Solutions to Exercises for TATAbS5, batch 4, 2022

January 19, 2023

1 Part two: no computer necessary

For this part, you may check your results using a computer, but you should
do the exercises by hand. You may refer to any theorem and result in your
texbook(s), prove your other assertions.

1. (3p) Find all ¢ € Z3 such that Zg[x]/(x + cz? + 1) is a field.

Solution: The quotient ring is a field iff the polynomial f(z) = 23 +
cx? + 1 € Zslx] is irreducible, which, since it is of degree 3, occurs
precisely when it lacks zeroes in Z3. We have that

fO)=2f1)=c+2, f(-1)=c
so for ¢ = 2 we have that f has no zeroes in Zs.
2. (3p) Over which fields is the polynomial f(z) = 2%+ 23 + z + 1 irre-
ducible?

Solution: If the characteristic is 2, then f(1) = 1, if the characteristic
is not 2, then f(—1) = 0. In any case, f(x) has zeroes in the prime
subfieldm, so it is not irreducible.

3. (5p) Show that f(x) = x* 4 2z + 2 is irreducible over Q. Over which
finite fields is it irreducible?

Solution:

e By Eisenstein, f(x) is irreducible over Q.

e Let p be a prime and g = p™. If f(z) is irreduciple over GF(q),
it will have a zero over the field K = GF(q)[z]/(f(z)) ~ GF(q%),
and in any extensions of that field. So it will always be reducible
over GF(p*").

e If f(z) haz a zero in Z,, or equivalently if it has at least one
linear factor over Zjp, then it has a zero in any GF(p"), and is
thus reducible over any GF'(p™). This happens for

p€{2,5,7,11,13,17,19,23,31,47,67,71,79,83,89, 101, 107, 109,
113,131,137,151,157,173,179,181,191,193, 197,211, 227, . .. }
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e It can happen that f(z) factors as the product of two irreducible
quadrics over Z,. It is then reduducible over all GF(p"). This

happens for
p € {37,43,97,101,223, ...}

e For the remaining primes, f(z) is irreducible over Z, but splits
over GF(p*), as well as over GF (p**) for all k. I believe that f(z)
factors as a product of two irreducible quadrics over GF(p**+2)
and is irreducible over GF(p**+3) and over GF(p**+1).

e So it remains to explain the partitioning of the set of primes into
three parts, as above. I can not. Maybe you can?
4. (4p) Show that a = v/2+ /5 is algebraic over Q. Calculate [Q(a) : Q].
Solution:
a—v2=15
(a—V2)3>=5
a® —3v2a® + 6a —2v2 =5
a®+6a—5=2V2
(a® +6a —5)? =8
a® +12a* — 10a® + 36a® — 60a + 25 = 8
a® +12a" — 10a® + 36a® — 60a + 17 =0
Since 2% — 62* — 1023 4 1222 — 60x + 17 is irreducible over Q (check!)

we conclude that this is the minimal polynomial of a. Hence [Q(q) :
Q] = 6, the degree of this polynomial.

5. (4p) Suppose that F'is a finite field with ¢ elements, and that F' < K,
and that a € K is algebraic over F. Show that a¢" = a for some
positive integer m.

Solution: Let f(x) € F[z] be irreducible, f(a) = 0. Let m = deg(f).
Put L = F(a). Then [L: F] = m.

Since L* = L\ {0} is a group under multiplication, any ¢ € L* satisfies
c?" =1 = 1. Multiplying with ¢, we have that any ¢ € L satisfies
¢?" = ¢. In particular, a?" = a.

6. (6p) Suppose that a,b € Q and that m € Z is not a perfect square.
Let p(x) € Q[z] be a polynomial having u = a + by/m as a zero. Show
that a — by/m is a zero of p as well.

Solution: We have that \/m ¢ Q, so consider the extension Q(y/m.
Define the map

0: Q(vm) — Q(vm)
0(z +yvm) =z —yv/m



We check that 0(r + s) = 0(r) + 0(s), 0(rs) = 6(r)0(s), and that if
r € Q then 6(r) = r. So 6 is an automorphism of Q(y/m which fixes
Q.

Now write

p(l‘) :Cnxn‘FCnfll'n_l + -+ + co, ¢ € Q.

