Solutions to exercises for TATASS, batch 2, 2023

October 10, 2023

. (4p) How many subgroups of size k are there in C,,?

Solution: By Lagrange, unless k |n there are no subgroups of size k. If C,, = (g) and
n = mk, then o(g™) = k. Thus there exists at least one subgroup H = (g™) of size k.
The elements of H all have orders dividing k. In particular, ¢ (k) of them have order k.

Note that any subgroup K of C, is cyclic, hence generated by g‘, which have order
In/gced(f,n). If K is to have order k, then n/gcd({,n) = k = n/m hence m =
gcd(€, mk) = m hence 1 = ged({/m, k). There are again ¢ (k) possible generators of
such a subgroups; therefore, all of them lie in H. Hence K = H; there is but one cyclic
subgroup of a given size.

Alternative proof: o(g¥) = o(g%) = k son/ged(n,d;) = n/ged(n, d;), hence r =
ged(n, di) = ged(n, dy). We claim that g4 € (g%2), i.e. that d; = sd; mod n. This is
equivalent to the Diophantine equation d; + tn = sd, or sd, —tn = d; which is solvable
since gcd(dy, ) = 1 divides d;.

Alternative proof 2: We show that (g™) = (g%), where d = gcd(m,n). Since d |m, we
get g™ € (g%). For the converse, use Bezout to get d = am + bn. Then g¢ = gom+" =
(g™)* (g")° = (g™)° € (g™).

In conclusion, the number of subgroups of size k is 1 if k [n and zero otherwise.

. (6p) Same question for the dihedral group D,, (partial credit for partial results).

Solution: Let r,s € D, be rotation by 1/n’th of a lap, and reflection in the x-axis,
respectively. Then D,, is generated by T, s, with relations T = s> = 1, st = ™™ 's, and
every element can be uniquely written as either 1, 1, 1 < k < n — 1, rotations, or 1*s,
0 <k <n —1, reflections.

The reflections form a cyclic subgroup with n elements, so any subgroup with just rotations
is of the form (r¢) with d |n, and there is exactly one for each d, by the previous exercise.
Thus, for any d that divides n, there is a unique rotation subgroup with n/d elements.

Suppose now that the subgroup K < D,, contains a reflection. For simplicity, assume that
this reflection is s (the general case can be deduced from this case). Then K N (r) is a
subgroup of (r), and thus (r%), with d [n. Clearly (r%,s) C K. We claim that the reverse
inclusion holds, as well.



To prove this, pick any k € K. If k is a rotation then k € (r)NK = (r4). If k is a reflection,
then either it is s, and we are done, or it is some other reflection, i.e. k = 's. But s € K so
ks € K since K is a subgroup, hence closed under multiplication, so ks = r'ss = 1 € K.
Then since this a rotation, it lies in (r) N K = (r9), so ¥ = r% for some £. But then

k=1vs=1% = (4’ € (1%s).

The 2n/d elements of K are

it =1l s, s =8

For the general case, i.e. K contains some reflection § = ris different from s but not s
itself, we use the fact (I think this is mentioned in Svensson?) that D,, can be generated by
1,3, and the relations are the same! Then by the previous result, K = (r9,3) = (r4 s).
The number of elements of (rd, rjs> is of course 2n/d, since these elements are

S R T e N

A bit trickier to prove is the fact that
Thris) = (r41s) & 1i=j modd

It is true, however, so we may assume that 0 <j < d — 1.

So, for each divisor d of n, there is one rotational subgroup (r¢) of order n/d, and d
“dihedral” subgroups (r¢,r's) of order 2n/d. For instance, in Dj there is 1 subgroup of
size 5, 1 of size 10, 1 of size 1, and 5 of size 2.

3. (4p) Let G be a group, and suppose that a?> = 1 for all a € G. Show that G is abelian. On
the other hand, show that the relations a®> = b3 = 1 for a group G generated by a, b does
not imply that the group is abelian.
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Solution: In the first case, take x,y € G. Thenx* =y?> =1sox ' =x,y ' =y, and

1= (xy)* =xyxy = xyx 'y~

SO
yx = xy.

Secondly, take g = (1,2,3) h = (2,3,4), G = (g,h) < S;. Then g®> = h? = 1 but
gh # hg.

4. (5p) Denote the adjacent transposition (j,j + 1) by s;.
(a) Show that the set{sq,...,s, 1} generate S,,.

(b) Find the relations (including self-relations) among these generators.
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(c) Show that the set of all t;; = s;s; generate A.,.
(d) Show that the set of all u; = (12j) generate A,,.
(e) Find the relations between the u;’s.
Solution: It is shown in the textbook that the s; generate S,,, see that. The relations are

sj2 =1,5s0 3;1 = s;, and s;is; = sjs; when |[i—j| > 1, and finally $isi418; = Si418iSi41. Itis
enough to find and verify these relations, you need no prove that they generate all relations.

From the theorem about the well-definedness of signs of permutations we know that any
even permutation is a product of an even number of transpositions; thus by the first part, it
is the product of an even number of s;’s, thus a product of tj;’s.

It is known (see e.g. Svensson 10.43) that every even permutation is the product of 3-
cycles. Thus, it is enough to show that every 3-cycle is the product of u;’s.

‘We have that u].’ 1 — U.]-2 and

1 1

Wy

So every 3-cycle is indeed a product of u;’s.

It is easy enough to find that the following words in the u;’s correspond to the identity
permutation: uf’ =(1,2,j)° and

(LLLLL))Z = (])2) 1)(1>2>])(1)2) l)(1>2>))
SAGEMATH indicates that these relations generate all relations, but I have not proved this.

. (3p, a bit harder) Let 0 € S, be a permutation of cycle type A = [A,A,...,A]. Let
V = C™ with canonical basis ey, ..., e, and denote by T, : C* — C™ the linear map that
satisfies T;(ej) = eq(;). What are the eigenvalues of T;? Start with the case where o is
k-cycle.

Solution: If 0 = (1,2,...,n) then let § = exp(27i/n) the standard primitive n’th root
of unity. For 0 < k < n, define the vector

v = (1,E,k, E,Zk, e E(n*”k)'
Then

E,ka — (E,k, alk) . E(nfl)k’ Enk) — (Ek) E,Zk, . E’(nf])k) ]) — To‘(vk)



so this is an eigenvector with corresponding eigenvalue £*. We have found n different
eigenvalues, they are all there is.

If o is the product of disjoint cycles o = [[;yj then T, = [[; T,;. Each Ty, fixes the
subspace of V spanned by the e;’s with i in the fixpointset of y;, and has as an invariant
subspace the subspace spanned by the e;’s with 1 not in the fixpointset of y;.

Thus, after a simultaneous permutation of the rows and columns of the matrix of T it has
a diagonal block shape, where each block correspond to the matrix of ;. Thus the set
of eigenvalues of T, is the union of all k;’th roots of unity, where the k;’s are the cycle
lengths.



