Solutions to exercises for TATA55, batch 2, 2023

October 10, 2023

1. (4p) How many subgroups of size k are there in C_{n} ?

Solution: By Lagrange, unless $k \mid n$ there are no subgroups of size k. If $C_{n}=\langle g\rangle$ and $\mathrm{n}=\mathrm{mk}$, then $\mathrm{o}\left(\mathrm{g}^{\mathrm{m}}\right)=\mathrm{k}$. Thus there exists at least one subgroup $\mathrm{H}=\left\langle\mathrm{g}^{\mathfrak{m}}\right\rangle$ of size k. The elements of H all have orders dividing k. In particular, $\phi(\mathrm{k})$ of them have order k.
Note that any subgroup K of C_{n} is cyclic, hence generated by g^{ℓ}, which have order $\ell n / \operatorname{gcd}(\ell, n)$. If K is to have order k, then $n / \operatorname{gcd}(\ell, n)=k=n / m$ hence $m=$ $\operatorname{gcd}(\ell, \mathrm{mk})=\mathrm{m}$ hence $1=\operatorname{gcd}(\ell / \mathrm{m}, \mathrm{k})$. There are again $\phi(\mathrm{k})$ possible generators of such a subgroups; therefore, all of them lie in H. Hence $K=H$; there is but one cyclic subgroup of a given size.
Alternative proof: $o\left(g^{d_{1}}\right)=o\left(g^{d_{2}}\right)=k$ so $n / \operatorname{gcd}\left(n, d_{1}\right)=n / \operatorname{gcd}\left(n, d_{2}\right)$, hence $r=$ $\operatorname{gcd}\left(n, d_{1}\right)=\operatorname{gcd}\left(n, d_{2}\right)$. We claim that $g^{d_{1}} \in\left\langle g^{d_{2}}\right\rangle$, i.e. that $d_{1} \equiv s d_{2} \bmod n$. This is equivalent to the Diophantine equation $d_{1}+t n=s d_{2}$ or $s d_{2}-t n=d_{1}$ which is solvable since $\operatorname{gcd}\left(d_{2}, n\right)=r$ divides d_{1}.
Alternative proof 2: We show that $\left\langle g^{m}\right\rangle=\left\langle g^{d}\right\rangle$, where $d=\operatorname{gcd}(m, n)$. Since $d \mid m$, we get $g^{m} \in\left\langle g^{d}\right\rangle$. For the converse, use Bezout to get $d=a m+b n$. Then $g^{d}=g^{a m+b n}=$ $\left(g^{m}\right)^{a} *\left(g^{n}\right)^{b}=\left(g^{m}\right)^{a} \in\left\langle g^{m}\right\rangle$.
In conclusion, the number of subgroups of size k is 1 if $k \mid n$ and zero otherwise.
2. (6p) Same question for the dihedral group D_{n} (partial credit for partial results).

Solution: Let $r, s \in D_{n}$ be rotation by $1 / n$ 'th of a lap, and reflection in the x-axis, respectively. Then D_{n} is generated by r, s, with relations $r^{n}=s^{2}=1$, $s r=r^{n-1} s$, and every element can be uniquely written as either $1, r^{k}, 1 \leq k \leq n-1$, rotations, or $r^{k} s$, $0 \leq k \leq n-1$, reflections.
The reflections form a cyclic subgroup with n elements, so any subgroup with just rotations is of the form $\left\langle r^{d}\right\rangle$ with $d \mid n$, and there is exactly one for each d, by the previous exercise. Thus, for any d that divides n, there is a unique rotation subgroup with n / d elements.
Suppose now that the subgroup $K \leq D_{n}$ contains a reflection. For simplicity, assume that this reflection is s (the general case can be deduced from this case). Then $K \cap\langle r\rangle$ is a subgroup of $\langle\mathrm{r}\rangle$, and thus $\left\langle\mathrm{r}^{\mathrm{d}}\right\rangle$, with $\mathrm{d} \mid \mathrm{n}$. Clearly $\left\langle\mathrm{r}^{\mathrm{d}}, \mathrm{s}\right\rangle \subseteq \mathrm{K}$. We claim that the reverse inclusion holds, as well.

