
Solutions to exercises for TATA55, batch 2, 2023

October 10, 2023

1. (4p) How many subgroups of size k are there in Cn?

Solution: By Lagrange, unless k |n there are no subgroups of size k. If Cn = 〈g〉 and
n = mk, then o(gm) = k. Thus there exists at least one subgroup H = 〈gm〉 of size k.
The elements of H all have orders dividing k. In particular, φ(k) of them have order k.

Note that any subgroup K of Cn is cyclic, hence generated by g`, which have order
`n/ gcd(`, n). If K is to have order k, then n/ gcd(`, n) = k = n/m hence m =
gcd(`,mk) = m hence 1 = gcd(`/m, k). There are again φ(k) possible generators of
such a subgroups; therefore, all of them lie in H. Hence K = H; there is but one cyclic
subgroup of a given size.

Alternative proof: o(gd1) = o(gd2) = k so n/ gcd(n, d1) = n/ gcd(n, d2), hence r =
gcd(n, d1) = gcd(n, d2). We claim that gd1 ∈ 〈gd2〉, i.e. that d1 ≡ sd2 mod n. This is
equivalent to the Diophantine equation d1+ tn = sd2 or sd2− tn = d1 which is solvable
since gcd(d2, n) = r divides d1.

Alternative proof 2: We show that 〈gm〉 = 〈gd〉, where d = gcd(m,n). Since d |m , we
get gm ∈ 〈gd〉. For the converse, use Bezout to get d = am + bn. Then gd = gam+bn =
(gm)a ∗ (gn)b = (gm)a ∈ 〈gm〉.
In conclusion, the number of subgroups of size k is 1 if k |n and zero otherwise.

2. (6p) Same question for the dihedral group Dn (partial credit for partial results).

Solution: Let r, s ∈ Dn be rotation by 1/n’th of a lap, and reflection in the x-axis,
respectively. Then Dn is generated by r, s, with relations rn = s2 = 1, sr = rn−1s, and
every element can be uniquely written as either 1, rk, 1 ≤ k ≤ n − 1, rotations, or rks,
0 ≤ k ≤ n− 1, reflections.

The reflections form a cyclic subgroup withn elements, so any subgroup with just rotations
is of the form 〈rd〉 with d |n , and there is exactly one for each d, by the previous exercise.
Thus, for any d that divides n, there is a unique rotation subgroup with n/d elements.

Suppose now that the subgroup K ≤ Dn contains a reflection. For simplicity, assume that
this reflection is s (the general case can be deduced from this case). Then K ∩ 〈r〉 is a
subgroup of 〈r〉, and thus 〈rd〉, with d |n . Clearly 〈rd, s〉 ⊆ K. We claim that the reverse
inclusion holds, as well.
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To prove this, pick any k ∈ K. If k is a rotation then k ∈ 〈r〉∩K = 〈rd〉. If k is a reflection,
then either it is s, and we are done, or it is some other reflection, i.e. k = rjs. But s ∈ K so
ks ∈ K since K is a subgroup, hence closed under multiplication, so ks = rjss = rj ∈ K.
Then since this a rotation, it lies in 〈r〉 ∩ K = 〈rd〉, so rj = rd` for some `. But then

k = rjs = rd`s = (rd)`s ∈ 〈rd, s〉.

The 2n/d elements of K are

rd, r2d, . . . , rn = 1, rds, r2ds, . . . , rns = s

For the general case, i.e. K contains some reflection s̃ = rjs different from s but not s
itself, we use the fact (I think this is mentioned in Svensson?) thatDn can be generated by
r, s̃, and the relations are the same! Then by the previous result, K = 〈rd, s̃〉 = 〈rd, rjs〉.
The number of elements of 〈rd, rjs〉 is of course 2n/d, since these elements are

rd, r2d, . . . , rn = 1, rds̃, r2ds̃, . . . , rns̃ = s̃

A bit trickier to prove is the fact that

〈rd, ris〉 = 〈rd, rjs〉 ⇐⇒ i ≡ j mod d

It is true, however, so we may assume that 0 ≤ j ≤ d− 1.

