
Solutions to Exercises for TATA55, batch 4, 2022

January 19, 2023

1 Part two: no computer necessary

For this part, you may check your results using a computer, but you should
do the exercises by hand. You may refer to any theorem and result in your
texbook(s), prove your other assertions.

1. (3p) Find all c ∈ Z3 such that Z3[x]/(x
3 + cx2 + 1) is a field.

Solution: The quotient ring is a field iff the polynomial f(x) = x3 +
cx2 + 1 ∈ Z3[x] is irreducible, which, since it is of degree 3, occurs
precisely when it lacks zeroes in Z3. We have that

f(0) = 2, f(1) = c+ 2, f(−1) = c

so for c = 2 we have that f has no zeroes in Z3.

2. (3p) Over which fields is the polynomial f(x) = x4 + x3 + x+ 1 irre-
ducible?

Solution: If the characteristic is 2, then f(1) = 1, if the characteristic
is not 2, then f(−1) = 0. In any case, f(x) has zeroes in the prime
subfieldm, so it is not irreducible.

3. (5p) Show that f(x) = x4 + 2x+ 2 is irreducible over Q. Over which
finite fields is it irreducible?

Solution:

� By Eisenstein, f(x) is irreducible over Q.

� Let p be a prime and q = pm. If f(x) is irreduciple over GF (q),
it will have a zero over the field K = GF (q)[x]/(f(x)) ≃ GF (q4),
and in any extensions of that field. So it will always be reducible
over GF (p4n).

� If f(x) haz a zero in Zp, or equivalently if it has at least one
linear factor over Zp, then it has a zero in any GF (pn), and is
thus reducible over any GF (pn). This happens for

p ∈
{
2, 5, 7, 11, 13, 17, 19, 23, 31, 47, 67, 71, 79, 83, 89, 101, 107, 109,

113, 131, 137, 151, 157, 173, 179, 181, 191, 193, 197, 211, 227, . . .
}
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� It can happen that f(x) factors as the product of two irreducible
quadrics over Zp. It is then reduducible over all GF (pn). This
happens for

p ∈ {37, 43, 97, 101, 223, . . . }
� For the remaining primes, f(x) is irreducible over Zp but splits
over GF (p4), as well as over GF (p4k) for all k. I believe that f(x)
factors as a product of two irreducible quadrics over GF (p4k+2)
and is irreducible over GF (p4k+3) and over GF (p4k+1).

� So it remains to explain the partitioning of the set of primes into
three parts, as above. I can not. Maybe you can?

4. (4p) Show that a =
√
2+ 3

√
5 is algebraic over Q. Calculate [Q(a) : Q].

Solution:

a−
√
2 =

3
√
5

(a−
√
2)3 = 5

a3 − 3
√
2a2 + 6a− 2

√
2 = 5

a3 + 6a− 5 = 2
√
2

(a3 + 6a− 5)2 = 8

a6 + 12a4 − 10a3 + 36a2 − 60a+ 25 = 8

a6 + 12a4 − 10a3 + 36a2 − 60a+ 17 = 0

Since x6 − 6x4 − 10x3 + 12x2 − 60x+ 17 is irreducible over Q (check!)
we conclude that this is the minimal polynomial of a. Hence [Q(q) :
Q] = 6, the degree of this polynomial.

5. (4p) Suppose that F is a finite field with q elements, and that F ≤ K,
and that a ∈ K is algebraic over F . Show that aq

m
= a for some

positive integer m.

Solution: Let f(x) ∈ F [x] be irreducible, f(a) = 0. Let m = deg(f).
Put L = F (a). Then [L : F ] = m.

Since L∗ = L\{0} is a group under multiplication, any c ∈ L∗ satisfies
cq

m−1 = 1. Multiplying with c, we have that any c ∈ L satisfies
cq

m
= c. In particular, aq

m
= a.

6. (6p) Suppose that a, b ∈ Q and that m ∈ Z is not a perfect square.
Let p(x) ∈ Q[x] be a polynomial having u = a+ b

√
m as a zero. Show

that a− b
√
m is a zero of p as well.

Solution: We have that
√
m ̸∈ Q, so consider the extension Q(

√
m.

Define the map

θ : Q(
√
m) → Q(

√
m)

θ(x+ y
√
m) = x− y

√
m
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We check that θ(r + s) = θ(r) + θ(s), θ(rs) = θ(r)θ(s), and that if
r ∈ Q then θ(r) = r. So θ is an automorphism of Q(

√
m which fixes

Q.

Now write

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0, cj ∈ Q.

Then

0 = p(u) = θ(p(u)) = θ

 n∑
j=0

cju
j

 =
n∑

j=0

θ(cju
j) =

n∑
j=0

θ(cj)θ(u
j) =

n∑
j=0

cjθ(u)
j = p(θ(u))

so θ(u) = a− b
√
m is a zero of p(x).

