Exercises for TATA55, batch 1, 2023

September 20, 2023

1. (4p) Find all solutions to

$$
2 x+3 y+5 z=2001, \quad x, y, z \in \mathbb{Z}
$$

Which solutions have x, y, and z positive?
Solution: The integers $2,3,5$ are pairwise coprime, and a particular solution is $X_{p}=2001(-1,1,0)$. The general homogeneous solution is $s(-3,2,0)+$ $t(-5,0,2)$ so the general solutin is

$$
(x, y, z)=(-2001,2001,0)+s(3,-2,0)+t(-5,0,2), \quad s, t \in \mathbb{Z} .
$$

For positivity we get

$$
-2001+3 s-5 t>0, \quad 2001-2 s>0, \quad 2 t>0
$$

which simplifies to

$$
0<\mathrm{t}<\frac{2001}{10}, \quad \frac{2001}{3}+\frac{5}{3} \mathrm{t}<\mathrm{s}<\frac{2001}{2}
$$

2. (4p) Solve

$$
\begin{array}{ll}
x \equiv 2 & \bmod 13 \\
x \equiv 3 & \bmod 17 \\
x \equiv 4 & \bmod 19
\end{array}
$$

Solution: Since the moduli are distinct primes, there is a unique solution $\bmod 13 * 17 * 19=4199$. We can find the solution by solving a linear diophantine equation in 3 variables; we get that $x \equiv 4032 \bmod 4199$.
3. (4p) Show the following induction principle: suppose that $S \subseteq \mathbb{N} \times \mathbb{N}$ satisfies
(a) $(0,0) \in S$
(b) If $(a, b) \in S$ then $(a+1, b) \in S$ and $(a, b+1) \in S$

Then $S=\mathbb{N} \times \mathbb{N}$.
Solution: Put

$$
\begin{aligned}
S_{\mathfrak{m}} & =\{(a, b) \in S \mid a+b=m\} \\
T_{m} & =\{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a+b=\mathfrak{m}\}
\end{aligned}
$$

We want to prove that $S_{m}=T_{m}$ for all $m \in \mathbb{N}$.
Clearly, $S_{0}=T_{0}$. Suppose that $S_{n}=T_{n}$. If $(c, d) \in \S_{n+1}$ then either $c>0$ or $d>0$. If $c>0$ then since $(c-1, d) \in S_{n}$ it follows that $(c, d) \in S_{n+1}$, and similarly if $d>0$. Hence $S_{n+1}=T_{n+1}$. The result follows by (ordinary) induction.
4. (4p) Suppose that $\operatorname{gcd}(a, n)=d$, and that $d \mid b$. Show that the congruence $\mathrm{ax} \equiv \mathrm{b} \bmod \mathrm{n}$ is equivalent to the congruence $(\mathrm{a} / \mathrm{d}) \mathrm{x} \equiv \mathrm{b} / \mathrm{d} \bmod \mathrm{n} / \mathrm{d}$. How many different solutions $(\bmod \mathfrak{n})$ does this congruence have? Find all non-congruent solutions to the congruence $10 x \equiv 35 \bmod 25$.
Solution: Write $a=d a^{\prime}, b=d b^{\prime}, n=d n^{\prime}$. Then

$$
\mathrm{n}\left|\mathrm{ax}-\mathrm{b} \Longleftrightarrow \mathrm{n}^{\prime}\right| \mathrm{a}^{\prime} \mathrm{x}-\mathrm{b}^{\prime}
$$

which happens iff $a^{\prime} x \equiv b^{\prime} \bmod n^{\prime}$ is solvable. Since $\operatorname{gcd}\left(a^{\prime}, n^{\prime}\right)=1$ this congruence has a unique solution mod n^{\prime}; there are d congruence classes $\bmod n$ which are congruent to this $x \bmod n$.
The congruence $10 x \equiv 35 \bmod 25$ is equivalent to $2 x \equiv 7 \bmod 5$, which has the unique $(\bmod 5)$ solution $x \equiv 1 \bmod 5$. Mod 25 the solutions are $x \equiv 1,6,11,16,21 \bmod 25$.