So, for each divisor d of n, there is one rotational subgroup 〈rd〉 of order n/d, and d
“dihedral” subgroups 〈rd, ris〉 of order 2n/d. For instance, in D5 there is 1 subgroup of
size 5, 1 of size 10, 1 of size 1, and 5 of size 2.

3. (4p) Let G be a group, and suppose that a2 = 1 for all a ∈ G. Show that G is abelian. On
the other hand, show that the relations a3 = b3 = 1 for a group G generated by a, b does
not imply that the group is abelian.

Solution: In the first case, take x, y ∈ G. Then x2 = y2 = 1 so x−1 = x, y−1 = y, and

1 = (xy)2 = xyxy = xyx−1y−1

so
yx = xy.

Secondly, take g = (1, 2, 3) h = (2, 3, 4), G = 〈g, h〉 ≤ S4. Then g3 = h3 = 1 but
gh 6= hg.

4. (5p) Denote the adjacent transposition (j, j+ 1) by sj.

(a) Show that the set {s1, . . . , sn−1} generate Sn.

(b) Find the relations (including self-relations) among these generators.
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(c) Show that the set of all tij = sisj generate An.

(d) Show that the set of all uj = (12j) generate An.

(e) Find the relations between the uj’s.

Solution: It is shown in the textbook that the sj generate Sn, see that. The relations are
s2j = 1, so s−1i = si, and sisj = sjsi when |i− j| > 1, and finally sisi+1si = si+1sisi+1. It is
enough to find and verify these relations, you need no prove that they generate all relations.

From the theorem about the well-definedness of signs of permutations we know that any
even permutation is a product of an even number of transpositions; thus by the first part, it
is the product of an even number of sj’s, thus a product of tij’s.

It is known (see e.g. Svensson 10.43) that every even permutation is the product of 3-
cycles. Thus, it is enough to show that every 3-cycle is the product of uj’s.

We have that u−1
j = u2j and

(1, 2, j) = uj

(1, j, 2) = u−1
j = u2j

(1, j, k) = uku
−1
j = (1, 2, k)(1, j, 2)

(2, j, k) = u−1
k uj = (1, k, 2)(1, 2, j)

(i, j, k) = (1, k, i)(1, i, j) = uiu
−1
k uju

−1
i

So every 3-cycle is indeed a product of uj’s.

It is easy enough to find that the following words in the uj’s correspond to the identity
permutation: u3j = (1, 2, j)3 and

(uiuj)
2 = (1, 2, i)(1, 2, j)(1, 2, i)(1, 2, j).

SAGEMATH indicates that these relations generate all relations, but I have not proved this.

5. (3p, a bit harder) Let σ ∈ Sn be a permutation of cycle type λ = [λ1, λ2, . . . , λr]. Let
V = Cn with canonical basis e1, . . . , en and denote by Tσ : Cn → Cn the linear map that
satisfies Tσ(ej) = eσ(j). What are the eigenvalues of Tσ? Start with the case where σ is
k-cycle.

Solution: If σ = (1, 2, . . . , n) then let ξ = exp(2πi/n) the standard primitive n’th root
of unity. For 0 ≤ k < n, define the vector

vk = (1, ξk, ξ2k, . . . , ξ(n−1)k).

Then

ξkvk = (ξk, ξ2k, . . . , ξ(n−1)k, ξnk) = (ξk, ξ2k, . . . , ξ(n−1)k, 1) = Tσ(vk)
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so this is an eigenvector with corresponding eigenvalue ξk. We have found n different
eigenvalues, they are all there is.

If σ is the product of disjoint cycles σ =
∏

j γj then Tσ =
∏

j Tγj . Each Tγj fixes the
subspace of V spanned by the ei’s with i in the fixpointset of γi, and has as an invariant
subspace the subspace spanned by the ei’s with i not in the fixpointset of γi.

Thus, after a simultaneous permutation of the rows and columns of the matrix of Tσ it has
a diagonal block shape, where each block correspond to the matrix of γi. Thus the set
of eigenvalues of Tσ is the union of all ki’th roots of unity, where the ki’s are the cycle
lengths.
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