Exercises for TATA55, batch 2, 2023

September 12, 2023

Solutions to the exercises below should be handed in no later than September 26, 2023.

- 1. (4p) How many subgroups of size k are there in C_n ?
- 2. (6p) Same question for the dihedral group D_n (partial credit for partial results).
- 3. (4p) Let G be a group, and suppose that $a^2 = 1$ for all $a \in G$. Show that G is abelian. On the other hand, show that the relations $a^3 = b^3 = 1$ for a group G generated by a, b does not imply that the group is abelian.
- 4. (5p) Denote the adjacent transposition (j, j + 1) by s_i .
 - (a) Show that the set $\{s_1, \ldots, s_{n-1}\}$ generate S_n .
 - (b) Find the relations (including self-relations) among these generators.
 - (c) Show that the set of all $t_{ij} = s_i s_j$ generate A_n .
 - (d) Show that the set of all $u_i = (12j)$ generate A_n .
 - (e) Find the relations between the u_i 's.
- 5. (3p, a bit harder) Let $\sigma \in S_n$ be a permutation of cycle type $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_r]$. Let $V = \mathbb{C}^n$ with canonical basis $\mathbf{e}_1, \dots, \mathbf{e}_n$ and denote by $T_\sigma : \mathbb{C}^n \to \mathbb{C}^n$ the linear map that satisfies $T_\sigma(\mathbf{e}_j) = \mathbf{e}_{\sigma(j)}$. What are the eigenvalues of T_σ ? Start with the case where σ is k-cycle.