To prove this, pick any $k \in K$. If k is a rotation then $k \in\langle r\rangle \cap K=\left\langle r^{d}\right\rangle$. If k is a reflection, then either it is s, and we are done, or it is some other reflection, i.e. $k=r^{j}$ s. But $s \in K$ so $k s \in K$ since K is a subgroup, hence closed under multiplication, so $k s=r^{j} s s=r^{j} \in K$. Then since this a rotation, it lies in $\langle r\rangle \cap K=\left\langle r^{d}\right\rangle$, so $r^{j}=r^{d \ell}$ for some ℓ. But then

$$
k=r^{j} s=r^{d \ell} s=\left(r^{d}\right)^{\ell} s \in\left\langle r^{d}, s\right\rangle
$$

The $2 n / d$ elements of K are

$$
r^{d}, r^{2 d}, \ldots, r^{r}=1, r^{d} s, r^{2 d} s, \ldots, r^{r} s=s
$$

For the general case, i.e. K contains some reflection $\tilde{s}=r^{j} s$ different from s but not s itself, we use the fact (I think this is mentioned in Svensson?) that D_{n} can be generated by r, \tilde{s}, and the relations are the same! Then by the previous result, $K=\left\langle r^{d}, \tilde{s}\right\rangle=\left\langle r^{d}, r^{j} s\right\rangle$. The number of elements of $\left\langle r^{\mathrm{d}}, \mathrm{r}^{\mathrm{j}} s\right\rangle$ is of course $2 \mathrm{n} / \mathrm{d}$, since these elements are

$$
r^{d}, r^{2 d}, \ldots, r^{n}=1, r^{d} \tilde{s}, r^{2 d} \tilde{s}, \ldots, r^{n} \tilde{s}=\tilde{s}
$$

A bit trickier to prove is the fact that

$$
\left.\left\langle r^{\mathrm{d}}, \mathrm{r}^{\mathrm{i}} s\right\rangle=\left\langle\mathrm{r}^{\mathrm{d}}, \mathrm{r}^{\mathrm{j}}\right\rangle\right\rangle \quad \Longleftrightarrow \quad \mathrm{i} \equiv \mathfrak{j} \quad \bmod \mathrm{~d}
$$

It is true, however, so we may assume that $0 \leq \mathfrak{j} \leq \mathrm{d}-1$.
So, for each divisor d of n, there is one rotational subgroup $\left\langle r^{d}\right\rangle$ of order n / d, and d "dihedral" subgroups $\left\langle\mathrm{r}^{\mathrm{d}}, \mathrm{r}^{\mathrm{i}} \mathrm{s}\right\rangle$ of order $2 \mathrm{n} / \mathrm{d}$. For instance, in D_{5} there is 1 subgroup of size 5,1 of size 10,1 of size 1 , and 5 of size 2 .
3. (4p) Let G be a group, and suppose that $a^{2}=1$ for all $a \in G$. Show that G is abelian. On the other hand, show that the relations $a^{3}=b^{3}=1$ for a group G generated by a, b does not imply that the group is abelian.
Solution: In the first case, take $x, y \in G$. Then $x^{2}=y^{2}=1$ so $x^{-1}=x, y^{-1}=y$, and

$$
1=(x y)^{2}=x y x y=x y x^{-1} y^{-1}
$$

so

$$
y x=x y .
$$

Secondly, take $g=(1,2,3) h=(2,3,4), G=\langle g, h\rangle \leq S_{4}$. Then $g^{3}=h^{3}=1$ but gh $\neq \mathrm{hg}$.
4. (5p) Denote the adjacent transposition $(\mathfrak{j}, \mathfrak{j}+1)$ by s_{j}.
(a) Show that the set $\left\{s_{1}, \ldots, s_{n-1}\right\}$ generate S_{n}.
(b) Find the relations (including self-relations) among these generators.
(c) Show that the set of all $t_{i j}=s_{i} s_{j}$ generate A_{n}.
(d) Show that the set of all $u_{j}=(12 j)$ generate A_{n}.
(e) Find the relations between the u_{j} 's.