Alternative solution (from one of your hand-ins): let

q(x) = (x− a− b
√
m)(x− a+ b

√
m) = x2 − 2ax+ b2 −ma2.

Divide (with remainder) p(x) with q(x) to obtain

p(x) = k(x)q(x) + r(x), deg(r(x)) < 2.

Since p(a+ b
√
m) = q(a+ b

√
m) = 0 we get that r(a+ b

√
m) = 0. But

r(x) is a polynomial of degree at most one, with rational coefficients.
Clearly r(x) can not be a non-zero constant, and if r(x) = cx+ d with
c ̸= 0 then 0 = r(a+ b

√
m) = c(a+ b

√
m) = bc

√
m+ ac, which shows

that b = 0; in this case, our result follows trivially.

If instead r(x) is the zero polynomial then p(x) = k(x)q(x) = k(x)(x−
a− b

√
m)(x− a+ b

√
m) which shows that p(a− b

√
m) = 0.

7. (4p) Let p be a prime number. Calculate the splitting field of xp−1−1 ∈
Zp[x].

Solution: Let f(x) = xp−1 − 1. By Fermat, ap−1 = 1 for all a ∈ Z∗
p,

hence every a ∈ Z∗
p is a zero of f(x). But f(x) has degree p−1, so can

not have more than p− 1 zeroes. Since f(x) is monic, it follows that

xp−1 − 1 =

p−1∏
j=1

(x− j) mod p

so the polynomial splits already in Zp.

8. (9p) Find the splitting fields of the following cubic polynomials in Q[x]:
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(i) x3 − 3x− 1

(ii) x3 − 3x− 2

(iii) x3 − 3x− 3

Solution:

(i) Let f(x) = x3−3x−1, K = Q[x]/(f(x)) = Q(α), α the image of
x in K, f̃(x) the polynomial f but with coefficients in K. Then

f̃(x) = (x− α) · (x− α2 + α+ 2) · (x+ α2 − 2)

so K is the splitting field, and since f(x) is irreducible over Q,
[K : Q] = 3.

(ii) Let f(x) = x3 − 3x − 2. Then f(x) = (x − 2) ∗ (x + 1)2, so it
splits already in Q. Thus K = Q and [K : Q] = 1.

(iii) Let f(x) = x3−3x−3, K = Q[x]/(f(x)) = Q(α), α the image of
x in K, f̃(x) the polynomial f but with coefficients in K. Then

f̃(x) = (x− α) ∗ (x2 + α ∗ x+ α2 − 3)

where the quadratic factor q(x) ∈ K[x] is irreducible over K,
since it has no zero in K. The splitting field is hence not K, but
rather L = K[y]/(q(y)). By the tower theorem,

[L : Q] = [L : K][K : Q] = 2 ∗ 3 = 6.

2 Part one: computer assistance is helpful

1. (5p) Let f(x) = x5+x3+1 ∈ Z2[x]. Let K = Z2[x]/(f(x)), and denote
by x̄ the coset x+ (f(x)).

(i) Show that K is a field, and vector space over Z2, with basis given
by x̄k for 0 ≤ k ≤ 4.

(ii) Show that K ∋ u 7→ ux̄ ∈ K is an invertible linear map and give
its matrix M w.r.t. the given basis.

(iii) Find the eigenvalues (they live in some field extension)

(iv) Find the dimension of spanZ2
(M0,M1,M2, . . . )

(v) Tabulate all possible values of Mk.

Solution:

(i) Follows if we can show that f(x) is irreducible over Z2. It has no
zeroes in Z2, so if it is reducible it has an irreducible quadratic
factor; but the only irreducible quadric is x2 + x + 1, and the
remainder when dividing f(x) by this quadric is x+ 1, not zero.
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(ii) Call the map T . Then T (v + w) = (v + w)x̄ = ux̄ + wx̄ =
T (v) + T (w) and T (cv) = (cv)x̄ = c(vx̄) = cT (v). Thus T is
linear. Its matrix w.r.t. the given basis has as the j-th column
(counting indices from zero) the coordinates of x̄j x̄ = x̄j+1; for
the last column we need to use the relation

x̄5 = x̄3 + 1,

so the matrix is

M =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0


The determinant (in Z2 is 1, so the matrix, and hence the trans-
formation, is invertible.

(iii) By construction, the characteristic polynomial of M is f(x). The
eigenvalues are thus the zeroes of f(x), in the splitting field F =
Z2[x]/(f(x)). In F we have have that f(x) splits as

f(x) = (x+α)∗(x+α2)∗(x+α3+α2)∗(x+α4)∗(x+α4+α3+α)

where α is the image of x in the quotient. This gives the eigen-
values.

