp(-(x-mu)**2/(2*sigma**2))
hm=find_fit(data, model,initial_guess=[3000,14,1])

gives

[max = 40702.97703256941, µ = 15.000233170303714, σ = 4.193232194404608]

which seems to fit well (though maybe it was translated one step to the right):
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The maximal number of inversions of a permutation in Sn is 1+2+ · · ·+(n−1) = (n−1)n/2,
so we guess that the average number is half of that, (n− 1)n/4.

We can verify this guess (argument stolen from internet):

Define c ∈ Sn by c(k) = n+ 1− k, i.e. reversal. Then {i, j} is an inversion for σ ∈ Sn iff it is
not an inversion for σ◦c, and

∑
σ∈Sn inv(σ) =

∑
σ∈Sn inv(σ◦c) since σ 7→ σ◦c is a bijection

on Sn, so

2
∑
σ∈Sn

inv(σ) =
∑
σ∈Sn

inv(σ)+
∑
σ∈Sn

inv(σ◦c) =
∑
σ∈Sn

inv(σ)+inv(σ◦c) =
∑
σ∈Sn

(
n

2

)
= n!

(
n

2

)

so the average number of inversions is
(
n
2

)
/2.

We leave the calculation of the standard deviation to the student!

5. (4p) Describe the elements of the (full) symmetry group of the regular dodecaedron and list
their orders. Find the conjugacy classes.

Solution:

Q = polytopes.dodecahedron()
G = Q.restricted_automorphism_group()
s=""
for clr in G.conjugacy_classes_representatives():

cl = ConjugacyClass(G,clr)
cll = cl.list()
L = len(cll)
s += f"{clr.order()} \t {L} \t {clr}\n"
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gives the table

1 1 ()
2 15 (1,3)(2,4)(5,7)(8,9)(11,12)(13,14)(16,17)(18,19)
3 20 (20,11,12)(1,7,19)(2,14,17)(3,18,5)(4,16,13)(6,9,8)
2 15 (10,20)(1,4)(2,3)(5,12)(6,15)(7,11)(8,17)(9,16)(13,14)(18,19)
10 12 (10,20,5,4,8,15,6,17,1,12)(2,14,9,16,13,3,18,11,7,19)
5 12 (10,20,5,19,11)(1,18,2,8,16)(3,12,7,4,14)(6,17,13,9,15)
6 20 (10,1,13,15,4,19)(20,3,18,6,2,14)(5,11,12,17,9,8)(7,16)
5 12 (10,1,11,12,3)(20,17,19,18,16)(2,15,4,9,8)(5,13,14,7,6)
10 12 (10,2,6,11,7,15,3,20,9,16)(1,5,13,14,12,4,17,19,18,8)
2 1 (10,15)(20,6)(1,4)(2,3)(5,17)(7,16)(8,12)(9,11)(13,19)(14,18)

We analyse this:

• There are two conjugacy classes with 12+ 12 elements of order 5, which are rotations by
multiples of 2π/5 around axes that go through centers of opposite faces. These rotations
fix no vertex.

• There is one conjugace class with 20 elements of order 3, which are rotations by 2π/3

around axes that go through opposite vertices (hence fix 2 vertices)

• There is one conjugacy class with 15 elements of order 2, which are rotations by π around
axes through midpoints of opposite edges

• There is the class of the identity, 1 elem of order 1

• 12+ 12+ 20+ 15+ 1 = 60 makes all the rotations

• There are also 60 reflections, which all have order 2

• Their conjugacy classes are all antipodal times conjugacy class of rotations, order is dou-
bled, same number of elements

2 Part two: no computer necessary

6. (4p) Let G be a group, and let A,B be subgroups of G. Put

AB = {ab a ∈ A, b ∈ B } , BA = {ba a ∈ A, b ∈ B } .

Show that AB is a subgroup if and only if AB = BA.