Solution: It is shown in the textbook that the s_{j} generate S_{n}, see that. The relations are $s_{j}^{2}=1$, so $s_{i}^{-1}=s_{i}$, and $s_{i} s_{j}=s_{j} s_{i}$ when $|i-j|>1$, and finally $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$. It is enough to find and verify these relations, you need no prove that they generate all relations.
From the theorem about the well-definedness of signs of permutations we know that any even permutation is a product of an even number of transpositions; thus by the first part, it is the product of an even number of s_{j} 's, thus a product of $t_{i j}$'s.
It is known (see e.g. Svensson 10.43) that every even permutation is the product of 3cycles. Thus, it is enough to show that every 3 -cycle is the product of u_{j} 's.
We have that $u_{j}^{-1}=u_{j}^{2}$ and

$$
\begin{aligned}
(1,2, j) & =u_{j} \\
(1, j, 2) & =u_{j}^{-1}=u_{j}^{2} \\
(1, j, k) & =u_{k} u_{j}^{-1}=(1,2, k)(1, j, 2) \\
(2, j, k) & =u_{k}^{-1} u_{j}=(1, k, 2)(1,2, j) \\
(i, j, k) & =(1, k, i)(1, i, j)=u_{i} u_{k}^{-1} u_{j} u_{i}^{-1}
\end{aligned}
$$

So every 3-cycle is indeed a product of u_{j} 's.
It is easy enough to find that the following words in the u_{j} 's correspond to the identity permutation: $u_{j}^{3}=(1,2, j)^{3}$ and

$$
\left(\mathfrak{u}_{\mathfrak{i}} u_{j}\right)^{2}=(1,2, i)(1,2, j)(1,2, i)(1,2, j) .
$$

SAGEMATH indicates that these relations generate all relations, but I have not proved this.
5. (3p, a bit harder) Let $\sigma \in S_{n}$ be a permutation of cycle type $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right]$. Let $\mathrm{V}=\mathbb{C}^{\mathrm{n}}$ with canonical basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{\mathrm{n}}$ and denote by $\mathrm{T}_{\sigma}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ the linear map that satisfies $T_{\sigma}\left(\mathbf{e}_{\mathfrak{j}}\right)=\mathbf{e}_{\sigma(\mathfrak{j})}$. What are the eigenvalues of T_{σ} ? Start with the case where σ is k-cycle.
Solution: If $\sigma=(1,2, \ldots, n)$ then let $\xi=\exp (2 \pi i / n)$ the standard primitive n 'th root of unity. For $0 \leq k<n$, define the vector

$$
v_{k}=\left(1, \xi^{k}, \xi^{2 k}, \ldots, \xi^{(n-1) k}\right)
$$

Then

$$
\xi^{k} v_{k}=\left(\xi^{k}, \xi^{2 k}, \ldots, \xi^{(n-1) k}, \xi^{n k}\right)=\left(\xi^{k}, \xi^{2 k}, \ldots, \xi^{(n-1) k}, 1\right)=\mathrm{T}_{\sigma}\left(v_{\mathrm{k}}\right)
$$

so this is an eigenvector with corresponding eigenvalue ξ^{k}. We have found n different eigenvalues, they are all there is.
If σ is the product of disjoint cycles $\sigma=\prod_{j} \gamma_{j}$ then $\mathrm{T}_{\sigma}=\prod_{j} \mathrm{~T}_{\gamma_{j}}$. Each $\mathrm{T}_{\gamma_{j}}$ fixes the subspace of V spanned by the e_{i} 's with i in the fixpointset of γ_{i}, and has as an invariant subspace the subspace spanned by the e_{i} 's with i not in the fixpointset of γ_{i}.
Thus, after a simultaneous permutation of the rows and columns of the matrix of T_{σ} it has a diagonal block shape, where each block correspond to the matrix of γ_{i}. Thus the set of eigenvalues of T_{σ} is the union of all k_{i} 'th roots of unity, where the k_{i} 's are the cycle lengths.