0=pu) = 0(p(u) =0 D_cjuw’ | =D 0leju) =
j=0 J=0

> " 0(c))0(u) =" ¢;0(u) = p(f(u))
j=0 Jj=0

s0 O(u) = a — by/m is a zero of p(z).

Alternative solution (from one of your hand-ins): let
q(z) = (x — a — bym)(z — a + by/m) = 2° — 2az + b* — ma®.
Divide (with remainder) p(x) with ¢(z) to obtain
p(x) = k(z)q(x) +r(z), deg(r(z)) <2.

Since p(a+by/m) = q(a+by/m) = 0 we get that r(a+by/m) = 0. But
r(x) is a polynomial of degree at most one, with rational coefficients.
Clearly r(x) can not be a non-zero constant, and if r(x) = cx + d with
¢ # 0 then 0 = r(a + by/m) = c¢(a + by/m) = bey/m + ac, which shows
that b = 0; in this case, our result follows trivially.

If instead r(z) is the zero polynomial then p(z) = k(z)q(z) = k(x)(z—
a — by/m)(x — a + by/m) which shows that p(a — by/m) = 0.

7. (4p) Let p be a prime number. Calculate the splitting field of 2P~1—1 €
Zyp[)].

Solution: Let f(z) = #’~! — 1. By Fermat, a?~! =1 for all a € Z},
hence every a € Zj, is a zero of f(z). But f(z) has degree p—1, so can
not have more than p — 1 zeroes. Since f(x) is monic, it follows that

p—1
2Pt -1 = H(az—j) mod p
j=1

so the polynomial splits already in Z,,.

8. (9p) Find the splitting fields of the following cubic polynomials in Q[z]:



(i) 23 -3z —1
(ii) 2% — 3z —2
(iii) 2% — 3z —3

Solution:

(i) Let f(z) =2 —3x—1, K = Q[z]/(f(x)) = Q(a), o the image of
x in K, f(x) the polynomial f but with coefficients in K. Then

f@)=@x—0a) (x—a®+a+2) (x+a®>—2)
so K is the splitting field, and since f(z) is irreducible over @,
[K : Q] =3.
(i) Let f(x) = 23 — 3x — 2. Then f(z) = (z — 2) * (x + 1)?, so it
splits already in Q. Thus K = Q and [K : Q] = 1.
(iii) Let f(z) = 23 —32-3, K = Q[z]/(f(x)) = Q(), a the image of
x in K, f(x) the polynomial f but with coefficients in K. Then
f)=(@x—a)x (@ +axz+a®—3)

where the quadratic factor ¢(x) € KJz] is irreducible over K,
since it has no zero in K. The splitting field is hence not K, but
rather L = K[y]/(¢q(y)). By the tower theorem,

[L:Q]=[L:K|K:Q=2%3=6.

2 Part one: computer assistance is helpful

1. (5p) Let f(z) = 2°+23+1 € Zo[x]. Let K = Zy[x]/(f(x)), and denote
by z the coset = + (f(x)).

(i) Show that K is a field, and vector space over Zy, with basis given
by Z* for 0 < k < 4.

(ii) Show that K 5 u — ux € K is an invertible linear map and give
its matrix M w.r.t. the given basis.

(iii) Find the eigenvalues (they live in some field extension)
(iv) Find the dimension of spang, (M°, M*, M?,...)
(v) Tabulate all possible values of MF.

Solution:

(i) Follows if we can show that f(z) is irreducible over Zs. It has no
zeroes in Zs, so if it is reducible it has an irreducible quadratic
factor; but the only irreducible quadric is #2 + z + 1, and the
remainder when dividing f(x) by this quadric is  + 1, not zero.



(i)

(iii)

Call the map T. Then T(v + w) = (v + w)T = uT + wWT =
T(v) + T(w) and T(cv) = (cv)z = ¢(vE) = ¢T'(v). Thus T is
linear. Its matrix w.r.t. the given basis has as the j-th column
(counting indices from zero) the coordinates of 27z = z/71; for
the last column we need to use the relation

=13 4+ 1,
so the matrix is
00 0 01
1 00 00
M=101 000
001 01
00010

The determinant (in Zs is 1, so the matrix, and hence the trans-
formation, is invertible.