(iv) The ring homomorphism

Z2[2] → Mat(Z2, 5, 5)

g(x) 7→ g(M)

has as its image the subring generated by M . The kernel I is a
principal ideal generated by an irreducible polynomial; by the
Cayley-Hemilton theorem, it contains the characteristic poly-
nomial. Since this is f(x), which is irreducible, we get that
I = (f(x)) and that the image is ismomorphic to K, which is
a 5-dimensional vector space over Z2.

(v) We know that M5 = I +M3 and that

Mk = a0(k)I + a1(k)M + a2(k)M
2 + a3(k)M

3 + a4(k)M
4

where

αk = a0(k) + a1(k)α+ a2(k)α
2 + a3(k)α

3 + a4(k)α
4
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Since K∗ is cyclic with 25 − 1 = 31 elements, this sequence will
be periodic with period 31. We tabulate the first 33 elements αk,
starting from k = 0:

1, α, α2, α3, α4, α3 + 1, α4 + α, α3 + α2 + 1,

α4 + α3 + α, α4 + α3 + α2 + 1, α4 + α+ 1, α3 + α2 + α+ 1,

α4 + α3 + α2 + α, α4 + α2 + 1, α+ 1, α2 + α,

α3 + α2, α4 + α3, α4 + α3 + 1, α4 + α3 + α+ 1,

α4 + α3 + α2 + α+ 1, α4 + α2 + α+ 1, α2 + α+ 1,

α3 + α2 + α, α4 + α3 + α2, α4 + 1, α3 + α+ 1,

α4 + α2 + α, α2 + 1, α3 + α, α4 + α2,1, α, α2, . . .

2. (7p) Solve the reccurence equation

an = an−2 − an−3 ∈ Z3

with initial conditions a0 = 1,a1 = a2 = 0, in the following way:

(i) Show that f(x) = x3 − x+ 1 ∈ Z3[x] is irreducible.

(ii) Relate the splitting field K of f , the field E = Z3[x]/(f(x)), the
cosets xk + (f(x)), and the elements ak.

(iii) Find the roots of r1, r2, r3 in K.

(iv) The general formula is now

an = c1r
n
1 + c2r

n
2 + c3r

n
3

Determine c1, c2, c3 ∈ K using the initial conditions. If possible,
simplify the resulting formula for an.

(v) The sequence (an)
∞
n=0 is ultimately periodic. Determine the pe-

riod! Does it divide the order of K∗?

Solution:

(i) f(x) is of degree 3 and has no zeroes in Z3.

(ii) In E, we have that

f(x) = (x+ 2α) ∗ (x+ 2α+ 1) ∗ (x+ 2α+ 2)

where α is the image of x in the quotient, so E = K is the
splitting field. The relation α3 = α − 1 gives that the sequence
αk is given by

1, α, α2, α+2, α2+2∗α, 2∗α2+α+2, α2+α+1, α2+2∗α+2,

2 ∗ α2 + 2, α+ 1, α2 + α, α2 + α+ 2, α2 + 2, 2,

2∗α, 2∗α2, 2∗α+1, 2∗α2+α, α2+2∗α+1, 2∗α2+2∗α+2, 2∗α2+α+1, α2+1,

2∗α+2, 2∗α2+2∗α, 2∗α2+2∗α+1, 2∗α2+1, 1, α, α2, α+2
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and is periodic with period K∗ = 33 − 1 = 26. If we look at
constant coefficients

0, 0, 1, 0, 0, 2, 0, 2, 1, 2, 2, . . .

they coincide with the ak’s! Se e.g. the wikipedia page on Linear
feedback shift registers.

(iii) We have already seen that the roots are

α, α− 1, α+ 1

(iv) We get the equations

a0 = 1 = c1 + c2 + c3

a1 = 0 = c1α+ c2(α− 1) + c3(α+ 1)

a2 = 0 = c1α
2 + c2(α− 1)2 + c3(α+ 1)2 = c1α

2 + c2(α
2 + α+ 1) + c3(α

2 − α+ 1)

This is equivalent to 1 1 1
a a+ 2 a+ 1
a2 a2 + a+ 1 a2 + 2a+ 1

c1
c2
c3

 =

1
0
0


which has the solutionc1

c2
c3

 =

 2 ∗ α2 + 1
2 ∗ α2 + 2 ∗ a
2 ∗ α2 + α


The general formula is thus

ak = (1− α2)αk + (−α2 − α)(α− 1)k + (−α2 + α)(α+ 1)k.

(v) We have seen that the period length is maximal, i.e. 33−1 = 26,
and that the sequence is periodic, not just ultimately periodic.
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