Solution: Suppose that AB = BA. Take h ∈ AB, h = ab with a ∈ A, b ∈ B. Then
∋ h−1 = b−1a−1 ∈ BA = AB. Take furthermore k = cd,c ∈ A, d ∈ b. Then hk =
abcd = a(bc)d. Since bc ∈ BA = AB there exists r ∈ A, s ∈ B with bc = rs. Thus
hk = a(rs)d = (ar)(sd) ∈ AB.

Conversely, suppose that AB ≤ G. Take a ∈ A, b ∈ b, and put h = ab. Then h−1 ∈ AB. But
h−1 = b−1a−1 ∈ BA. Since every k ∈ AB is (k−1)

−1, the result follows.

7. (3p) Let G be a group, and suppose that (ab)2 = a2b2 for all a, b ∈ G. Show that G is abelian.

Solution: Multiplying abab = aabb with a−1 to the left and b−1 to the right yields ba = ab.
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8. (6p) Let G be a group, and let H ⊆ G, such that e ∈ H and HH ⊆ H.

(a) Show that HH = H.

(b) If |G| < ∞, show that H ≤ G.

(c) Is it enough that |H| < ∞?

Solution:

(a) eh = h.

(b) We need only to show that H−1 ⊆ H. Pick h ∈ H. Consider the map

ϕh : H → H

ϕh(x) = hx

This map is injective: if ϕh(x) = ϕh(y) then hx = hy so x = y by cancellation.
However, since H is finite (beeing a subset of the finite set G), any injective map from H

to itself is in fact bijective! Thus, e ∈ ϕh(H), that is to say, there is some x ∈ h with
e = ϕh(x) = hx. Thus h has a right inverse x, which, by group laws, is also a left inverse.

(c) Yes.

9. (4p)

(a) Let G be a finite group, and let H ≤ G be a proper, nontrivial subgroup of size k. If there
is no other subgroup of G of size k, show that H is normal in G.

(b) Give a (non-abelian) example of this situation.

Solution: For g ∈ G, gHg−1 is another subgroup of size k. If there is only one such subgroup,
gHg−1 = H, for any g, so H is normal in G.

The alternating group An has index 2 in S2, so it is the unique subgroup of that size, hence
normal.

10. (6p) Give examples of

(a) A non-normal subgroup (not of Sn or Dn, be creative)

(b) A ≤ B ≤ C and A ◁ B but not A ◁ C.

(c) H1 ◁G, H2 ◁G, H1 ̸= H2, |H1| = |H2| < ∞.

Solution: The subgroup of 2×2 diagonal matrices is not normal in GL(2), since any symmetric
matrix is conjugate to a diagonal matrix.

Matrices of the form
(
1 x

0 1

)
form a normal subgroup of upper triangular matrices; the latter

subgroup of GL(2) is not normal.

If H,K are different finite groups of the same size then (their images) are both normal in H×K.

11. (4p) Let p be an odd prime number. Show that the set of matrices

G =



1 a −a b

0 1 0 b

0 0 1 b

0 0 0 1

 a, b ∈ Zp


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is (under multiplication) a finite abelian group. What direct product of cyclic groups of prime
power order is it isomorphic to?

Solution:

We have that
1 a −a b

0 1 0 b

0 0 1 b

0 0 0 1



1 c −c d

0 1 0 d

0 0 1 d

0 0 0 1

 =


1 a+ c −a− c b+ d

0 1 0 b+ d

0 0 1 b+ d

0 0 0 1


and that 

1 a −a b

0 1 0 b

0 0 1 b

0 0 0 1


−1

=


1 −a a −b

0 1 0 −b

0 0 1 −b

0 0 0 1


So this is indeed a group.

We see that

Zp × Zp ∋ (a, b) 7→

1 a −a b

0 1 0 b

0 0 1 b

0 0 0 1

 ∈ G

is a surjective group homomorphism. The kernel is trivial, so it is an isomorphism.
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