By construction, the characteristic polynomial of M is f(x). The
eigenvalues are thus the zeroes of f(x), in the splitting field F' =
Zs[x]/(f(z)). In F we have have that f(z) splits as

f(@) = (z4a)x(z+a?)* (z+a+a?) x(z+at)x(z+a'+a® +a)
where « is the image of x in the quotient. This gives the eigen-

values.

The ring homomorphism

75[2] — Mat(Zs, 5,5)
g(x) = g(M)

has as its image the subring generated by M. The kernel [ is a
principal ideal generated by an irreducible polynomial; by the
Cayley-Hemilton theorem, it contains the characteristic poly-
nomial. Since this is f(z), which is irreducible, we get that
I = (f(z)) and that the image is ismomorphic to K, which is
a 5-dimensional vector space over Z,.

We know that M® = I + M3 and that
M* = ag(k)I 4 a1 (k)M + az(k)M? + a3(k)M?® + ag(k) M*
where

of = ag(k) + ar(k)a + ag(k)a? + az(k)a® + as(k)a’



Since K* is cyclic with 2° — 1 = 31 elements, this sequence will
be periodic with period 31. We tabulate the first 33 elements o,
starting from k = 0:
1,0,0%,0%,0*, a3 + 1,0 + a,a® + a® + 1,
a4+a3+a,a4+a3+a2+1,a4+a+1,0434—@2—1—04—1—1,
oz4—|—oz3+oz2—|—a,a4—|—a2+1,a+1,a2—l—a,
A+t at+alat+ad+ 1,0+t Fa+ 1,
a4—|—a3+a2+a+1,a4+a2+a+1,a2+a+1,
a3+a2+a,a4+a3+a2,a4+1,a3+a+1,
a4+a2+a,a2+1,a3+a,a4+a271,a,a2,...
2. (7p) Solve the reccurence equation
Ap = Qp_2o — Qp_3 € Z3
with initial conditions ag = 1,a; = az = 0, in the following way:
(i) Show that f(x) = 2® —x + 1 € Zg[x] is irreducible.

(ii) Relate the splitting field K of f, the field E = Zs[z]/(f(x)), the
cosets ¥ + (f(z)), and the elements ay.

(iii) Find the roots of r1,79,r3 in K.
(iv) The general formula is now
an = c1ry + cory + c3ry

Determine ¢y, co, c3 € K using the initial conditions. If possible,
simplify the resulting formula for a,,.

(v) The sequence (a,)5, is ultimately periodic. Determine the pe-
riod! Does it divide the order of K*?

Solution:

(i) f(zx) is of degree 3 and has no zeroes in Zs.
(ii) In E, we have that
f(z)=(z+2a) % (z+2a+1) * (v + 20 + 2)
where « is the image of x in the quotient, so E = K is the
splitting field. The relation a® = a — 1 gives that the sequence
aF is given by
1,a,a2,a—|—2,a2+2*a,2*a2+a+2,a2+a+1,a2+2*a+2,
2%’ +2,a+1,a’+a, 0’ +a+2,0%+2,2,
2xq, 2*(12, 2xa+1, 2*a2+a, a2+2*a+1, 2*a2+2*a+2, 2*a2+0z+1, oz2+1,
2*a+2,2*a2+2*a,2*a2+2*a+1,2*a2+1, 1,a,a2,a+2



and is periodic with period K* = 3% — 1 = 26. If we look at
constant coefficients

0,0,1,0,0,2,0,2,1,2,2,...

they coincide with the a;’s! Se e.g. the wikipedia page on Linear
feedback shift registers.

We have already seen that the roots are
a,a—1,a+1
We get the equations

apg=1=c1+c2+c3
ag=0=ca+c(a—1)+c(a+1)
as=0=cia’ +er(a—1)?+c3(a+1)?=cia’ +ea(0® +a+1)+c3(a® —a+1)

This is equivalent to

1 1 1 c1 1
a a+2 a+1 co|l =10
a® a®+a+1 a®>+2a+1 c3 0

which has the solution

c1 2% a2 +1
ol =12%xa?+2xa
c3 2%+«

The general formula is thus
ar, = (1 —a?)a? + (—a? —a)(a — 1) 4 (—a® + a)(a + 1),

We have seen that the period length is maximal, i.e. 33 —1 = 26,
and that the sequence is periodic, not just ultimately periodic.



